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On the Diophantine equation f(y)~2 = 0
by

Mromary Frren (Stony Brook, N.Y.)

The aunthor has made several investigations inte problems related
to the genus zero curve f{y)—ax = 0 for f(y)e K [y] where K is a field.
The progression of events can be best seen by a guick perusal of the se-
quence of papers [4], [6], [6], [7], [8], whereby the very particular

-problems of [4], [B], [6] have launched the general problems about

the fields of definition of arbiteary models of Riemann surfaces in [7)]
and [8]. This latter work ix just barely started, but it has already shown
the need for the development of arithmetic tools that far tramscend the
simple techniques the author has so far mustered to attack the problems
of [6] and [7]. Ottentimes it turng out, the most powerful tools are those
of group theory. Especially when a precise formulation of the problem

-can be made in termg of the branching of certain Riemann surfaces. See

Lemma 2 for example. However, the context of the problem is often much
too difficult {or comiplicated) for the present state of group theory. See
[5], Bection 3, for a discussion of the general type of group theory gue-
gtion that needs o be answered. Also, even with complete knowledge of
the group theory aspect of the problem, the arithmetic question may
still Tetnain unanswered for the very reason that we are often reduced
0 asking yuestions about the field of definition of ¢urves which are apriori
defined only over €. See [7], Section 1, for the precise formulation of
general problems in this svea.

Tn thix paper, we will veturn to some of the particular problems
related to the curve f(y)~—a = 0, and in so doing we will concentrate
almost entirely on guestions that can be answered by arithmetic; albeit
simple arithmetic. A glight historieal digression seems in orvder. We give

- & chronology of the anthor’s work related to the problems to be discnssed

in this paper. Our comments on the other mathematicians who have

‘made contributions to related problems isx not meant to be complete.

See [6] and [7] for references to these works.
We need some notation which will be nsed throughouti this paper.
Let K* be a fixed algebraic closure of o field K. A polynomial f(y)eK [y]
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is said to Dbe decomposeble over I if we can write f(y) = f1 (f.), where
fis foe K[y and degree of f is not one for 4 = 1, 2. We call f, and. f, com-
position factors of f.

Lmmna L. (Theorem 3.5 of [2].) If f(y)e K [y] is decomposable over K,
then f{y) is decowiposable over I,

Remark. The corresponding resuldti for rational functions f{y)e K (i)
does not hold. Thix is discussed in [4], Section 1.

Let @ be an indeterminate over K"’, so that the zeros y,, ..., vy, of
fly)—a are also indeterminate over K*, where % -= degree f. It Q2 .
= Ky, ey Yy ) = K, o ), and let G{€ AH (@) denote the
Galois group of 2,_, over I (m). Much of our digeassion ix related to fhe
case where IC is a number field. If f(y)e L(y), then we may reduce f(y)
modulo any prime p, of the ring of integers of &, not dividing the deno-
nuinators of the coefficients of f(y). Let V,(f) denote the values assumed
by f{y) modulo p (we count co as & coset modulo p).

I. Gemeral Schur problem. For K. a number field, f(y)e Ky, when
is it possible for Vi(f) to consist of all cosels modulo p for infinilely many
primes p? L. Schur conjectured that for fly)e K[y] this could happen
only if f{y) was a composition of polvnonnals of two special Lypes:

1Y ay"+ 5 (cyelic),

2) Tuly) = 27" M{y+ (F OB (y— () )} (Cebyev  poly-

nomials).

For a simple proof of thiz see [6]; and for a discnssion and partial
results on the more complicated sitwation where f(y) is not assumed to
be a polynemial, see [5], Section 1.

MacCluer showed that if f(y)e L[y] where L ix o finite field and, if

3) f(‘?hic( ) has no a,baolufely irreducible factors,
anid ‘l :
4) the function field 7 (z, y) it tamely ramified over L(z);
then f is one-to-one over L. For a slight generalization of this to rational
Tunclions see [5], Section 1. It is known that polynomials salizfy-
ing3) and 4) must be compogitions of polynomnialy of type 1) and 2)
(see [A], Theorem 3).

II. Values of polynomials. In [47] the author gcwe an analogue of
Sdhmr’s conjecture. et 7, ..., f« K1 y], and suppose U V. (i} consisty

of all cosefs modulo p for all hut a finite number of prlmes 2 (da.p). Then
one of the polynomials fy, ..., f; must be linear. If we only assume Fiy e
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-y Jie H(y), this result does not hold ([5], Section 2). Related situationg
hwe been h‘l’:lldle(l in [4], [T]. One of the simplest of thege ig:

=

) suppose f, ge K(y),

and
8) Tf AF) = 'V( ¢) for a.a.p. :
A reduction process appears in [4], p. 101; to show that if §) and 6)

hold, with no loss we may replace fand ¢ by composition fa.ctorh of f
and g, so that we may asgume

7y both f and ¢ are indeconiposable,
In addition 5) and 6) imply:
8) £y = L2y s
) U G2 o/ K () =

Wy
ZEerog of 19(3)—4;, . .
10) fly)—g (2} is reducible in the sense that 1t is a pmduet of two
elementq of K(y,z) of lower degree. : :

U G2, /K (2 ) where z,...,2, are’ the

Note that 10) is & consequence of 9) by simple group theory.

The author has shown ([7], Section 4) that 7) and 10) together cannot
happen i f(y), g(y)«Q[y] unless flay--b) = g(y) for some @, be Q. In
partictlar, if f, g Q[y], and V o) = V,(g) for a.a.p., then flay +b) = 7ly)
for some a4, be . See [7], %(frlo:tl 3, for an example of polynomials
f,ng(l/-() [y]for which V,(f) = V,(g) for s.a.p; even though' thix
simple relation does not oxmb between f and g. Tt is not known if there
are exatiples of polynomials f, ¢ of arbitrary la.rge degree satisfyinp 5)
6), and 7), unless f(ay-+b) = g{y) for some a, be K*, Exa.mples of degreée
7,11, 13, 15 and 21 are now known. T

II. A global D;aophantmc problem. Again let K be o number feld
and fe [l [y]. We denote by o, the ring of integers of K. Let:
LLYy WA} = {myeny]| f(y)-—wu, is veducible in K[y]},
18) V(f) -------- = {iwge 0| fly)-~w, has a linear factor in K[y]},
VI(f) == {wye 0, fy)—m, has two linear factors in K [y]}. -
In [7 |, houl:wn d,

of u,, IV U Vig;) whoere

tho author hag shown that: c\cluclmg a finite set

13) g1y s e KTy,
4) f(y)w i (=) in reducible over K, ¢ =1,...,1L
The author has shown that if & == @, and either:
L3} f ix indeconmponable, or
16) degree f = p" for some rational prime p, p # 2,

Al Arithmelica %IX.1 8
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then ‘W (f) is V{f) plus a finite set. This holds when 15) is satizfied by use
of a result already mentioned. Under very general cironmstances V' (f)
i finite ([7], Section 4). o

Schinzel and the author have separately shown that it f, ge @[y]
and f(y)— ¢(2) is reducible where (1egree f=mp (p a rational prime); then
there exisbs a polynomial h(y)e 0" [y] such that f (h ) = g). In 1;]19,
next section we give a generalization of thiz to the case where 16) i
satisfied.

1. Reducibility of polynomials of form f{y)—g(z) over Q. We first
give a lemma that (1emon%1mtes how guestions '1.1)0111; the existence of
polynomials f(y), g{y)e Cy] satisfying 10) can be reduced to group
theory. As already ha».s been mentioned, we may without loss assame
that 2; , = £, , (a8 in Lemuma 4). Let G he a finite permutation group
on the letters {w,,...,w,}. For. oeG¥, write ¢ as a produet of digjoint

oveles vy ... Yo
We defme ind o (read mdex of o) as

a

D lord(y)—11.

i=

LevMA 2. Let G be a finile growp with two permutation repres enla,twus
on the letters {y¥, ..., ¥}} and {2,. oy B} respectively. If {fwl, . ,wu}
are any set of letters on which it mak@s sense 1o wp'reqem &, for <G lot
ok be the permadation of {w,, ..., w,} corresponding to o T.”hmi there ewist
polynomials f, ge Cy] such that:

17) Ly = P _

18) 6 = G0 [0 (m) &G, and
: 19 fly) - g(=) is reducible,
if and only if theve oxist elements o* (1),

20) o*(1), ..., o* (fr) _qe-nef'a.ts &,

21) if we let o (o0) = o"(1).. (,,.) then
{(an n- Gycle) and o (o0) = (2, .. ,zﬂ)

22) _E ind ol (5} 2, ind o% (]

=1 j=1

ooy (1) dm G, such that:

ot {0e) = (@], .oy 0)

4

== 1.

Remark. Lemma 2 iy a particular case of Proposition i of [7]. Accord-
ing to Schinzel, Cassels has formulated problems about the reducibility
of polynomials of type f(y)—g(2) in terms similar to those expressed by
Lemma 2 (see [1]). Riemann’s existence theoreni is the main tool used
in the proof of Lemma 2. When group theory can he-used to show the exis-
tence of a Riemann surface of certain type, there still remaing a guestion
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ag to the field of definition of its funetion field. This ix the general problem
dealt with in [7] and [8].

In what follows we will use the Puiseux expansion abont oo of Flyy—a,
The potation we use is that of [4], p. 101, which containg a very down
-to-earth. explanation of these expangions.

TunoREM, Let K be « field such that . ‘

23) [K(Ly): K] = (p~1)p™" (where p +#+ 2, and L s 4 'g;y-iwzijiq;@
p7-th root of 1).

Suppose that f, ge K [y] where:

24) degree f = 7,

25j fly)—g(z) is veducible in K [y, 2], but f (y)—
for any polynomial fy(y) such that f, (f,)

Then, _

26) there emists h(y)e I*(y] such thai f(h(y)) = g{y).

The next two lemmas are needed for the proof of the theorem. They
have been useful to the author in computations unrelated to the theo-

rem above. For these lemmas we introduce the field # of any char-
acteristic.

g{2) 48 not reducible
= f for some polynomial f,,

Lievema 3. Let f, ge B[] be polynomials of degree n with the same leading
coefficient. Assume that (2 char F, n) = 1, Then, either .

27) Flw,a) =1 (Y1, 21) where w, =y, — 2y, or

28) wy s w constant, where f(y,) = &, g(2) = @ and the leading terms
of the expansions for y, and 2, over oo are the same. :

Note. If w, is a congtant, then f(y) = g(y- &) for some be P.

Proof. Let £, be a primitive nth root of one. The Puiseux ex-
pansions over oo for y,,., are of the forn

29) Yoy = @ L ag b, L L

30) 2 = by Shat b by fori=0,1,...,m—1,
where we may agsume a ——b because of the a,ssumptlon of equality
of the leading coefficients of f zmd ¢. Thus, 0, has no 2™ term in its expan-
sion over co. Lebt L2, = 2, .- 2_,.

The quantity w,—f—gl =3, has exactly » conjugates, aJl obtained
by the substitutions a'® ~ 2" for j = 0, ..., n—1. If w, has no conju-
gates over (g}, then by the funda.mental theorem of Galois theory,

fori =0,1,...,n—1

. _ b
Wy e F(z%). Thus, 9,¢ F(z,). This impl.ie.s 6311:::(] =z, for some
" ay, +b : T
ty by e, de F. Therefore, Fy,) = ¥ ———wi——, and since g is a polyno-
. YT ot
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mial we easily dednee that we may take ¢ = 0, d = 1. From the agssump-
tion that leading coefficients of the expansions for ¥, and z; over co are
the same we deduce o = ¢. Thus w, is a constant,

Now, assume 2, is not a constant, and let w, be a conjugate of w,
over F(z,). If w, has no &' term in its Puisoux expansion over oo, then
wy+ 2 would be a conjugate of y; with leading term a4 e, Thuy, 10,2,
=y, and w, = w,. Therefore, w, has leading term ar'™ where a 0,
‘We have '

31) ¥, = zy-Fw, for some integer r.

Took ab conjugates of z, over F(w,, #). I 2, is conjugate to &, over
Iy, ), then for some integer f, )

32) Yy mzs”l"wz . .

An exmmnatlou of the #' terms in 31) and 33) yields 071 = 1+
+aa”tand Y = S banT]. : ‘

We obtain:

33) ol—1 =t with s L.

If we axrange th e nth roots of one in a regular polygon abous the origin
in the complex plane, we see that 33) implies that two pairs of vertices
of thiz polygon are separated by parallel line segments of the same length.
This ean only happen when = is even, contrary to (n,2) =

We conclude from the above argument that e, has no conjugates
over F{w,, »), or F(z,y,) = F{w,, ). Since w, was obtained as a con-
jugate of w, over I'(z), for some oeG(R,/F(®)}, ow, = 1w, oy, =14,
oz, = 2;. From this we obtain Bz, ;) = Flw,, z). @

If Lemma 3 were true without the asswmption (n,2) = 1, the proof
of our theorem would apply to the case degree f = 2". [However, there
exigt polynomials f,ge O[y] such that flay--b) # g(y) for a,be@,
degree f = degree g = 4, and 25) holds.

Consider: ‘ _

34) ty +W+%~ +1) (f/ —vz% 3P L) = e 2yt R A 2
where f(y) = y"+3y'+4 and ¢g(y) = 9" fd-- 4"+ &

Levva 4. (Proposition. 7. of [71.) Let f, g« K [y]. Assume:

38) fly)—g{2) is reducible, but ‘

36) f1(y)—g.() is not reducible if degrée f, < degree f or degree gy
< dsgree g, and f,, g, are composition factors (respectively) of f and g.

Then

37) degree f = degree g, and 2,_, = 0

As usual, lety,, ..
Let Y1 yqzi .

-
1 Yy b6 the zeros of fly)—w, and 2

a zero of glz)—o
.+ Yo, Do the comjugates of y, over K (2,). '
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Then,
38) K{z,) == field obtained by adjoining 1o K the symametyic palyno-
TGS U1 Y15 Yy« vy Yar

In addition, if there ewists wye K* U {oo} such that

39) fly)—w, has a zero of multiplicity p* (where P18 some rational
prime) and p* does not divide the multiplicity o of any other zero of f(y)— %,
H

then

40Y az b =y, :f/aﬂ"l" e Yo, Jor some constants a 0, be K*.

Proof of Theorem. If we replace g(y) by some (,ompomtlon tactor
(say g.(y), where g(y) == JL (qz(fy))) then the hypotheses 35) and 36) of
Lemma 4 are satisfied. By Lemma 1 we may asswme that both gy axd g,
are in IC[y].

With these assumptions we proceed to show that there exist con-
stants a, b such that flay-+0) = g(y). Since degree f = 9%, the hypoth—

" esis 39) ix satisfied for o, = co. Thus, there exist constants t,be K

such that 40) holds. With no loss we may assume that gy} (but not
necessarily f(y)) is monic. Let d be the coefficient of the leading tern

in fly).
Factor f(y)—g(2) into absolutely irreducible factors in K [y, 2] to
obtain
41) fly)— Hh Y2
=]
Leb H,(y, 2} be the highest degree term of h,(y, #), 50 that

A2) dy" — 2" = [l"] H(y, 2).

This expression was introduced by Schinzel and earlier by MacCluer.
Since n = p” where p 3¢ 2, an nth root of d is not in & (£,) unlesy
is an. nth power from K. I 4 i is a0ty power from J{ by a change of varia-

Dble (y - Vi dy) we could then asswime d is 1.

L2
Lot l/cZ be any oune of the zeros ()f #"— d. Suppose Vd y—z| H,(y,2).
Then Hi@’z)

-
- has  coefficients in K (Vd). Otherwise, the coefficients
Vi gz |

o [ '
of hy(y,2) would not be in K(Vd) and h{y, 2) would have a conjugate

" ) T .
h’j(,], &) over K(Vd), This would imply that ¥dy—z|H, and H;, which
is contrary to the fact that all factors of dy"— 2" are s1mple
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Assuniption 23) for arbitrary # may be phrased as [J(£,): K equals

[ (C,): @]. This implies for % = P, p 3, that the only polynomials’

K.
dividing dy"— 2" having coefficients in K (l/d.}, are polynomialy of form
"o | . r ‘ ‘ .

43) P(Way, )= [, (Vdy,e) where [T g (y,2) = y"—2" and g (y, 1)

. i=1 . 1
has as.its zeros the primitive p'th roots of 1.

The expangions for #;, & over oo ave of the forw 29} aud 30) where
’ " N
6_,=Vdand b_, = L. 1f, in the expression H, (¥, o &) Wo let the variable
#'" - co, then this expression approaches A&, (:e/,,j, ®) = 0.  Therefore,

. —h .. )
y = Vd{* 'z is one of the zeros of H,(y,2) (ax a polynomial in z).
H, (y,= ‘
Since 2y, 9 is of form 43),

o

_ l/d'ywz

44) {L9h, L, D 1} run over the union of all primitive p™ th roots
of 1, forj=1,...,1L

Again, remember n = . In the equation 40}, conzider the Puizeux
expansion over oo of the right side of 40). The cocfficient of w~ ™™ for
(m;p) =1, is

45) 4, (14 (o L 4TI g0 .

From 44), ¢, is independent of . if we restriet m o integers relatively

. . . L @
prime to p. With thiz restriction we let ¢, == ¢. Thus, — 2, and ¥, have
¢

Puigeux expansions at # = co whose coefficients differ only at terms of
form o~ where (u,n) # 1.

o . .
Let 2 = —#,. From Lemma 3, if w, is not a constant we must have
. ¢

46) K(w,, x) = K (e}, ;) where w, =2f —y..

~ However, w, only has terms in its expansion over co of form o=
where plu. Therefore y, cannot be a rational function of & and w,. Thus
wy muit be a constant, and o'z, -0 = y, for some congbtanty o', 5. &
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