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A finite extension K of an algebraic numbeyr field % will be said to
have the Principal Ideal Condition (PIC) if each prime ideal p of & which
iy unramified in X and hag one principal prime ideal factor in K, actually
has all of ity prime ideal factors prineipal n K.

Tt is & well known result of algebraic number theory that every Galois
extension K[k has PIC. Purely cubic extensions of the rational numbers
with clags number 1 sliow that converse of the above statement is false.
The objective of this paper is to characterize all number field extensions
with PIC. Since all guadratic extensions are Galols and thus have PIC,
it iz reasonable to first consider the case when (H:k) = 3.

ProposrrioN I. Let (K:k) =3 and OF(K) denoie the Hilbert class
field of K. Now K[k has PIC if and only if KR (E)E is Galots,
K denotes the Galois clesure of K with respect io k.

Proof. Let p be a prime of k which is unramified in K and has one
principal prime factor in K. Now there are only three possible ‘ways for p
30 decompose in K:

(i) Bp= P?
(i) p = PP,
(iil) p = Py PaPs.

The condition could only fail in the third case. In this case p splits com-
pletely in K and hence splits completely in K. Now since p has one principal
prime factor in K, this factor gains degree 1 when lifted to OF (K). Thus p
will have at least one linear prime factor in K OF(K), but KCF(K)/k
is Gtalois so p must split ecompletely in K CF(K). Thus every prime ideal
factor of p in A is principal.

The other part of the proposition will be proved in the general case
by Lemma I.
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In general we need sziightly stronger hypothesis than in the cubic
case. To make the result moie readable I first infreduce the following
notation: '

CF(H) : Hilbert class field of K,
K : Galois closure of K over k,
H = GICF(K)/K): Galois group of (F(K)/EK,
L = OF(E)n K,
H, = G{CF(K)/L},
h = (GF(K):K),
hy = (OF(E): I,
n = (KK},
ny, = (K: L),

R:H — H[H,, the natural homomorphism is the restriction mapping
R{o) = o,

‘ THEOREM I. A finile exiension K[k has PIC if and ondy of K CF{K)/k
s Galois, (ny, h;) =1 and E does not preserve the order of any elewnont
o #1 of H

~ The proof of this theorem results from a series of lemmas. First an
Artin diagram will be helpful:
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Lesa L If Kk has PIC then KCF(E)/k is Galois.

Proof. Let p be a prime of & whiek has one linear factor 2 in K (R0,
Now p hag one linear prime factor in £ and so must split completely there.
Also p has one principal prime factor in K and since K /k hag PIC, every
prime factor of p in K must be principal. Thus every prime Iact01 of p
in the composition K CR(K) must be linear over k, Le. p splits completely
in KCF(K). Hence KCF(K)/k is Galois.

Lmnnea 1. If B[k has PIC then (ny, hy) =1,

Proof. First note that G(EOF(K)/L) = G|CF(K)/L}@@(&/[L).
If a prime number ¢ divides both n, and hy then there are elements
o «G{CF(K)/L) and z<G(K/L) which have opder g. Thus (0, 7)eG(K CF(K)|L)

icm
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and has order ¢. By the Cebotarev density theorem we can choose a p:rnne
P of K which iz linear over % and has Arfin symbol

KCF(E)/K .
(FEEE) e, )

(where =((o, 7)) denotes the conjugacy class of {o, 7)) Ietting p =P &
we gee that each prime factor of p in K has degree ¢ over k. Now p mmust
have at least one prime factor P’ in K which has degree ¢ over k, since
otherwise p would split completely in K. By Lemma I ECOF ()% is Galois
50 each prime factor of P’ in KCF(K) must be of degree ¢ over k. Hence
these factors of P’ are linear over K and so P’ must be principal in K.
This contradicts the fact that K /% has PIC. Hence (n,, #y) = 1.

Leanva IIL. I7 K[k has PIC and o = 1 is in H then E(g) has order
less than order of o.

Proof. Assnme there is a ¢ % 1 in H with the order of R(s) equal
to the order of ¢. By taking powers of o we may assume the order of o
isa p11me number g. Now we can find an extension ¢* of o in G(ECF(K)/K)
where o° hag order ¢° for some integer a > 1. By the Cebotarev density
theopem we ean find infinitely many primes P in K which are linear
over k and with Artin symbol

. E)
Now )
(M) = #(0%)opm = (o) = o
P
Also
(EE) == g
P

Thus P mugt gain degree g when hfted to L and no further degree when
lifted to CF{K). Also P must gain degree g* when lifted to K, hence some
other prime factor P’ in K of P n k must be of degree ¢* over k. Thus P’
gains degree 1 when lifted fo ECQF(E) So P’ is principal in K contra-
dieting that K /% has PIC. Hence no such o can exist. ‘

Lemua 1V. Suppose KCF(K)/k is Gdlois, (n,, h) =1 and B does
not preserve the order of any element of H except the identily. Then K[k
has PIC.

Proof. Suppose K[k does not have PIC. Then there ‘exists a prime p
of & which hag factors P and P’ in A with P 1)111161]}&1 and P’ not prineipal
in K. Let f, and f; denote the degrees of P and P’ respectively over k.
Let f,, fa; fay fa; fs and fa denote the degrees gained when P and P are
respectively lifted from K to L; from L to CF(K) and from L to K
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respectively. Now since P is principal in K, f, =fs = 1. However, teh
total degree over %k of the prime factors of P and P’ in KCOR(K) is teh
same, so from {[1], p. 358, Satz IT) it follows

f1f4 - f;f;j;f;
Algo the total degree over k of the prime factors of P and P’ in &
is the same and thus o
flf =f1f2f4'
From these two equations it follows f, = 1. Let
- _(GF(K)/K)

F

The order of o is f,f; = f, which is the order of R(o), contradicting the
hypothesis. ‘

This completes the proof of Theorem I. Some interesting corollaries
are easy consequences of the above theorem and proposition.

CoroLTARY L. If L = K then K[k has PIC if and only if ECF(K)/k
18 falois and (n, h’) = 1.

Proof. Immediate. ‘

CoroLtARY IL Lel b be square free, then K[k has PIC if and only
if ECF (K)[% is Galois and {n, h) = 1,

Proof. Only the necessity requires preof. Now if I = K we are
done Iry Corollary I. Suppose L s K and let ¢ be any prime which divides
{(L:K}. Choose o<H fo have ovder ¢. Since (h,, ¢} = 1, B(o) must also
have order ¢. By Theorem I this contradicts the fact that ¥ has PIC.

Cororrary III. Let (K:k) =3, K/ not be Qalots, T, = K and
KCF(K)/k be Galois, then the class nwmber h of K is odd.

Proof. By Proposition I K/k has PIC. By Corollary I (h,2) = 1.

Specializing to the cage k¥ = @, the rational number field, we obtain:

- LeMma V. If (K:Q) = 3 then CR(EK)Nn K = K.
Proof. If K = K we are done so we may assume (£:K) = 2. Suppose

some prime p of ¢ has even ramification index in K. This index must be

either 2 or 6. In the latter case p is totally ramified in K and thus K/K
is ramified. Tn the other case we must have

p =PlP,in K .
Now P, must ramify when lifted to K. ‘
To see such a rational prime p always exists, we merely note that K

containg a quadratic subfield. In this subfield some rational prime must

have ramification index 2 and hence has even ramification index when
lifted to K. :
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COROLTARY IV, If (K:Q) = 3, K[Q is not Galois and K[ has PIC
then K has odd class mumber.
Proof. Immediate from Corollary IIT and Lemma V.
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