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On the speed of convergence of the Oppenheim series
by
J. GArAMuos (Ibadan, Nigeria)

1. Summary. Tn this paper I continue my investigation concerning
expansions, by the algorithm recommended by A. Oppenheim, of Teal
numbers into infinite series of rationals. Putting p, /g, for the sum of the
first » terms in an expansion of w», I shall give two sided estimates and
asymptotic expressions for both (z—p,/q,) and log(z—p,/q,), valid
almost surely (Lebesgue measiure), which provide means to compaie
several well known expansions covered by the Oppenheim algorithm.

2. Introduction. Tf was recommended by A.!Oppenheim (see [3]
and [1]) to expand real numbers 0 < # < 1 by the algorithm

(1} & =8, 4, =[1fs]1+1, w,= ljdn—]-(a,,/bn)mnH

where a, = a,(dy, ..., d,) and b, =b,(dy, ..., d,) are given positive
integer valued functions and [y] denotes the integer part of y. This yields
the infinite series associated with a: ‘

L a; 1 ay s . 1

') A :
2 ~— =y 2RI
(2) RO R by 0, FRv
By (1)
' 1
(3) d_n < &, << dnml

and hence by the last equality in (1)

: a,
(42) S >b_dn(dn_-‘l) -

The expansion defined by (1) and (2j is convergent and ity sum is equal

“to @. A sufficient condition for a series on the right hand side in (2) to be

the expangion of its sum by the algorithm (1) is

O,

/b_”

dy (@ ~~1)+ 1.
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I called in [1] the expansion (2), obtained by the algorithm (1),
restricted Oppenheim expansion (RORE) of =, if ¢, and b, depend on the
lasgt denominator &, only and if the function

()
5 =01y
(5) | by (4) = 5. 00)
is integer valued. Here again I deal with ROE only. Note that for ROR
(4a) and (4b) are equivalent.

In order to guote the results of [1] which are needed in this paper,

I introduce some notations. The probability space (2, #, P} is chosen

as £ = (0,1), # the set of Lebesgue measurable subsets of (0 1) and
Lebesgue measure as P. Pab ,

' SR ACH) .
(6) m = —lg e (i3

Note that by (4b), # = 0. I quote Theorems 2, 5 and 6 and Corollary 2
of {17 as Lemmas 1-4.
Levwa L. If () = i—1 (n =1, 2,...) then, with probability unily,
for all but a finite mcmbeﬂ of values of n, sir ict 'i‘negmolity ocours in (4b).
LevwaA 2. Under the assumption of h,(i) = jml for m=1,2,

7

P(h‘m -—sz = 1) = 1.
v oo W 4 .
=1

IEMMA 3. Assumo that there ewist constants 1> L1 K, << K, such
that
E, < h())i* <Ky for all n,] large, -
then ' - ' )

Plimt "logd, - exists) = l

7=+ oo

Lemma 4. If h,(§) = h, constant for all n, then the d, are independent
random variables with distribution

: k
Pld, = k) = 2 © E>h
( T ﬂ) k(k—l) fO?" > n~~1}
and O otherwise, with the conwention h, = L.
- Put '
: P, 1 a; 1 C Gyfhg e By o]
(7) —_— — + P Rt Tl ot St
o & h & R b, 4,

In this paper I investigate the mé,gmtude of #—p, fq,.
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3. Estimates in terms of d,,d,,... Two simple but very useful
estimates are immnediate. By repeated applications of (1) we get

& ::pn/gn_}_fl(aj b# 'n')wﬂid '

where

(8) Alay byn) = (085 ... a,)(Byby ... b,)

and hence by (3)

(%) Afa, b, n)/d s BP0, < Ala, b, “)/('dnﬂ_l);

From (9) we immediately have that if d, — oo, then

(10) p Lo _ (1+ - 6] < 2.

n -1

¢ \ dla, b,n)
Tpyr—1 '

We are now in the posiﬁion to prove
TesoreEM 1. If R, (f) = j—1, then for almost all x,

ki

: Pul
log(m— ?l;) == —{l-{—o(l)}glogdk.

Proof. Lemma 1 and (4b) imply that, under the assamption
fln(j)> j—1, d, - 4-oc0, hence (10) is applicable, and since

tog(l+efd,, ;) = O(1fd,.;) = o(1),
by (8) and (10) we hive

log (.ru —) Zlog - ~—1og me1— L) 0(1)
which, by the notations (5) and (6), can be rewritben as

k+1
”’”" E %8 Ty — 1) 3

:h_sz Zlogdk-—log 1—1)4e(1).

k=1

(1) log (mg—gﬁ) = — —log(d ﬂ+1—1)+o(1)

n

Lemma 1 asserts that there is an Integer valued function g (a), defmed
for almost all 3, such that for % = n,,

doss > Ry (@) 413> 4,
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the last inequality having been obtained from k. (j) > j5—1. Hence
a, = %—ng, i.e. for almost all =,

(12) yields that for almost all @, ag # — + oo,

(12) liminfsnd, > 1

n 1]
0 < liminf (Zlogﬁ +O(n)) = liminf (2 logd,—nlogn+0 (n)),
F=1 k e
i.e. for almost all # and for = largs,
L .

Zlogdk > nlogn.

k=1 .
Since, by Lemma 2, for almost all =,

) .
yz}c‘z {LtoL))n, ‘ v
. ’ k=1
we have got that .

T n
sz =0 (Z ]ogdk)
=5 S i |

which, in view of (11), terminates the proof.

- Theorem 1 shows an interesting character of the Oppenheim geries.
Namely, if h,(j) > j—1, the choices of a, and b, do not effect directly
the convergence of log(z— p,/q,) to — oo, and the calculation of a single
additional denominator d,,; results in a decrease of log(z—p,/¢.) by
logd,.,. In view of (4b), however, we can expect that the larger a, /b,
are the larger are the denominators, hence by the choice of large a, /b,
we can Improve on the approximation of ». This fact will be proved for
& large class of expansions, covering all the well known ones, in the next

gection. :

4. The case of %,(j) being polynomials. In this section I shall discuss
the cases when the h,(j) are polynomials. These cases cover the Engel
and Sylvester series and the Cantor and Oppenheim products; for these
see Examples 1-5 of [1], and also [6], pp. 116-127, and [4]. As it turns
_ out, these are comperatively ‘slow’ approximations (much faster, thongh,
- than by continued fractions), whieh fact wounld justify to work out more
details of number theoretical character of some special Oppenheim series.

I first investigate the case when b, (j) are linear for all n.

TuvoreM 2. If h,(j) = Aj4+B with A>0,B> —2 inlegers, for
n=1,2,..., then, for alimost all x, '

{13) log (m—» %) = —}l+logAd+o(L)}n(n+t1)..

n

icm
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Proof. We first deduce from Lemma 2 that, as # — oo,
(14) #w'ogd, —~1+logA.
As a matter of fact, by (6)

(15) %j% = ——i—znlog

K=l Jomal

1% C ARB ) 1
= — =\ — 1 -1 —1).
lIog 4 " 2o IOg(1+A(dk—1)) - og({d,, —1)

Since dy, — +oco (Lemma 1 ard (4b)) and log(14¥) = oy with 6] << 2
as ¥ — 0, the last but one term in (13) is ¢(L) and since

log (dyy—1) = logd,,,+log(1—1/d,.,) = logd, ,+o(1)

we have got thatb

1% 1
(16) ?23,, = ~logd— " logd,,,+o(1).

k=1

By Lemma 2 and by (16) we get (L4). Hence, by Theorem 1, for almost all 2.

log (m-——%) = —{14+o(1)} ;logd,‘7

v

. ki 1
- —{1+o(1)}2k Oid"
k=1

= —H1-+o (1)} +Tog A)n(n-t+1)

what was to be proved.

If A = —B =1, weget the Engel series. Theorem 2 shows that an
increase in 4 results in faster approximation, i.e. among all those Oppen-
heim series for which &, (j) = 4j-+B, the convergence of the Engel series
is the slowsest. _

TeEoREM 3. If thers exist eomstamts t>1,1< K, < K, such thot

= —{L+o(L}(4logd) Dk
fo==1

B, < h,(DFf <K, for all w4 large,

then for almost all

(17) lim " log( —%) = —D(2)i(t—1)""

n=-+oa n
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where _

(18) D(z) =limt "logd,.
n=--00

Preof. The statement follows immediately from Yemma 3 and
Theorem 1. Namely, by Lemma 3, D{z) in (18) exists for almost all @,
and hence

log g,
logd, = z" f’ .
C E=1

]
-

rb\ﬂ:

_ {1+o(1)}1)(m)2#5 — (b o (1) D (@) (f— 1),

In view.of Theorem 1, Theorem 3 iz establizshed.

For the Sylvester series and the Cartor and Oppenheim produeis
k. (j) are quadratic polynomials, hence Theorem 3 is applicablé to these
cases, which shows that z—p,/q, tends to 0 as fast as exp(— ¢2"), where
¢ depends en ». To obtain befter means for comparisons, I shall deduce
inequalities for w—p,fq,, the estimates being independent of o

The idea of these esfimates is to solve the difference equation
" Dyr = hy(D,)+1 (or to estimate its solution) with the initial condition
Dy = 2. By (4b), d, = d, (@) = D, for all , hence we can estimate D (z)
in (17) and (18} in te_rms of the constant sequence D, (constant a8 a fun-

ction of ).

(i) The SBylvester series. If k,{j) = j(j—1), (1) and (2) reduce

to the Sylvester series. Im this case the difference equation for D, is
D, =D, (D,—1)+1, for the golution of which we have that

(19) Dppr—1 > (D— 1),
Since Dy, =2, D, =3, D, =7, D, = 43, we get by induction from (19)
P =4,

(20) log (D;—1) > 2n23,

therefore, in view of (4b), (17), (18) and (20), for almost all ,

1y Tim3 Mog (#—p,fg,) < —1/2V3.

. . . ¥

(ii) The Cantor product. The Cantor product of 1+ iy obtained
by h,{j) = (j-+1){(j—1). The difference equation is D,., — D? with
D, = 2. Thus logD, = 2” 110@2 hence, as before, we geb from Theorem 3
that ' .
(22) limzﬁ'”log(m——pmfgﬂ) < ~log2

1s valid for almogt all z.

icm
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(iii) The Oppenheim product. Let us estimate the speed of
convergenece of the produet expansion, introdnced in [4], for the special
cage b, (f) = (jF4){j—1), in which ecase the series {2) is equivalent to
the product expansion of 144z by the algorithm of [4]. The difference
equation is D, ., = D}-+-3D,—3 with D, = 2. Thus D, = 7, D, = 67.
Sines log6T > 4, we get by induction that logP, = 2%, which yields,
as before, that for almost all &,

(28) . ]imZ‘“log ($__'pn!’gn) = —1L.

From Theorem 3 we have that by choosing a4, and 5, so that
1.{j) be.polynomials of degree higher than 2, #—p,/q, will tend to 0
much faster than in fhe eases which have been investigated earlier.

As an interesting corollary to Theorems 2 and 3 I gefifle a guestion
raised by ‘A. Oppenheim (oral communieation). It is lknown that there
is an infinite sequence of real numbers {quadratic irrationals) for which
the expansion (1) and (2) is both the Engel and the Sylvester series at
the same time. Professor Oppenheim asked whether the measure of the
set with the property that the Engel and Sylvester series coincide is zero
or positive. Thecrems 2 and 3 yield imiediately

ComroLrarY. Let A denofe the sel of reel numbers for which the Engel
and the Sylvester series are identieal. Then P(4) = G.

Indeed, if <4, then & should belong to the excepticnal set in one
and 3, singe both results can not hold for the same &, hence
the Corollary is established.

5. The Liireth type expamsions. If %, (§) = 1 for all » and j, we get
the expansion known as that of Litroth. I eall an Oppenheim expansion,
Liiroth type if &,{j) = &, o not depend on j. By Lemma 4, the denomina-
tors d, are independent random variables. Considering the case when
h, = h for all n, we get from {(3), (8) and (9 :

(24) og (@— p,/g,) —nlogh+ Y‘iogo&(@d) <logd,,,.

hw
By Lemma 4, logd’k(clk—l) are identically distribuied random variables
with expectation ‘

J%;q logk(k—l) _

i ] e s i
Eh =h 2 =1
k=h+1
hence by the strong law of large numbers (see [3], p 238) and by (24)

we have _
TnworEM 4. If () =k for all & and j, then for almost all @,

10g (9 Dp /) = — {1+ 0 (L)} (B (h)—H)n
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Theorem 4 gives that among the Liiroth type expansions the Liiroth
expansion is the slowest in convergenee. Also, among the well known
expansions, for almost all #, the Liroth expansion requires the largest
number of terms to provide the same accuracy.

The case A = 1 was recently investigated in detail in [2].
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On the simultaneous diophantine approximation
of values of certain algebraic functions*

by
CuArrEs F. Oseoon (Urbana, I1.)

INTRODUCTION

In a recent paper [3] the present author obtained a vesult, which
i3 sketched - immediately below, abouf fhe simultaneous diophantine
approximation of the values of (N4-8)% ", ..., (N+4s.)% ", where
0 =35 <8 <...< 5, were n > 2 integers, k 3> 2 was an integer, 1 < E<k
was an integer satisfying (%,, k) = 1, ¥ was a sufficiently large positive
integer, and the kth roots above were the positive real kth roots.

Let & denote a positive real number, (p,, ..., p,) denote any nonzero
vector of nonnegative integers, ¢ denote a real number, and ¢ denote
a positive integer. Then three functions w = {8, ..., 8,, %, by, &, N),
=081,y 8, by b, 6, N) and A = A(s,, ..., 8,, %, b, N) were given
explicitly (*). It was shown that if e< (2n—4)" , N2y, ¢=¢ and
0 01, then '

: 142
(1) max (O +5) 7~ g0y = (2) ),
=<isn : B

Further, as N — +co {and all of the other parameters were held congtant)
A increased to m-—1. .

~ In this paper we shall prove vesults allowing us to make statements
analogous to (1) about & larger class of algebraic functions. In these state-
ments the auxiliary funections corresponding to ¢ and y above are not
given explicitly; however, it is shown that they are effectively computable.

Let  denote the rational field, ¢' the complex field, ¢ (1) the Gaussian
field, Z the integers, and Z[i] the Ganssian integers. Tn what follows ¥
will always. denote a Gaussian integer.

* This paper was written in part while the author was on a Postdoctoral Research
Associateship at the National Burean of Standards (W’ashington, D.C), in part
while at the University of Tlinots, and in part while at—or consulting for—the Naval
Research Laboratory {Washington, D. L)

{*) The present notation differs alightly from that used in [3].



