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On the topology of curves II
by
A. Lelek (Warszawa)

Tn the present paper we investigate two clagses of curves which we
call Suslinian and finitely Suslinian, respectively (see § 1). To motivate
the terms which have been chosen, let us point out that the properties
attached to them resemble a property of ordered sets introduced by
M. Ja. Suslin and related to the famed Suslin problem. Our properties
ave intended to complete the well-known classification of curves (see [4],
p. 96, and [5], p. 99) in which the notion of rational curves plays an es-
sential role. Rational curves possess a decomposition property (see [2],
p. 211), and an analogue for Suslinian curves is suggested here; it is,
however, proved only in the case of hereditarily unicoherent curves
(see § 2). We also prove the existence of Suslinian curves which are not
rational (see § 3). A part of the material covered by this paper was
mimeographed in [3].

§ 1. The concept of Suslinian cuxves. A curve X will be called Suslinian
provided each collection of pairwise disjoint subeurves of X is count-
able (1). A curve X is called hereditarily decomposable provided each
subeurve ¥ of X is decomposable, i.e. representable as the union of two
proper subcurves of Y.

1.1. Bach Suslinian curve is hereditarily decomposable.

Proof. This is because an indecomposable continuum has uncount-
ably many pairwise disjoint composants and each of them iy dense.
Composants of a curve are countable unions of some subecurves (see [2],
p. 147). :

A space is called ponctiform
it is degenerate. :

1.2. If a curve X admits a decomposition X=PuQ where P is
ponctiform and Q is countable, then X is Suslintamn.

provided each continuum contained in

() We recall that, in our terminology, a continuum means a compact connected
metric space, and a curve means a 1-dimensional continuum. Therefore the curves are
non-degenerate sets. A subecurve means a curve which is contained in a curve under
consideration. :
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Proof. Given any collection of pairwise disjoint subcurves of X,
only countably many of them might intersect Q. But no curve is con-
tained in P, thus the collection is countable.

1.3. Hach rational curve is Suslinian.

Proof. If X is a rational curve, then X admits a decomposition
X =P u @ where P is 0-dimensional and @ is countable. Since 0 - dimen-
sional spaces are ponctiform, 1.3 follows from 1.2 (see also [2], p. 211).

Now, observe that if a curve X is not Suslinian, then there exist
a number & > 0 and an uncountable collection of pairwise disjoint sub-
curves of X which all have diameters greater than . A curve X will be
called finitely Suslinian provided, for every &> 0, each collection of
pairwise disjoint subcurves of X having diameters greater than e is finite.
Thus finitely Suslinian curves are Suslinian. The latter statement can
be refined on by means of 1.3 and 1.4 below, since hereditarily locally
connected curves are rational (see [5], p. 94).

1.4, Hach finitely Suslinian curve is hereditarily locally commected.

Proof. If a curve X is not locally connected, then there exists an
infinite sequence Oy, Cy,... of subcurves of X such that C,= Lim(;
and Gpn Cy=@fori=1,2,... (see [2], p. 196). Such a sequence always
has an infinite subsequence composed of elements Cy; which are pairwise
disjoint. Since C, is non-degenerate, diameters of Oy cannot converge
to zero, and 1.4 is proved.

. L1.5. In order that a plane curve X be hereditarily locally comnected
it is mecessary and sufficient that X be finitely Suslinian.

Proof. The sufficiency is shown in 1.4, and the necessity follows
from the Gehman theéorem (see [2], p. 366).

1.6. TEROREM. In order that a curve X be regular it is necéssary and
sufficient that, for every &> 0, there ewist am integer n such that each col-
lection of pairwise disjoint subcurves of X having diameters greater than
consists of at most n elements.

Proof. Since a curve X satisfying the condition from 1.6 ig finitely
Suslinian, X is locally connected by 1.4. A theorem on locally connected
curves which fail to be regular (see [4], p. 216) now applies to show that
the condition is sufficient. We prove that it is also necessary.

Suppose a curve X does not satisfy the condition from. 1.6. Then
there exist a number &> 0 and collections C, of subcurves of X such
that C. consists of n? elements which all have diameters greater-than &y

and are pairwise disjoint (n =1, 2, ...). Let 4, be a finite cover of X such
that A, consists of # elements and

Lim Max{diam 4: A ¢ 4,} = 0
N—>00
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(n=1,2,..). Consequently, there exists a set 4dyeA, such that A,
meets at least » elements of C, (=1, 2,...), and we can assume that
the sets A, converge to a point p ¢ X. Thus every neighbourhood of p
in X meets n pairwise disjoint subcurves which have diameters greater
than &, for every n = 1, 2, ... We infer that no finite set in X separates p
from the complement of the open ball with center p» and radius }e,.
It follows that the eurve X is not regular which completes the proof
of 1.6.

1.7. COROLLARY. FBach regular curve is finitely Suslinian.

Remarks. The cone over the Cantor set is an example of a hereditarily
decomposable curve which is not Suslinian; thus the implication 1.1 cannot
De reversed. A partial reversal of 1.2 is done in 2.2 below, and in the last
section of this paper we construet an example to show that 1.3 cannot be
reversed. There exists an example of a hereditarily locally connected curve
which is not finitely Suslinian (see [2], p. 196); thus 1.4 cannot be reversed.
Finally, there also exists an example of a hereditarily locally connected
plane eurve which is not regular (ibidem, p. 210). By 1.5, the latter curve
ig finitely Suslinian; thus 1.7 cannot be reversed.

§ 2. Hereditarily unicoherent Suslinian curves. A curve X is called
hereditarily umnicoherent provided each subcurve Y of X is unicoherent,
i.e. non-representable as the union of two subcurves of ¥ whose common
part is not connected. A curve X is called tree-like provided X admits
finite open covers whose elements have arbitrarily small diameters and
whose nerves are acyclic 1-dimengional polyhedra.

2.1. Each hereditarily unicoherent Suslinian curve is tree-like.

Proof. Since each hereditarily unicoherent and hereditarily de-
composable curve is tree-like (see [1], p. 20), 2.1 follows from 1.1.

2.2, THEOREM. In order that a hereditarily wmicoherent curve X be
Suslinian it is necessary and sufficient that X admit a decomposition
X = P v Q where P is poncliform and Q is couniable.

Proof. The sufficiency is shown in 1.2. To prove the necessity, let
us consider a hereditarily unicoherent Suslinian curve X and leb
{G4, G, ...} be a countable open basis in X. Since X is Suslinian, the
collection of all non-degenerate components of the closure of @; in X is
countable; let us denote these eomponents by Oy, Ci, ... By 1.1, each
irreducible continuum J contained in X is of type 4, ie. there exists
a monotone continuous mapping g: J—I of J onto the unit segment I
of the real line such that g—*(t) has void interior in J for teI (see [21,
pp. 137-139 and 153-154). Then J is irreducible between any two points
belonging to the end tranches of J, i.e. the sets ¢~%(0)-and g-*(1), res-
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Ppectively. Let Jiy denote the collection of all irreducible continua J in X
each of them having an end tranche T(J) such that

(i) Oy~ TJ) # @ = Oy~ [INL(J)]

({,j=1,2,..). We now define a relation Ry, i ; i T
and only if uin Jy by setting TRy it

(i) - AT~ INTT)]# O

fgrj i s 1J’ ; J{j; First  we prove that Ry is an equivalence relation

] _ ? d’ veo fo

o Olearly,_ the relation Ry; is reflexive and symmetric. To verify that

:jleS ’r,,rfmsmwe, let us take irreducible continua J,J", J'' ¢ Ji; such ﬂl:lt
h?jJ and J I?ijJ'-l. Thus.Oi; ~nd # @, whence (v J is a continnum

which meets J'. Since X ig hereditarily unieoherent, the set

(Cyyud)nd’ = (Oy nd') v (T nJd)

;slsz; cizlréte?;z;m }thlcvh l’neets Of{ nJ' C T (J"), by (i). The latter continuum
ol Intersec S d\ (J"), by (ii). ;But if a continuum intersects both an
ne and its eomplement in an irreducible continwum, it containg
all tranches from a neighbourhood of the end tranche. V{Te conclude

that J ~J’ contains a neighbourhood of the end tranche 7'(J’) in J’

fifaﬁz fﬁument appliled. toJ’" instead of J shows that J* ~ J’ containg
6f ng " ml;ﬂf(} ;f _T(J ,) in J'. Consequently, 7'(J) lies in the interior
Actording 1o (0 o0 in J'y and therefore T'(J ‘) has void interior in K.
with J\T'(J). S;'ncee ;‘I(lg ’)t?rll;](l:eJT(w{) 1:2;@1'5*;31173 e I disjoint
intersects T'(J) and has void iuter’ior ?nlJ elﬁeniz ??I’contmuum o 121
P 153). Also, let us observe that we could 'us well tak ( h) v Z’(J) (S’ee =
in lieu of the triple (J,J’,J"") and then e‘ttin T iLT eCt y tll‘lple )
= T'(J). The same argument shows thit T({ff’) (—)T f’(J). N
: ¥ © Tgu _ =1 . We
é" éJ I)l a;eT (cl{m),egaihvmd Interior in K CJ ~J". This ;ielzis JR::;’% t;lx?;
Morefver ]a;t R;; is indeed an equivalence relation. ’
us write ) ;WTe(Jaze proved that JR;J’ implies T(J) = T(J'). Let
Yo PO, S Te7 /R) O;fJ eJ < Jis/Rq;, and let ¢(J) be a point belonging
e Je.,I A il J, J' e Jy/Ryy and J + J', we have JnonR;J’
eJ'. Thus the sets INT(J) and JN\T(J') are disjo;jntz,

by (i ‘ i
y. (i), and they contain non-degenerate continua, Since X is Suslinian
Sy

it fOHOWS that the GOHEGﬁOn R, is co 1Y ble (7 = We e
T, .
’ : ij/ 1] & ( 2] 1, 2, ...). ar

i) 0= Ut J Ty
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and P = X\@ fulfil requirements of 2.2. It is already shown that @ is’

countable. .
Suppose Y is a subcurve of X. Then there exist an integer ¢ > 0 and

a point p € ¥ such that the closure of @; does not contain p and the com-
mon part of G¢ with T has at least one non-degenerate component. Hence
there exists an integer j > 0 such that Ci; n Y  @. Since Oy is a com-
ponent of the closure of Gy, we have p ¢ Cy;. The sets Ciy ~ Y and {p}
being disjoint and closed in the continuum Y, there exists a closed seb
JC Y such that J is irreducibly connected between Ci~ J and {p}
(see [2], p. 158). Thus Cy ~J #* @ and it g € Cyy ~ J, then J is irveducible
between p and ¢ (ibidem, p. 159). It follows that J is an irreducible
continunm of type A whose end tranches contain p and (4 ~ J, respectively.
Therefore J satisfies (i) whence J e Jy;. Taking J < Ji;/Rq; such that Jeld,
we obtain
gy eT(J)=TJ)CJIJCYX,

and thus @ ~ Y # O, by (iii). This shows P is ponctiform and the proof

of 2.2 is complete.
A curve X is said to be a dendroid provided X is hereditarily uni-

coherent and arewise connected. Bach subcurve of a dendroid is algso
a dendroid. :

9.3. COROLLARY. In order that a dendroid X be Suslinian it is necessary
and sufficient that X admit a decomposition X = P v Q where P is poncti-
form and @ is countable.

Remark. In the next section we describe a dendroid to show that 2.3
cannot be strengthened by requiring that P is totally disconnected rather
than ponctiform.

§ 3. An example of a Suslinian dendroid. A space is called totally
disconnected provided each of its quasi-components is degenerate. Each
totally disconnected space is ponetiform. :

3.1. Examprs. There exists a Suslinian dendroid X such that X # P v Q
where P is totally disconnected and Q is countable.

Proof. Let v = (T, 8, r) be a triple composed of a triangle T a side 8
of T, and an end point » of §; so r is a vertex of T. I p,qeT, we denote
by pq the straight segment with end points p and ¢. We have § = "
where # is a vertex of T, and let us denote by r'’ the third vertex of T,
different from r and 7. Take points py, P e S and ¢, ¢ err” such that

dist (p,, r) = Ldist(r,v),  Qist(py,7) = 2dist(r, '),
dist(gy, r) = $dist{r, '), dist{g,, 7) = 2dist(r, ),
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and points @; e #'r” such that dist(xs, ') = i~*dist (s, #"'), for i = 1,2,..
Let y4; be the intersection point of the segment rz.; with the segment p,q; ,
for i=1,2,... and j=1,2. We can find points ;e yuyn such that
each point of the segment p,p, is the limit point of a subsequence of the
sequence 7y, 7y, ... Let 2 ¢ 751 be the point such that the segment 71z,
ig parallel to the side 7’7", Denote by T the triangle with vertexeg 7y 14,
25, by TIi' the triangle with vertexes r;, @i, @51, and put

B(@) = {(Tiyrre,7): i=1,2, ..} v {(T¥, Temag, 14): ¢ = 1,2,..}

Given a triple = as above, we define collections B, of triples ihductively
by setting
By = {1}, Cpt1 = e‘L% C(r),

for # = 0,1, ... Finally, we denote by X, the union of all triangles in
triples from G,, and define

X=0 dX,.
n=0 :

Observe that the area of any triangle from B(z) .is not greater than
g aréaT. It follows that the diameters of triangles from B, converge to
zero when o tends to the infinity, C

One readily sees X is a dendroid. If X was not Suslinian, there would
exist a number ¢ > 0 and an uncountable collection C of pairwige disjoins
subcurves of X such that diam (> & for 0 e C. Let n be large enough
50 that the diameters of triangles from G, are less than &. The set V, of
vertexes of triangles from G, is countable. Consequently, there exists
an uncountable collection C’'C € guch that [C'|CX\V, (3). But each
continuum joining two triangles from 6, in the closure of X meets V.
Thus [C'] C I\ X,. On the other hand, the set cl(X\X,) is the union of

~ sides of triangles from Ty o U Bpyog, and 80 cl(X\X,) is a rational
curve. This contradicts 1.3, since |C€’| Cel(XI\X,) means that el (X\Xn)
is not Suslinian. Therefore X mugt be Suslinian.

Before verifying the main decomposition property (see 3.1) of the
dendroid X' just constructed, we prove a lemma which deals with some
special cuttings of X.

3.2. Lemua. If a set ZC X 45 compact 0-dimensional and Z cuts X
between some points of the segment 8, then Z is uncountable.

Proof. We prove this lemma, by showing that Z containg a Cantor
set. In fact, the closure of the set {r,, ,, -} contains the segment p,p,,
thus there iy an infinite subsequence Ti; Pigy oo SUCh that . 74 ¢ Z for

() By [C| we denote the union of all sets belonging to C.

On the topology of curves IT i 137

j=1,2,..If Z cut the dendroid X between points of only finitely many
segments in triples from B(z), there would exist an integer j, such that
the set - ’
.Aj = T&qu\z
would lie in one quasi-component of X\Z for j > j,. But by the hypothesis,
the set S\Z = rr\Z does not lie in one quasi-component of ¥\Z. This
is a contradiction, since Z being 0-dimensional, A; is dense in 7224, and
thus every point of 7+’ is the limit point of a sequence of points belonging
to 4y (j = jo), respectively. Consequently, the set Z cuts X between some
points of infinitely many segments in triples from (7). What we actually
need is only that Z cuts X between some points of at least two segments
8y, 8y in triples from B(z). Let Ty, T, be corresponding triangles. We can
find compact subsets Z,, Z, of Z such that Z; C Ty, the set Zy contains
no vertex-of Tk, and Zx cuts X between some points of the segment S
(k=10,1). Observe that then Z, and Z, are disjoint.
Let us denote

202y =2y, #&(Z)=Z,,
and define compact sets Zg,.r, (k;=0,1) inductively by
Zrytend = 2 Ztyka) s Zrgionr = 2 Brye )
for n =1, 2, ... Since Zz,.x, Is a subset of a triangle from G,, we have

lim diam Zy,. 1, = 0

N—+00

for any sequence of k; = 0, 1. Thus

N U Zy.CZ
n=1 k;=0,1 .
is a Cantor set, and 3.2 is proved.
Now, given a decomposition X = P v @ where @ is a countable set,
let us take arbitrary two points z,y < S\@ and suppose there exists
a closed-open subset 7' of P such that z e ¥ and y ¢ F. Then the sets

U= {z ¢ X: dist(z, F) < dist(z, P\F)},
V = {z < X: dist(z, F) > dist(z, P\F)}

are both open in X, disjoint, and # € U, y ¢ V. Thus X\(U v V) cuts the
dendroid X between the points # and y. But we have PC U v ¥V because
T is closed-open in P. Consequently, we get X\(U w V) C @ which ef)ntm-
dicts 3.2. It follows that the uncountable set S\@ lies in one quasi-com-
ponent of P, so that P cannot be totally disconnected. This completes
the proof of 3.1.
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1. Introduction. Completely regular mappings were first considered
by Dyer and Hamstrom in 1938 [2]. They are discrete analogues of locally
trivial projections. If the homeomorphism group of the fiber is locally
path-connected, and if the fiber is locally compact and separable, then
a completely regular mapping is a Serre fibration [10].

In this paper, we will prove that if p: F—B is completely regular
with fiber ¥, where I is a compact ANR and B is finite-dimensional and
locally compact, then p is a Hurewicz fibration. We have thus improved
a result of Michael ([9], p. 381) which would imply that p is a Serre
fibration.

2. Definiticns and notation.

(2.1) A continuous surjection p: E—B is completely regular if F and B
are metric, and if for each b e B and & > 0, there exists §(b, ) > 0
such that if d(b,bd’) < &(b,e), there exists a homeomorphism f:
p~Hb)—p~H(b’), such that d(x, h(x)) < ¢ for all e p~(b).

The space B will always be assumed to be connected. Thus all fibers
are homeomorphie, and we will denote this common fiber by F.

A topological space X is locally n-connected (LC") if, given z ¢ X and
an open neighborhood U of z, there exists an open set ¥V with x e VC U,
such that if f: "7 is a map (m < n), then f extends to F: B™"' T,

Let {S.}(a e 4) be a collection of subsets of X. {S.} is equi-LC" [8] if,
given # ¢ X and an open neighborhood U of z, there exists an open set V
with # ¢ V C U, such that if f: 8=V ~ 8, is a map (m < n and ze 4),
then f extends to F: B™™ U n §..

Let ¥ De a topological space, and let F(Y¥) denote the collection
of subspaces of Y. A function g: X —J(Y) is called a lower semi-continuous
carrier (1.s.c. carrier) [7] if, given 2 ¢ X and an open subset U of ¥ with
@(x) ~ U # 0, then there exists an open neighborhood ¥ of @, such that
if "¢V, then ¢(#') n T # 0. .

(2.2) Note that if p: B—B is continuous and open, then the function
taking b to p~1(b) is a Ls.c. carrier from B to §(E) ([7], p. 382).
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