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ACTA ARITHMETTCA
XIX (1871)

A Kuzmin theorem for a class
of number theoretlic endomorphisms

by

MrcHAEL S, WATHERMAN (Pocatello, Tdaho)

Recently several papers ([37], [4], [5], [6], [7]) have been concernecl
with generalizations of a 1928 theorem of Kuamin. His result gives a rate
of e~ for the convergence of fhe: iteration of an arbitrary funetion to
the invariant measure for the continued fraction. The present paper gives
a generalized Kuzmin theoren for & class of multi-dimensional F-expan-
slong whieh includes the w-dimensional continuned fraction. An earlier
paper ([6]) presented such o theorem with a rate of (s~ a(V). Our
present theorem improves the rate to ofy).

Ouwr M-expansions wepe fivnt considered in [6], and we inciude a ghort
sumtary of notation and assmwptions here, Let 4 be a fizxed convex
subset of B". Suppose I is o one-to-one continuous map of 4 onto (0, 1)*
We assume Jy (), the Jacobian of F, exists, the components of 7 have
continuous first order partial devivatives, and Ju(w) 54 0 for almost all
zed. Lot D == F'y P} == D{x)~[D{x)], and a,{z) = [D{T" )] (where
[e] = ([2,]5 [8a]s ey |':z,,i‘])). We call a, (x) the »-th coordinatle of the F-expan-
sion of ®. Letting

-2

(0, 1) = {wrel0, 1) T" (@) e{0, 1)" for all »= 1},

we [mpose the assumption m(0, 1)% == 1, where m denotes n-dimen-
sional Lebesguoe measure. We will write e & fo indicate the satisfaction
of these assumptions,

We defing the cylinder of order » generated by a realizable set of
coortlinates &, ky, ..., &, as

By Byl byy ooy b)) = {me(0, 1) a(@) = Ky, 4o=1, 0,

and the cylinder of order » generated by we (0, 1)% a8

B, == B, (@) = {QJG(O: L oy) = ay(w), ¢ =1, -';7”}'
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Of course T(B,(k,, kyy ..o, k) S B, (ks ..., k) s0 that T is the shift,
on the coordinates of the expansion. If B, is generated by k,, &y, ..., F,
and we let Jo (1) = Fla;+1), then we define

= ﬁoﬁ.-i(t),

Below are three additional assumptions on K. The first gencralizos
condition (C) of Renyi [2].

B0 = i@y -0 0 Fi 0 Ll .

sup 1y (4]

t’e Ip o "
() N AT TR

e s,

uniformly where f, rung over all »;=1 and all vealizable cylindery
B, {ky; kg ooy by).

If (1" B,) =1 we say that B, is proper; olherwise B, is said to De
improper. Difficulties with improper cylinders necessitate the next two
conditions,

(L) 0 < L<m{T"B, () for all we(0,1)%, w2 1.
_ Tor each B,(x), there exisbs j’i,, +1p @ colleetion of proper cylinulers
of order »41 contained in B,(x), such that

F1)
w))

The following theorem appears in [6] and is basic to the problem
congidered here.

TororEM 1. Suppose T« 5 satisfies condition (C), condition (1.), and
condition (q). T'hen there eaists a wnique probability measure poon (0, 1)
such that p <o and T is a measure preserving transformation for . If we

a

let p(a) = d%

for all wel, 1), v L.

fm(B,
‘ <
(a) 0<g<— :

m{B,(a

(@), we have

&
L

Of course we could conclude g ~ m but we will only ncmd 14 <E e i1
our proof. Also, adding the assumption wedie: diam B, (@) — 0} == 1 mllowa
us to conclude 7' ergodie. This assumption is included in ’L‘hommn 2 below,

To formulate a Kuzmin theorem for & we need to partition (0, 1)%.
For each cylinder of order 1, B(k), we have TB(k) = (0 ¢+ 1) We use the
collection 7B (k) to partition (0, 1)% and assume the partiti.on iR egsen-
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tially countable. Denote thls partition by {4.},.,. With each A, Wwe asso-
ciate

& ={k: TB(k)> 4,}.
This allows us to calculate
(1) olw) = D e(ful@) 1, (@), @ed;,
leedy

The two lemmas below are taken from [6] and depend only on the
properties of f,.. Both are related to the form of squation (1).

Lmamva 1. Suppose Fe F and assume TB,,, = Bv, vz, Let ¥, be
given and ¥, be defined by

() = D, (F@) 1 (@),

hedy

wed; (i =1,2,...).

Then -
(t)

= D L), (@),
where the last summation is over all realizadble oylinders (%, ..
kvé' g‘i'
Levwma 2. Let I, {¥,},-, be as in Lemma 1. Then

wed; (i=1,2,..),

. k) where

¥, (w)de = f‘P de  for vzl

(0’ 1)n [U l .

The theorem Dbelow was motivated by a paper of Schweiger ([5])
in which he proves a Kuzmin theorem for a class of F-expansions which
hag the restriction that all cylinders be proper. Since the s-dimensgional
Jacobl algorithm has improper ¢ylinders, it was not included. Difficulties
are encountered in our proof which do not exist if all cylinders are proper.
The agsumption limdiamB,(#) = 0 almost everywhere is to insure our

P00
F-expansions eonverge and o(») — (¢ as » — co. To circumvent notational
difficulty, we will tacitly assume e (0, L)% implies limdiam B, (z) = 0,
(e
which involves the deletion of o set of measure zero from the conclusion
of our theorem.

Toworum 2. Let Fe F satisfy conditions (C), (q), (I) and
mix: limdiam B, (@)= 0} =1. In addition, suppose TB,.,(x) =B, (z),

erod

vzl we (0, 1)% dssume there is o constant A such that

(S

&y

< A wniformly in v, B, and 5.

i
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Also suppose there emists a constant D such that
|1, ()| = 1, )| < D (B} le— (#,4eT"B,)

wniformly in v. Lot {F,},.., be & sequence of functions recursively defined by

W= 3L (h@) @), wedy i,
heed'y

ys

L

whers Wy is an arbitrary measurable Junetion satisfying

0 <ms= Wole)s

and
W) ()] < Nz —yli-

Then
(W, () — oo (2)] < bolv)

where p 18 the density of the inveriant mensure for B,

o= [ ¥(m)de and b orve constants,

(U,l)n
and .
a(r) = sup{diam B, (¥): ye (0, L)%

Proof. By Lemnma 1, we have
.
. W, () = ) (@) 1T (@), medy

Using this formnla and the bounds asgumed above, we can show, for
€, ye Ay
(1)

[, () — ¥, ()| < NZ i, () |, @)+ M Dlle -yl >, > m(B,).
Now, applying the mean value theorem o the couponoents of f,, we obbain
(1, )=, ()l < Al — il
and use of condition (0) and condition (L) yields

(4)
Dl <
Therefore

|, () — Y, ()] < (NnAOL™ -+ MD) -yl = C o~y for @, yed,.
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Application of Lemma 1, equation (1), and condition () vields

(2) O0<m =mLg0? <¥(m)< M, = C*(MLg)™, uniformly in », 2.

This allows ns to obtain 0 < g, < &, such that

(3)

HP () < ¥, (2) <GP, (z) uniformly in @, g, and ».

For u =

0, we define

D, (#) = ¥, ., (2)— g, ()

Lle) = G, (@) =¥, (2).

By application of Lemma 1, we have

and

We obtain

(1)
@, (@) = D) By{f, (@) |7, (@)

()
Liw) = D G(f @)1, wecd,

(%)

=07 M &, (f, () m(B,)

from. eondition (G). We let

={J B (]‘71: ey B

Feyedy

By the mean value theorem for integrals

Therefore

That is,

—g!

v,

Ty

)

f@o dlj—ZQ yi

wy

(1)
[ Buly)dy = 070 3{®, (£, () — By ()} (B
"
]
~070, (14 go) o (%) D m(B) > —0, o).

(@)~ g0, (@) > €™ [, () — g, ())dw—_ozatv).

ooV
s
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In the same manner we obtain (#e4,) We note that
(i)
5,207 34 {f.@)m(B,), : 0 <2 =1—mg(CM,)" <1,
(1) , gince without loss of generality ¢ >1. *
f Colx)da = 2 Loyly,)mi{B,), - Now we summarize the result just obtained. From
€
a,nd g[llflﬂ (‘:0) < 'IP',,_}_H(S'?) < Gogjv (‘T)
G, (1)~ W, ., () = 77 f(GuWn () — W, () div— Oy o (w). we have proved (for » = »,)
34 :
Letting ' ) gll*pﬂ (‘r) < Ep‘v«}—p (m) < Gls‘p'u (m)
L =0t f(‘Pﬂ(m)——g,}qu () dee, where
i Jo < gy <Gy <G,
and. '
- =0 [ {6 @)~ (o)) do, and
" ‘ ' - < (G— g} A+ Cyo ().

we can show :
The argument for g; and &, can be repeated to obtain

I,
O Fle) BNt~ )00 = e
& Tt Y 1 | g% () < P, (0) < G (2)
and where
4

(7) W, (@) < W, () (gum A my) (:sg(v)) = G, (). o< <...<gp < G <...<@ <

A, and

~ There exists », sneh that for » 2> s, ‘ Go— g, <G — g )4+ 0o (v)
go < g < Gy <Gy, L X (Gy—gy) + 00 (») (L4 24 ... +17)
Now :
r 04-
, _— (-f‘f'-)w ) <V (G—go)+ = o(v).
LU= 07 [ (@— g Wo(@)dn 22 (7N = gy)my D m(B,) 1-—4
%
¢ - _ It should be emphasized that @, and ¢, are functionally dependent
= 07 Gy gy) ‘}_, m(B,) = ¢ mg (G —g,), on 7,4, ¥, u, and ¥,
) Now
where Y denotes summation over proper cylinders of order » and the ’ )
lagt inequality is by condition (q). The importance of this hound i its . %_in:c (@—g,) =0
independence of both 4 and ». implies )
From. these results we obtain : :
] ] Iim @, =1lim g, = .

) ¥, r—00 " T, P00 gr Q (H)

1 . .
(8) th—g = G—gy— A (i 1)+ (m) ™ Qo+ Oy) 6 () Thus we can write

1

. 0
W — — < T I 4
<Gy g) (L= my QO I,) ) Oy 0 (9). [ (2)— Q (), ()] < (6, — g,), (@) < M, 0|4 (Gy—go)+ i cr(er))
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which implies (letting r — oo}

(9) I“l-pv-i-ga(ﬂ)__g(lu‘)!pl'(m)i < b(T(V).

At this point we employ (9} to conclude @ {u) = 1. Take » 2= w, we

have the following inequalities
I l|-r-7ft Q (.LL)'}]: S+ {1 (‘1’)‘ < bff('ﬂ"}‘ (;l‘"—' 1 )M) !
|lP1«:m(Iﬁ1)n{ ) Q). {E-2) (m)| =< bff(?"’|“ (I~ B)H)a

Wy () — Q) ¥, ()] < b ().

By multiplying row 1 by Q%g), row 2 by @Yu), ...,row I by QV(y),
noting o(-) is @ decreasing function, and applying the friangle inequality,
we have (Q(u) 5 1) '

1_ H
(10) 1,1 () — Q) y(m)|<bcr(»)(-m%(“f))-«)-

Suppose Q (u) < 1. Then from {10)
g| H!,u( )< Q ( )Iljv (;‘n)"%i’“v‘”' O
Since ¥, (+) is bounded above, @*(u) — 0 as 1 — oo, and o(») = 0 as » - o0,

we have », /| such that

¥ pre®) < mlLgC*.

This contradicts (2) so that @(u) =1
Next suppose @{u) > 1. Then from. (10)

b
R )Z ! [ 1) PR 1 -~ "J AR
- (m(lf,(r) Gin—i o(a)) < W)
Applying (2) we have
b

¢ Fogl) % —
¢ (M)(m «“ Qu)—1

0("")) S va‘}«l/r ((IJ) -

By choosing » = », we have the expression in parentheses positive so that
there exists I, such that

02 (JP_[L{I)_-L < Y{12+12ﬂt (.’L’)

which is a contradiction of (2). Thevefore @ (x) < 1.
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Finally, since @ (#) = 1, we have by (9)
(11) |, u(@)— P, (3)] < bo{r),

v}vu.

Therefore {¥7,(#)}-, is a Cauchy sequence. Letting ¥(z) = HmW, (x),
t = [P(z) = [P(x), and p(z) = a ¥ (z), we have i

¥, (w)"—&e (@) <ba(»).

Since g(x) satisfies (1 f o(@w)dw =1, g iz the unique invariant measure
< m. This co’mpletes the proaf

The following corollary corresponds to F. Sehweiger’s result ([57) of
pe Lip' (0, 1)™

CoROLLARY 1. The density funetion, ¢(-), of Theorem 2 satisfies a Lip-
schilz condition of order 1 on each of the sets A,. Thai is,

le(z)—ol < Kle—yl, @,ycd

Proof. The result follows directly from W,(-)e Lip'(4,), and the
conclusion of Theorem 2. Note that K has the same value for each of
the A,.

COROLLARY 2. Lot FeF and ¥, be as in Theorem 2. Then for oll u>= 0
and 1= 1,

[P, (0)dw

&
lim e = 1,
s | W, () 0

‘5‘:

Proof. We remark that if &} = (0, 1)% ({{or fixed 4), then the result
is obvious from Lemma 2. Im general, however, it seems necessary to
return to an explicit determination of g,.

"y
b = "z’l—u'—'":
= s (L= (O] [ Wy@)dot (€AY [ W00 Gyl
T” %?
= ag,_, b = & gk bl at .. ).
By choosing » 2= », and making M, sufficiently large, we have 0 < a, b < 1.
Therefore,
(o) P () dz— (5o (v)
b %
12 limg, =- - i
12 e T T T TG Y T (v dw
%"
k]
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and
7, () d

&
1 = Q) = lim{ling,) = lim -5

[EEY ] P-b 0

A formula very similar to (12) exists for imé,, so that an alternate
Perlad
method of proving our theorem would be to concdnde Corollary 2 without
henefit of @{u) == 1. However, thisz Iy essentinlly axking for an explicit
calenlation of the nature of lin®; which does not seem to he eaxy. If,
. P 0
for example, m (Iin%}) = 1, the result would follow.
00
To apply our theorent to the Jacobi algorithin we vefer to [6]. There
we showed that

1 = @
. -1
F(x) =|—, IR R
By Wy &,

helongs to # and the asswmptions ave satisfied with

O = (L-20p*,

1
L=
and n!’
1
q =

AL ny ot (L5 2p)
Alse, following Schweiger [3], we can verify the asstunptions on f, and J,.
Thus owr Kuzmin theorem holds for the Jacobi algovithm.,

The author would like to express his appreciation to F. Hehweiger
for making available a manuscript eontaining a corvectod vorsion of his
Kuzmin'theerem ([5]). The work referred to in [6] will appear clsewhers.
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