ACTA ARITHMETICA XIX (1971)

References

- [1] L. E. Dickson, History of the theory of numbers, Vol. 1, New York 1952.
- [2] P. Erdös, On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal, Math. Scand. 10 (1962), pp. 163-170.
- [3] L. K. Hua, Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie, Leipzig 1959.
- [4] W. B. Jurkat and H. E. Richert, An improvement of Selberg's sieve method I, Acta Arith. 11 (1965), pp. 217-240.
- [5] R. A. Rankin, The difference between consecutive prime numbers V, Proc. Edinburgh Math. Soc. 13 (1962-1963), pp. 331-332.
- [6] A. Selberg, Sieve methods, Proceedings of Symposia in Pure Mathematics, vol. 20, American Mathematical Society, Providence 1971.

Received on 5. 1. 1970 (21)

A Kuzmin theorem for a class of number theoretic endomorphisms

by

MICHAEL S. WATERMAN (Pocatello, Idaho)

Recently several papers ([3], [4], [5], [6], [7]) have been concerned with generalizations of a 1928 theorem of Kuzmin. His result gives a rate of $e^{-\lambda \sqrt{n}}$ for the convergence of the iteration of an arbitrary function to the invariant measure for the continued fraction. The present paper gives a generalized Kuzmin theorem for a class of multi-dimensional F-expansions which includes the n-dimensional continued fraction. An earlier paper ([6]) presented such a theorem with a rate of $(e^{-\lambda \sqrt{\nu}} + \sigma(\sqrt{\nu}))$. Our present theorem improves the rate to $\sigma(\nu)$.

Our F-expansions were first considered in [6], and we include a short summary of notation and assumptions here. Let A be a fixed convex subset of R^n . Suppose F is a one-to-one continuous map of A onto $(0,1)^n$. We assume $J_F(\cdot)$, the Jacobian of F, exists, the components of F have continuous first order partial derivatives, and $J_F(x) \neq 0$ for almost all $x \in A$. Let $D = F^{-1}$, T(x) = D(x) - [D(x)], and $a_r(x) = [D(T^{r-1}x)]$ (where $[z] = ([z_1], [z_2], \ldots, [z_n])$). We call $a_r(x)$ the r-th coordinate of the F-expansion of x. Letting

$$(0,1)_{h'}^n = \{x \in (0,1)^n : T'(x) \in (0,1)^n \text{ for all } y \ge 1\},$$

we impose the assumption $m(0,1)_R^n = 1$, where m denotes n-dimensional Lebesgue measure. We will write $F \in \mathcal{F}$ to indicate the satisfaction of these assumptions.

We define the cylinder of order ν generated by a realizable set of coordinates $k_1, k_2, \ldots, k_{\nu}$ as

$$B_{\nu} = B_{\nu}(k_1, k_2, \dots, k_{\nu}) = \{x \in (0, 1)_F^n : a_i(x) = k_i, i = 1, \dots, \nu\},$$

and the cylinder of order ν generated by $x \in (0, 1)_{x}^{n}$ as

$$B_{\nu} = B_{\nu}(x) = \{ y \in (0, 1)_F^n : a_i(y) = a_i(x), i = 1, ..., \nu \}.$$

Of course $T(B_{\nu}(k_1, k_2, ..., k_{\nu})) \subseteq B_{\nu-1}(k_2, ..., k_{\nu})$ so that T is the shift on the coordinates of the expansion. If B_{ν} is generated by $k_1, k_2, ..., k_{\nu}$ and we let $f_{a_i}(t) = F(a_i + t)$, then we define

$$f_{\nu}(t) = f_{k_1} \circ f_{k_2} \circ \ldots \circ f_{k_{\nu}}(t) = \prod_{i=1}^{\nu} \circ f_{k_i}(t), \quad t \in T^{\nu} B_{\nu}.$$

Below are three additional assumptions on F. The first generalizes condition (C) of Renyi [2].

$$\frac{\sup\limits_{t \in T^p B_p} |J_{f_p}(t)|}{\inf\limits_{t \in T^p B_p} |J_{f_p}(t)|} \leqslant C < + \infty$$

uniformly where f_{ν} runs over all $\nu \geqslant 1$ and all realizable cylinders $B_{\nu}(k_1, k_2, \ldots, k_{\nu})$.

If $m(T^{\nu}B_{\nu})=1$ we say that B_{ν} is proper; otherwise B_{ν} is said to be improper. Difficulties with improper cylinders necessitate the next two conditions.

(L)
$$0 < L \leqslant m(T^{\nu}B_{\nu}(x)) \quad \text{for all } x \in (0,1)_{F}^{n}, \quad \nu \geqslant 1.$$

For each $B_{\nu}(x)$, there exists $\hat{B}_{\nu+1}$, a collection of proper cylinders of order $\nu+1$ contained in $B_{\nu}(x)$, such that

$$(q) 0 < q \leqslant \frac{m(\hat{B}_{\nu+1})}{m(B_{\nu}(x))} \text{for all } x \in (0,1)_F^{n_{\nu}}, \quad \nu > 1.$$

The following theorem appears in [6] and is basic to the problem considered here.

THEOREM 1. Suppose $F \in \mathcal{F}$ satisfies condition (C), condition (L), and condition (q). Then there exists a unique probability measure μ on $(0, 1)^n$ such that $\mu \ll m$ and T is a measure preserving transformation for μ . If we let $\varrho(x) = \frac{d\mu}{dm}(x)$, we have

$$\frac{q}{C} \leqslant \varrho(x) \leqslant \frac{C}{L}.$$

Of course we could conclude $\mu \sim m$ but we will only need $\mu \ll m$ in our proof. Also, adding the assumption $m\{x: \operatorname{diam} B_{\nu}(x) \to 0\} = 1$ allows us to conclude T ergodic. This assumption is included in Theorem 2 below.

To formulate a Kuzmin theorem for \mathscr{F} we need to partition $(0,1)_F^n$. For each cylinder of order 1, B(k), we have $TB(k) \subset (0,1)_F^n$. We use the collection TB(k) to partition $(0,1)_F^n$ and assume the partition is essentiation.

tially countable. Denote this partition by $\{A_i\}_{i\geqslant 1}$. With each A_i we associate

$$\mathscr{E}_i = \{k \colon TB(k) \supset A_i\}.$$

This allows us to calculate

(1)
$$\varrho\left(x\right) = \sum_{k \in \mathcal{E}_{i}} \varrho\left(f_{k}(x)\right) \left|J_{f_{k}}(x)\right|, \quad x \in A_{i}^{*}.$$

The two lemmas below are taken from [6] and depend only on the properties of f_k . Both are related to the form of equation (1).

LEMMA 1. Suppose $F \in \mathcal{F}$ and assume $TB_{\nu+1} = B_{\nu}$, $\nu \geqslant 1$. Let Ψ_0 be given and Ψ_{ν} be defined by

$$\varPsi_{r}(x) = \sum_{k \in \mathcal{E}_{i}} \varPsi_{r-1}(f_{k}(x)) |J_{f_{k}}(x)|, \quad x \in A_{i} \ (i = 1, 2, \ldots).$$

Then

$$\Psi_{\nu}(x) = \sum_{i}^{(l)} \Psi_{\theta}(f_{\nu}(x)) |J_{f_{\nu}}(x)|, \quad x \in A_{i} \ (i = 1, 2, \ldots),$$

where the last summation is over all realizable cylinders (k_1, \ldots, k_r) where $k_r \in \mathcal{E}_i$.

LEMMA 2. Let F, $\{\mathcal{Y}_r\}_{r\geqslant 0}$ be as in Lemma 1. Then

$$\int_{(0,1)^n} \Psi_{\nu}(x) dx = \int_{(0,1)^n} \Psi_{0}(x) dx \quad \text{for} \quad \nu \geqslant 1.$$

The theorem below was motivated by a paper of Schweiger ([5]) in which he proves a Kuzmin theorem for a class of F-expansions which has the restriction that all cylinders be proper. Since the n-dimensional Jacobi algorithm has improper cylinders, it was not included. Difficulties are encountered in our proof which do not exist if all cylinders are proper. The assumption $\lim_{r\to\infty} \operatorname{diam} B_r(x) = 0$ almost everywhere is to insure our F-expansions converge and $\sigma(r) \to 0$ as $r \to \infty$. To circumvent notational difficulty, we will tacitly assume $x \in (0,1)_F^n$ implies $\lim_{r\to\infty} \operatorname{diam} B_r(x) = 0$, which involves the deletion of a set of measure zero from the conclusion of our theorem.

THEOREM 2. Let $F \in \mathscr{F}$ satisfy conditions (C), (q), (L) and $m\{x: \lim_{v \to \infty} \operatorname{diam} B_{\nu}(x) = 0\} = 1$. In addition, suppose $TB_{\nu+1}(x) = B_{\nu}(x)$, $\nu \geqslant 1$, $x \in (0, 1)_F^n$. Assume there is a constant A such that

$$\left| \frac{\partial (f_{\nu})_k}{\partial x_i} \right| \leqslant A$$
 uniformly in ν , k , and j .

Acta Arithmetica XIX.1

Also suppose there exists a constant D such that

$$\left|\left|J_{r}(x)\right|-\left|J_{r}(y)\right|\right|\leqslant Dm\left(B_{r}\right)\left\|x-y\right\| \qquad (x,y\in T^{r}B_{r})$$

uniformly in r. Let $\{\Psi_r\}_{r\geqslant 0}$ be a sequence of functions recursively defined by

$$\varPsi_{r}(x) = \sum_{k \in \mathscr{E}_{i}} \varPsi_{r-1} \big(f_{k}(x) \big) |J_{f_{k}}(x)|, \quad x \in A_{i}, \ i \geq 1,$$

where \(\Psi_0 \) is an arbitrary measurable function satisfying

$$0 < m \leqslant \Psi_0(x) \leqslant M$$

and

$$|\Psi_0(x) - \Psi_0(y)| \leq N||x - y||.$$

Then

$$|\Psi_{\nu}(x) - a\varrho(x)| < b\sigma(\nu)$$

where o is the density of the invariant measure for F,

$$a = \int\limits_{(0,1)^n} \Psi_0(x) dx$$
 and b are constants,

and

$$\sigma(v) = \sup \{ \operatorname{diam} B_{v}(y) \colon y \in (0, 1)_{F}^{n} \}.$$

Proof. By Lemma 1, we have

$$\Psi_{_{\scriptscriptstyle P}}(x) = \sum^{(i)} \Psi_{_{\scriptscriptstyle 0}}ig(f_{_{\scriptscriptstyle P}}(x)ig) |J_{_{\scriptscriptstyle P}}(x)|, \quad x \in A_i.$$

Using this formula and the bounds assumed above, we can show, for $x, y \in A_i$,

$$|\Psi_{\nu}(x) - \Psi_{\nu}(y)| \leqslant N \sum_{i=1}^{(i)} ||f_{\nu}(x) - f_{\nu}(y)|| \cdot ||J_{\nu}(x)|| + MD||x - y|| \sum_{i=1}^{(i)} m(B_{\nu}).$$

Now, applying the mean value theorem to the components of f_r , we obtain

$$||f_r(x) - f_r(y)|| \le nA||x - y||,$$

and use of condition (C) and condition (L) yields

$$\sum_{i}^{(i)} |J_{\nu}(x)| \leqslant \frac{C}{L}.$$

Therefore

$$|\Psi_{v}(x) - \Psi_{v}(y)| \le (NnACL^{-1} + MD)||x - y|| = C_{1}||x - y|| \quad \text{for } x, y \in A_{i}.$$

Application of Lemma 1, equation (1), and condition (C) yields

- (2) $0 < m_1 = mLqC^{-2} < \Psi_r(x) < M_1 = C^2(MLq)^{-1}, \quad \text{uniformly in ν, x.}$ This allows us to obtain $0 < g_0 < G_0$ such that
- (3) $g_0 \varPsi_\nu(x) < \varPsi_{\mu+\nu}(x) < G_0 \varPsi_\nu(x) \quad \text{uniformly in x, μ, and ν.}$ For $\mu \geqslant 0$, we define

$$\Phi_{\nu}(x) = \Psi_{\mu+\nu}(x) - g_0 \Psi_{\nu}(x)$$

and

(5)
$$\zeta_{\nu}(x) = G_0 \Psi_{\nu}(x) - \Psi_{\mu+\nu}(x).$$

By application of Lemma 1, we have

$$\Phi_{r}(x) = \sum_{i}^{(i)} \Phi_{\theta}(f_{r}(x)) |J_{r}(x)|$$

and

$$\zeta_{\nu}(x) = \sum_{i}^{(i)} \zeta_{0}(f_{\nu}(x)) |J_{\nu}(x)|, \quad x \in A_{i}.$$

We obtain

$$\Phi_{\nu}(x) \geqslant C^{-1} \sum_{i}^{(i)} \Phi_{0}(f_{\nu}(x)) m(B_{\nu})$$

from condition (C). We let

$$\mathscr{C}'_i = \bigcup_{k_{\nu} \in \mathscr{E}_i} B_{\nu}(k_1, \ldots, k_{\nu}).$$

By the mean value theorem for integrals

$$\int_{\mathscr{C}_{4}^{p}} \Phi_{0}(y) dy = \sum_{i} \Phi_{0}(y'_{r}) m(B_{r}).$$

Therefore

$$\Phi_{\nu}(x) - C^{-1} \int_{\mathscr{C}_{\ell}^{\nu}} \Phi_{0}(y) \, dy \geqslant C^{-1} \sum_{i} \left\{ \Phi_{0} \left(f_{\nu}(x) \right) - \Phi_{0}(y_{\nu}') \right\} m(B_{\nu})$$

$$\geqslant -C^{-1}C_1(1+g_0)\,\sigma(v)\sum^{(i)}m(B_v)\geqslant -C_2\,\sigma(v).$$

That is,

$$\mathcal{\Psi}_{r+\mu}(x)-g_{0}\mathcal{\Psi}_{r}(x)\geqslant C^{-1}\int\limits_{\mathscr{C}_{i}^{p}}\left(\mathcal{\Psi}_{\mu}(x)-g_{0}\mathcal{\Psi}_{0}(x)\right)dx-C_{2}\,\sigma(\nu).$$

A Kuzmin theorem

In the same manner we obtain $(x \in A_i)$

$$\zeta_{\nu} \geqslant C^{-1} \sum_{i}^{(i)} \zeta_{0} (f_{\nu}(x)) m(B_{\nu}),$$

$$\int \zeta_{0}(x) dx = \sum_{i}^{(i)} \zeta_{0} (y'_{\nu}) m(B_{\nu}),$$

and

$$G_0 \mathcal{\Psi}_{\nu}(x) - \mathcal{\Psi}_{\mu+\nu}(x) \geqslant C^{-1} \int_{\mathscr{C}_i^{\nu}} \left(G_0 \mathcal{\Psi}_0(x) - \mathcal{\Psi}_{\mu}(x) \right) dx - C_3 \sigma(\nu).$$

Letting

$$l_i = C^{-1} \int\limits_{\Psi_t^i} \left(\varPsi_\mu(x) - g_0 \varPsi_0(x) \right) dx \,, \label{eq:linear_linear_sol}$$

and

$$l_i' = C^{-1} \int\limits_{\mathscr{Q}_+^p} \left(G_0 \mathscr{\Psi}_0(x) - \mathscr{\Psi}_\mu(x) \right) dx \,,$$

we can show

(6)
$$\Psi_{r+\mu}(x) \geqslant \Psi_{r}(x) \left(g_0 + \frac{l_i}{M_1} - (m_1)^{-1} C_2 \sigma(r) \right) = g_1 \Psi_{r}(x)$$

and

(7)
$$\Psi_{\nu+\mu}(x) \leqslant \Psi_{\nu}(x) \left(G_0 - \frac{l_i'}{M_1} + (m_1)^{-1} G_3 \, \sigma(\nu) \right) = G_1 \Psi_{\nu}(x) \,.$$

There exists v_0 such that for $v \geqslant v_0$,

$$g_0 < g_1 < G_1 < G_0$$
.

Now

$$\begin{split} l_i + l'_i &= C^{-1} \int\limits_{\mathscr{C}_t^{\nu}} (G_0 - g_0) \mathscr{V}_0(x) \, dx \geqslant C^{-1} (G_0 - g_0) \, m_1 \sum^{(i)} m \, (B_r) \\ &\geqslant C^{-1} (G_0 - g_0) \, m_1 \sum^{\prime} m \, (B_r) = C^{-1} m q \, (G_0 - g_0) \, , \end{split}$$

where \sum' denotes summation over proper cylinders of order ν and the last inequality is by condition (q). The importance of this bound is its independence of both μ and ν .

From these results we obtain

(8)
$$G_1 - g_1 = G_0 - g_0 - \frac{1}{M_1} (l_i' + l_i) + (m_1)^{-1} (C_2 + C_3) \sigma(\nu)$$

$$\leq (G_0 - g_0) (1 - m_1 q (CM_1)^{-1}) + C_4 \sigma(\nu).$$

We note that

$$0 < \lambda = 1 - m_1 q (CM_1)^{-1} < 1$$

since without loss of generality C > 1.

Now we summarize the result just obtained. From

$$g_0 \Psi_{\nu}(x) < \Psi_{\nu+\mu}(x) < G_0 \Psi_{\nu}(x)$$

we have proved (for $v \geqslant v_0$)

$$g_1 \Psi_{\nu}(x) < \Psi_{\nu+\mu}(x) < G_1 \Psi_{\nu}(x)$$

where

$$g_0 < g_1 < G_1 < G_0$$

and

$$G_1 - g_1 \leqslant (G_0 - g_0)\lambda + C_4 \sigma(\nu).$$

The argument for g_1 and G_2 can be repeated to obtain

$$g_r \Psi_r(x) < \Psi_{r\perp r}(x) < G_r \Psi_r(x)$$
.

where

$$g_0 < g_1 < \ldots < g_r < G_r < \ldots < G_1 < G_0$$

and

$$\begin{split} G_r - g_r &\leqslant (G_{r-1} - g_{r-1}) \, \lambda + C_4 \, \sigma(\nu) \\ &\leqslant \lambda^r (G_0 - g_0) + C_4 \, \sigma(\nu) \, (1 + \lambda + \ldots + \lambda^r) \\ &\leqslant \lambda^r (G_0 - g_0) + \frac{C_4}{1 - \lambda} \, \sigma(\nu) \, . \end{split}$$

It should be emphasized that G_r and g_r are functionally dependent on r, i, ν, μ , and Ψ_0 .

Now

$$\lim_{r,r\to\infty} (G_r - g_r) = 0$$

implies

$$\lim_{r,r\to\infty}G_{r}=\lim_{r,r\to\infty}g_{r}=Q\left(\mu\right).$$

Thus we can write

$$|\Psi_{r+\mu}(x) - Q(\mu)\Psi_r(x)| < (G_r - g_r)\Psi_r(x) \leqslant M_1 C \left(\lambda^r (G_0 - g_0) + \frac{C_4}{1 - \lambda} \sigma(r)\right)$$

which implies (letting $r \to \infty$)

$$|\Psi_{\nu+\mu}(x) - Q(\mu)\Psi_{\nu}(x)| < b\sigma(\nu).$$

At this point we employ (9) to conclude $Q(\mu) \equiv 1$. Take $\nu \geqslant \nu_0$, we have the following inequalities

By multiplying row 1 by $Q^0(\mu)$, row 2 by $Q^1(\mu)$, ..., row l by $Q^{(l-1)}(\mu)$, noting $\sigma(\cdot)$ is a decreasing function, and applying the triangle inequality, we have $(Q(\mu) \neq 1)$

$$|\Psi_{\nu+l\mu}(x) - Q^{l}(\mu)\Psi_{\nu}(x)| < b\,\sigma(\nu) \left(\frac{1 - Q^{l}(\mu)}{1 - Q(\mu)}\right).$$

Suppose $Q(\mu) < 1$. Then from (10)

$$\Psi_{\nu+l\mu}(x) < Q^l(\mu) \Psi_{\nu}(x) + \frac{b\sigma(\nu)}{1-Q(\mu)}$$
.

Since $\Psi_{\nu}(\cdot)$ is bounded above, $Q^{l}(\mu) \to 0$ as $l \to \infty$, and $\sigma(\nu) \to 0$ as $\nu \to \infty$, we have ν_{l} , l_{l} such that

$$\Psi_{\nu_1+l_1\mu}(x) < mLqC^{-2}$$
.

This contradicts (2) so that $Q(\mu) \geqslant 1$.

Next suppose $Q(\mu) > 1$. Then from (10)

$$\frac{b\,\sigma(\nu)}{Q(\mu)-1}+Q^l(\mu)\left(\Psi_{\nu}(x)-\frac{b}{Q(\mu)-1}\,\,\sigma(\nu)\right)<\Psi_{\nu+l\mu}(x)\,.$$

Applying (2) we have

$$Q^{l}(\mu)\left(mLqC^{-2}-\frac{b}{Q(\mu)-1}\ \sigma(\nu)\right)<\mathcal{Y}_{\nu+l\mu}(x).$$

By choosing $\nu \geqslant \nu_2$ we have the expression in parentheses positive so that there exists l_2 such that

$$C^2(MLq)^{-1} < \Psi_{r_2+l_2\mu}(x)$$

which is a contradiction of (2). Therefore $Q(\mu) \leq 1$.

Finally, since $Q(\mu) \equiv 1$, we have by (9)

$$|\Psi_{r+\mu}(x) - \Psi_r(x)| < b\,\sigma(r), \qquad r \geqslant \nu_0.$$

Therefore $\{\Psi_{\nu}(x)\}_{\nu\geqslant 1}$ is a Cauchy sequence. Letting $\Psi(x)=\lim_{\nu\to\infty}\Psi_{\nu}(x)$, $\alpha=\int \Psi(x)=\int \Psi_{0}(x)$, and $\varrho(x)=a^{-1}\Psi(x)$, we have

$$|\Psi_{\nu}(x) - a\varrho(x)| < b\varrho(\nu).$$

Since $\varrho(x)$ satisfies (1), $\int \varrho(x) dx = 1$, ϱ is the unique invariant measure $\ll m$. This completes the proof.

The following corollary corresponds to F. Schweiger's result ([5]) of $\varrho \in \operatorname{Lip}^{\mathrm{I}}(0,1)^n$.

COROLLARY 1. The density function, $\varrho(\cdot)$, of Theorem 2 satisfies a Lipschitz condition of order 1 on each of the sets A_i . That is,

$$|\varrho(x)-\varrho(y)| \leqslant K||x-y||, \quad x, y \in A_i.$$

Proof. The result follows directly from $\Psi_r(\cdot) \in \operatorname{Lip}^1(A_i)$, and the conclusion of Theorem 2. Note that K has the same value for each of the A_i .

COROLLARY 2. Let $F \in \mathcal{F}$ and Ψ_0 be as in Theorem 2. Then for all $\mu \geqslant 0$ and $i \geqslant 1$,

$$\lim_{r o\infty}rac{\int\limits_{\mathscr{C}_i^r} \mathcal{\Psi}_{\mu}(x)\,dx}{\int\limits_{\mathscr{C}_i^r} \mathcal{\Psi}_{0}(x)\,dx}=1\,.$$

Proof. We remark that if $\mathscr{C}_i \equiv (0,1)_F^n$ (for fixed i), then the result is obvious from Lemma 2. In general, however, it seems necessary to return to an explicit determination of g_r .

$$\begin{split} g_0 &= \frac{m_1}{2M_1}, \\ g_r &= g_{r-1} \Big(1 - (CM_1)^{-1} \Big) \int\limits_{\mathscr{C}_i^p} \mathscr{Y}_0(x) \, dx + (CM_1)^{-1} \int\limits_{\mathscr{C}_i^p} \mathscr{Y}_\mu(x) \, dx - C_5 \, \sigma(r) \\ &= a g_{r-1} + b = a^r g_0 + b \, (1 + a + \ldots + a^{r-1}). \end{split}$$

By choosing $v \ge v_3$ and making M_1 sufficiently large, we have 0 < a, b < 1. Therefore,

(12)
$$\lim_{r \to \infty} g_r = \frac{b}{1-a} = \frac{(CM_1)^{-1} \int_{\mathscr{C}_i^y} \Psi_{\mu}(x) \, dx - C_5 \, \sigma(\nu)}{(CM_1)^{-1} \int_{\mathscr{C}_i^y} \Psi_0(x) \, dx}$$

and

$$1 = Q(\mu) = \lim_{r \to \infty} (\lim_{r \to \infty} g_r) = \lim_{r \to \infty} \frac{\int\limits_{\mathscr{C}_i^r} \Psi_{\mu}(x) \, dx}{\int\limits_{\mathscr{C}_i^r} \Psi_{0}(x) \, dx}.$$

A formula very similar to (12) exists for $\lim_{r\to\infty} G_r$, so that an alternate method of proving our theorem would be to conclude Corollary 2 without benefit of $Q(\mu) \equiv 1$. However, this is essentially asking for an explicit calculation of the nature of $\lim_{r\to\infty} C_i$ which does not seem to be easy. If, for example, $m(\lim C_i) = 1$, the result would follow.

To apply our theorem to the Jacobi algorithm we refer to [6]. There we showed that

$$F(x) = \left(\frac{1}{x_n}, \frac{x_1}{x_n}, \dots, \frac{x_{n-1}}{x_n}\right)$$

belongs to F and the assumptions are satisfied with

 $C = (1+2n)^{n+1},$ $L = \frac{1}{n!},$

and

$$q = \frac{1}{n!(1+n)^{n+1}(1+2n)^{n+1}}.$$

Also, following Schweiger [3], we can verify the assumptions on f_r and J_r . Thus our Kuzmin theorem holds for the Jacobi algorithm.

The author would like to express his appreciation to F. Schweiger for making available a manuscript containing a corrected version of his Kuzmin theorem ([5]). The work referred to in [6] will appear elsewhere.

References

- R. O. Kuzmin, Sur un probleme de Gauss, Atti del Congresse Internazionale del Matematici Bologna 6 (1928), pp. 83-89.
- [2] A. Renyi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungaricae 8 (1957), pp. 477-493.
- [3] F. Schweiger, Ein Kuzminscher Satz über den Jacobischen Algorithmus, J. Reine Angew. Math. 232 (1968), pp. 35-40.
- [4] Metrische Theorie einer Klasse zahlentheorelischer Transformationen, Acta Arith. 15 (1968), pp. 1-18.

- [5] F. Schweiger, Metrische Theorie einer Klasse zahlentheoretischer Transfornationen (Corrigendum), Acta Arith. 16 (1969), pp. 217-219.
- [6] M. Waterman, Some ergodic properties of multi-dimensional F-expansions,
 Z. Wahrscheinlichkeitstheorie verw. Geb. 16 (1970), pp. 77-103.
- [7] T. Vinh-Hien, The central limit theorem for stationary processes generated by number theoretic endomorphisms (in Russian), Vestnik Moskov Univ. Ser. I. Mat. Meh. 5, 1 (1963), pp. 28-34.

IDAHO STATE UNIVERSITY

Received on 2. 2. 1970

(30)