

ACTA ARITHMETICA XIX (1971)

On a density problem of Erdös

by

DAVID LUBELL (New York, N.Y.)

Let the integers a_1, a_2, \ldots, a_k all be greater than unity. Erdős (private communication) conjectured that the asymptotic density of the set of natural numbers divisible by exactly one a_i could not exceed 1/2. We shall prove it.

The letters A, B, C, D, and E, with or without subscripts, shall denote finite sequences of positive integers. For such a sequence A, let $\Delta(A)$ and $\Gamma(A)$ denote the sets of natural numbers divisible by exactly one and by at least one of the terms of A, respectively. For any set S, let δS be the asymptotic density of S.

THEOREM. Let the terms of A all be greater than unity. Then

$$\delta \Delta(A) \leqslant \frac{1}{2}$$
.

The proof is by induction on the number v(A) of distinct prime factors of the product of all the terms of A. If v(A) = 1, then the terms of A are all powers of some prime p, so that

$$\delta \Delta(A) \leqslant \Gamma(A) \leqslant p^{-1} \leqslant \frac{1}{2}$$
.

Assume, therefore, that the theorem has been verified for all C with v(C) < v(A). We define several auxiliary sequences. For n = 0, 1, 2, ... let B_n denote the subsequence of A consisting of those a_i such that $p^n || a_i$, and let A_n denote the union of $B_0, B_1, ..., B_n$. Let D_n be the sequence obtained by dividing each term of B_n by p^n , and let C_n denote the union of $D_0, D_1, ..., D_n$. Thus $v(C_n) < v(A)$.

Now A_n is the union of A_{n-1} and B_n , so $A(A_n)$ is the union of the set of numbers divisible by exactly one term of A_{n-1} and by no term of B_n with the set of numbers divisible by exactly one term of B_n and by no term of A_{n-1} . Therefore, since the two sets are disjoint,

$$\begin{split} \delta\varDelta(A_n) &= \delta\{\varDelta(A_{n-1}) - \varGamma(B_n)\} + \delta\{\varDelta(B_n) - \varGamma(A_{n-1})\} \\ &= \delta\varDelta(A_{n-1}) - \delta\{\varDelta(A_{n-1}) \cap \varGamma(B_n)\} + \delta\varDelta(B_n) - \delta\{\varDelta(B_n) \cap \varGamma(A_{n-1})\}. \end{split}$$

Similarily,

(2)
$$\delta \varDelta(C_n) = \delta \varDelta(C_{n-1}) - \delta \{ \varDelta(C_{n-1}) \cap \varGamma(D_n) \} + \delta \varDelta(D_n) - \delta \{ \varDelta(D_n) \cap \varGamma(C_{n-1}) \}.$$

But the set $\Delta(A_{n-1}) \cap \Gamma(B_n)$ is precisely the set of all $p^n \chi$ with χ in $\Delta(C_{n-1}) \cap \Gamma(D_n)$ and the set $\Delta(B_n) \cap \Gamma(A_{n-1})$ is precisely the set of all $p^n \chi$ with χ in $\Delta(D_n) \cap \Gamma(C_{n-1})$. From these considerations and from the definition of D_n , it follows that

$$\begin{split} \delta\{\varDelta(A_{n-1}) \cap \varGamma(B_n)\} &= p^{-n} \, \delta\{\varDelta(C_{n-1}) \cap \varGamma(D_n)\}, \\ \delta\{\varDelta(B_n) \cap \varGamma(A_{n-1})\} &= p^{-n} \, \delta\{\varDelta(D_n) \cap \varGamma(C_{n-1})\}, \\ \delta\varDelta(B_n) &= p^{-n} \, \delta\varDelta(D_n). \end{split}$$

Upon substituting these values in (1) and comparing with (2), we obtain the recursion

$$\delta\Delta(A_n) = \delta\Delta(A_{n-1}) + p^{-n} \{\delta\Delta(C_n) - \delta\Delta(C_{n-1})\}.$$

Summing over n = 1, 2, ..., we arrive at

$$\begin{split} \delta\varDelta(A) &= \delta\varDelta(A_0) + \sum_{n=1}^{\infty} \left\{ \delta\varDelta(A_n) - \delta\varDelta(A_{n-1}) \right\} \\ &= \delta\varDelta(C_0) + \sum_{n=1}^{\infty} p^{-n} \left\{ \delta\varDelta(C_n) - \delta\varDelta(C_{n-1}) \right\} \\ &= (1 - p^{-1}) \sum_{n=0}^{\infty} p^{-n} \delta\varDelta(C_n). \end{split}$$

Note that since A is a finite sequence, the first two infinite series each have only a finite number of non-vanishing terms, while the third series is ultimately geometric and therefore convergent.

Two cases arise. Either no sequence C_n contains the number 1, or some C_n does. In the first case, the induction hypothesis applies to each C_n , so that (3) implies

$$\delta \Delta(A) \leqslant (1-p^{-1}) \sum_{n=0}^{\infty} p^{-n}(\frac{1}{2}) = \frac{1}{2}.$$

In the second case, C_0 cannot contain the number 1, since $C_0 = A_0$ which is a subsequence of A. Hence there exists $N \geqslant 0$ such that C_n does not contain 1 for $0 \leqslant n \leqslant N$ and C_{N+1} does contain 1. Inasmuch as C_n is a subsequence of C_{n+1} it follows that C_n contains 1 for n > N. For n > N let E_n be the sequence obtained by deleting all occurrences of 1 from C_n . Then for n > N,

 $\delta \varDelta(C_n) = \begin{cases} 1 - \delta \varGamma(E_n) & \text{if 1 occurs just once in } C_n, \\ 0 & \text{if 1 occurs more than once in } C_n. \end{cases}$

But C_m is a subsequence of E_n for $m \leq N < n$, so that

$$\delta \Gamma(E_n) \geqslant \delta \Gamma(C_m) \geqslant \delta \Delta(C_m)$$
.

Therefore if $n > N \ge m$, (4) implies in all cases,

(5)
$$\delta \Delta(C_n) \leqslant 1 - \delta \Delta(C_m).$$

Letting μ denote the greatest of the quantities $\delta \Delta(C_0)$, $\delta \Delta(C_1)$, ..., $\delta \Delta(C_N)$, we have according to (5), for all n,

$$\delta\varDelta(C_n)\leqslant \begin{cases} \mu & \text{for } n\leqslant N,\\ 1-\mu & \text{for } n>N. \end{cases}$$

Substituting these estimates in (3),

$$\begin{split} \delta A(A) &\leqslant (1-p^{-1}) \Bigl\{ \sum_{n=0}^{N} p^{-n} \mu + \sum_{n=N+1}^{\infty} p^{-n} (1-\mu) \Bigr\} \\ &= (1-p^{-N-1}) \mu + p^{-N-1} (1-\mu) = p^{-N-1} + \mu (1-2p^{-N-1}) \,. \end{split}$$

But C_m satisfied the induction hypothesis for $m \leqslant N$, so that $\mu \leqslant \frac{1}{2}$. Therefore

$$\delta \Delta(A) \leq p^{-N-1} + (\frac{1}{2})(1 - 2p^{-N-1}) = \frac{1}{2}.$$

Afterword. Let $A_k(A)$ denote the set of positive integers divisible by exactly k terms of A. Erdős has conjectured that if A has distinct terms, then $\delta A_k(A)$ is bounded by a quantity which approaches zero as $k \to \infty$. Our method fails in this case, since C_n does not inherit the property of having distinct terms.