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Introduction. It ig natural to raise the question raised by the title.
The proof I give has never been published before: there have, however,
been near misses. (i) Hardy and Littlewood [1] give the formula (8) below,
without giving the details of its proof, but do not draw the “Tauberian”
conclusion of the P. N. T. (and go on to assume the Riemann Hypothesis
for some different purposes). (il) Ingham ([2], p. 38, §10) says thatb
Tauberian theorems for pogitive coefficients can be used to prove the
P.N. T., but goes into no further detail, and it does not appear that
he has the present proof in mind. (ili) Tngham (l.c., Theorem 28) gives
an explicit formula for

@ _ vilm) = [plu)du,

and dedunces by a Tauberian argument that ¢,(#%) ~ %2 The proof,
however, of the explicit formula is a good deal longer and more delicate
than the fairly crade one of the explicit formula (8) below (§ 4). Moreover
there remains the deduction of w{z) ~ o from y,(®w)~ 3o Whmh is not
ab all trivial. : .

§1. The theorems and formulae on which my proof depends are

AR fo]lows:
N If a,>0 and y Ys,e7™ =5 as y — +0, then 8, —s.

ha,ramata s proof [3] of this is highly sophisticated, but quite short
and easy to follow. (Other Tauberian theorems can be deduced from (I)
with @ eertain amount of trouble, hut it happens that (I) is precisely the
fortn we need to use.)

(II) The fumt'ional equations for [(s) and £(s) = }s{s—1)n X
= I'(8)5(#); §(L— £(s) for the latter. E(s) is an integral function of
order < 2 (adua,lh of course 1). L
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(ITI) If the zevos of £(s) ave g = -y,
1
= {8) = O{logt)+-8 .~ — .
5() (log?) 029(3_9)

Cﬂ

(IV) For ¢ = — 1,-&—(3) = Q(t1), where A is a positive adsolule

constant.
(We use 4’8 to mean this in the sequel; they are not generally the
same from one oceurrence to the next. Constants of 0’y will be of type A.)
Much stronger inequalities for £’/ are known, but thiz one would
be easier to prove.
. l 2-i:.100 _ »
(V) o J Tis)y~5ds = ¢ ¥ (y>0).

2—qoa

This iz the well-known Cohen—Mellin integral,

(VD) —50) = A (o> 1), wahars

Afm) = > logp

m'm,_g_n
(VIL) Let N(T) be the number of zeros o = fididy with 05y T.
Then N(T) = O(T4). ‘
(VIIX) For the p == f--4y we have 0 < f <1,

§2. Lemma 1. Given a lafrgs positive Ty, there 48 o T, with

ATy < I < AT, such that
?(s)=O(T‘4) for 8§ =c4il, —1l<< o2,
The corresponding result for s = o—4T follows by the symanelry.
We suppose always that — 1< o< 2.
The number of ¢ = f+44y with y in the range W, 31, =iy 15T,
is O(T#), by (VII). Hence there is a T in R, such that ]su- g| |«;——ﬂ
> T4 for 3T, <y < 2T, or Re.

So
e~ olnnt Sag) o,

(2)
In y > ZTD, ls— o] = Ay > Ao,

(3)

8
oy = Ol = 0T,

yz2l,
gince & hag order << 2.
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In 0y 1Ty, or Ry, 5—o| > ATF, and minlg| > 4,

§ \7
{s—po)o

1
1T <AN(GT,) = O(T).

peily yety i@l

Finally, for ¢ << 0 we have |s—p| > 4d|y| > 4l¢|

8 1
S (s—o)g O(T"Z‘W) = O(To).

From thiz and (2), (3), (4) we have the result of Lemma 1.

§3. Lemma 2. For y > 0,

2+1i00

1 g
-8y __ —8
E An)e™ = — _f I'{s) 7 )y ds.
We have
1 2-Heo
—-nYy __ —3
e = re f I(s)(ny)~ds

by (V). On § = ¢+
"% (8) = ZA(%)%", absolutely convergent,

and Lemma 2 follows.

§4. Choose T (large) as in Lemmsa 1, and congider the s-contour
¢ = Gl+02+03+04y

Op: 2—1Ti to 2--Ti; €y 24 Ti to —14-Ti;

Cg: —14+T% to —1-Ti; O ~1—Ti to 2-—T4.

We have

’

f—i_— (8).1(s)y *ds = pum of residues of *-%F(s)y"g

Qred
]

ingide C. The poles are: § = 1, residue .y‘l; 8 = 0, residue 0(1) (fory — 0-1-);
§ = g, residue — I'(g). Thus
(5) f I'(s) m(s “ds =y 00— D T(e)y ™",
where ), is taken over the ¢ in C.
We now make T — co through ita special values.
— 9447
(6) [ =oq TI'(s)ds == o(1)
02+C'4 g
as T — oo, since I'(s}) = O(e~#"") is the range of integration.

Now by Lemma 1
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On Oy (—1—Ti to —141%)

L(s) = ()™ = 0(e™"ltly),

and so

{7) [=0w.
Oy

Colleeting from, (b), (6), (7) and multiplying by w, .we have, ag
¥y —~>0+4,

2474 or
y o £ ,
— L re) = sy =..~.Z =0 [1(g) -
P Jm (6) - ()y™*ds =1~ | 9" *I'(g)+0(1)
and making 7' — co
2400t
____;l/__ iﬂ o C’ -8 l—g ™
T | T ds=1—§:u I'()+0(1),
—00Y @,

or, by Lemma 2, as ¥ — 04

(8) y X Ame ™ =1— 3yer(g) +o(1).
(@ '

Now, 8 <1, jy""I'(g)l <I(a)l, and 3 [I'(g)| converges ubsolu-
teflly. Thus }9'"I'(p) is uniformly convergent in y:>0. Also each
[y ¢l (g)| =0 as y - 0. By the uniform convergence theorem

lim Y yi7er(g) = 0
s % Y (e s
and from (8)

limyZA (n)e™™ =1,
It now follows from (I} thab

YA (n) ~a
v
which iy equivalent to the P. N. T.
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The results. It needs some words of justification why the present
article fits in the frame of a volume dedicated to the memory of H. Da-
venport. One may expect contributions whieh are more or lesy related
to his work or which at least deal with algebraic or analytic number
theory. The nature of this note may be, on the confrary, described as
number theoretical analysis or algebra, but number theory nevertheless.

It is known since works by A. Selberg [16] and A. Weil [19] that
the transformation groups underlying automorphie functions and forms
in several variables have algebraic coefficients (or are equivalent to such).
So number theory plays an important part in the definition of these
groups. But the contribution of number theory is not exhausted by this.
T need not mention the vast connections between modular and auto-
morphic functions and class field theory; already Siegel's theory of
Risenstein series [18] and a recent generalization by Baily [1] show the
contrary. Moreover, investigations by Igusa [13], Hammond [12],
Freitag [9], and Gundlach [10], [11] derive the algebraic structure of
the rings of special modular forms from number theoretical properties,
The present note reports on some consequences following from this know-
ledge. The details of this investigation appear independently in a series
of lecture notes [8]. Here we only describe the results and possible impli-
cations. : :

For a large class of antomorphic forms Baily and Borel [2] — -see
also [7] — showed that they form finitely generated graded rings 3. The
degree is the weight of an automorphic form. Here we only deal with
Hilbert and Stegel modular forms in the most narrow sense, the underlying
groups being

I =8L(2, D),
where O i the principal order of a totally real algebraie number field
of degree n. The number of independent variables is # in the firgt case
and # == }m(m-+1) in the second. By normalization of a system of genera-

resp Sp(mw, Z)



