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1. Introduction. Completely regular mappings were first considered
by Dyer and Hamstrom in 1938 [2]. They are discrete analogues of locally
trivial projections. If the homeomorphism group of the fiber is locally
path-connected, and if the fiber is locally compact and separable, then
a completely regular mapping is a Serre fibration [10].

In this paper, we will prove that if p: F—B is completely regular
with fiber ¥, where I is a compact ANR and B is finite-dimensional and
locally compact, then p is a Hurewicz fibration. We have thus improved
a result of Michael ([9], p. 381) which would imply that p is a Serre
fibration.

2. Definiticns and notation.

(2.1) A continuous surjection p: E—B is completely regular if F and B
are metric, and if for each b e B and & > 0, there exists §(b, ) > 0
such that if d(b,bd’) < &(b,e), there exists a homeomorphism f:
p~Hb)—p~H(b’), such that d(x, h(x)) < ¢ for all e p~(b).

The space B will always be assumed to be connected. Thus all fibers
are homeomorphie, and we will denote this common fiber by F.

A topological space X is locally n-connected (LC") if, given z ¢ X and
an open neighborhood U of z, there exists an open set ¥V with x e VC U,
such that if f: "7 is a map (m < n), then f extends to F: B™"' T,

Let {S.}(a e 4) be a collection of subsets of X. {S.} is equi-LC" [8] if,
given # ¢ X and an open neighborhood U of z, there exists an open set V
with # ¢ V C U, such that if f: 8=V ~ 8, is a map (m < n and ze 4),
then f extends to F: B™™ U n §..

Let ¥ De a topological space, and let F(Y¥) denote the collection
of subspaces of Y. A function g: X —J(Y) is called a lower semi-continuous
carrier (1.s.c. carrier) [7] if, given 2 ¢ X and an open subset U of ¥ with
@(x) ~ U # 0, then there exists an open neighborhood ¥ of @, such that
if "¢V, then ¢(#') n T # 0. .

(2.2) Note that if p: B—B is continuous and open, then the function
taking b to p~1(b) is a Ls.c. carrier from B to §(E) ([7], p. 382).
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We now quote a version of a result of Michael ([8], Theorem 1.2,
p. 563):

(2.3} PrOPOSITION. Suppose that X is metric and that ¥ is complets

. metric. Lot o: X ~T(Y) be a l.s.c. carrier, where (x) is closed for
each w e X, and the collection {p(x)} (#eX) is equi-LC". Suppose
also that dim Y < n+4-1. Finally let A C X be closed, and let f: AT
be continuous, with f(a) e p(a) for all a e A. Then f can be emtended
to a continuous g: U~Y, where U D A is open, and ¢(x) € ¢(z) for
all zeU.

A map p: BB is a Hurewicz fibration if it has the ACHP in the
sense of Hu ({3], p.62).

If 4 and B are closed, bounded subsets of a metric space X, then
the Hausdorff metric o is defined by

o(4, B) = max {sup d(z, B), sup d(y, 4)}.
xed yeB

If f: X~Y is a map, then Gr(f) C X x ¥ will denote the graph of f.

If X and Y are metric spaces, then a metric on X x ¥ 'is given by
A((@, 91), (B, ¥2)) = max{d(zy, %), d(¥1, )} We. will use this metric
for X x ¥ without further explicit mention.

3. Generalities on complete regularity. We first recall some results
from [10]. ‘
(3.1} If p: BB is completely regular with fiber ¥, and B and T are locally
compact, then B is locally compact.

If the fiber is compact, them complete regularity of p: BB does not
depend on the choice of metric for B.

If p: E—B is completely regular, then p is an open map.

(3.2)

(3.3)
Proofs of these statements will be found in ([10], § 3).
As a simple consequence of the proof of (3.1), we have

(3.4) PropoSITION. If p: E~B is completely regular with fiber B, where B
and I are compact, then I is compact.

We next have a result that is useful in the application of (2.3) to
completely regular mappings.

(3.5) PROPOSITI‘ON‘ Let p: E—~B be comphtely regular with fiber T,
where F is LC". Then the collection {p=(b)} (beB) is equi-LC".

Proof. Let 2< B, and let U be an open neighborhood of z in F.
Cl_af)ose £>0 so that N(z)C U. Now Ny(e) ~p7'(p(w) iz open in
" (p(@), and F is LC", so that we can find # with 0 < 4 < 1e, such
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that if g2 S™—Nu2) ~p (p(z)) is & map (m < u), then g extends to -
2 map

@: B™ > Nyfa) ~ 97 (p(2)) .

Put V= Npfz) ~ p"l(Na@,,,p(z))(p (a;)))‘ Clearly eV C U. Suppose
now that f: 8" =¥ ~ p*(b) (b ¢ B and m < n). Then there exists a homeo-
morphism : p7(b)~p*(p (2)), such that d(y, h{y)) < g, forally e p~'(B).
But then & o f: 8™~ Nu(x) ~ p~*(p(#)}, 5o that & of extends to H: B™*
~+Ng(w) ~ p7(p(5)). Now define F = h™"c H: B™' > N,(2) ~ p”Xb). Fis
clearly the desired map extending f.

4. Proof of the main theorem. We will now prove

(4.1) THEOREM. Let p: E—B be completely regular with fiber F, where F is
a compact ANR and B is finite-dimensional and locally compact.
Then p is a Hurewicz fibration.

Proof. Define M = {f: PpYb)~p~1b")[{b, b’}g_B}, where all the
maps f under consideration are required to be continuous. By (3.1) we
see that F is locally compact. Hence we can find a bounded complete
metric for ¥, and by (3.2) p is completely regular with respect to this
metric.

Now if fe M, Gr(f) is a closed, bounded subset of E x E. For
frged, define d(f,g) = o(Gr(f), Gr(g)), where ¢ is the Hausdortf
metric defined above. Thus we have defined a metric on 6. A similar
metric in a slightly different situation is used by McAuley in [6]. Let
a: Mo—~B xB be defined by =(f)= (b; ') if f: p~1(d)~p~1b').

In order to apply (2.3), we must have more information about
and 7.

(4.2) = is continuous.

Proof. Let (b, b') e B X B, and let U xV be a neighborhood of (b, b’)
in B x B, where U and V are open in B. We claim that #~3(U xV) is open
in . Let g ex (U xV). Thus ¢g: p~Ye)=>p~(c'), with ce U and ¢’ V.

Let & > 0 De so small that N.(¢) C U and N.(¢') CV, and let 2 € p~*(c).
Since @ ep ' (Ne(e) and g(@) ep (N.c), we can find z(s) >0, such
that N.(2) Cp ' (Nc)) and N.(g(w) Cp ' (Nec"). We eclaim that if
o(Gr(g), Gr (7)) <=, then Fea~Y (U xV).

Suppose that §: p~1c)~p~1(¢'). Then there must exist yep~(c),
with d(z,y) <7 and d{g(z),7(y)) <v. Thus y e N(o)Cp ' (Ne)), and
F(y) e Nofg(#) Cp~'(Nec'). Hence GeNfc)C U and & e Ne¢)CV, so0
that 7(g) e U xV. Thus o~} U xV) is open in A, as claimed.

(4.3) = is completely regular.

Fundamenta Mathematicae, T. LXX 10
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Proof. Let (b, b') e BxB and ¢> 0 be given. Pub
&), 8(b'y &)} .
Olearly 7 > 0. We claim that # satisfies the condition of (2.1).
Thus suppose that (¢, ¢) e BxB is such that d((d, D), (¢, ¢')) <.
Then d(b,¢) < 6(b,e) and d(b’, ¢) < d(b’,¢). Now we have homeomor-
phisms b: p~3(b)~>p~Yc) and g: p~*(0)~+p~*(¢'), such that d(m, h(m)) <e
for all # e p~X(b) and d(y, g(y)) < ¢ for all y e p~*(b’). Define

®: 7 3b, V)Mo, ) by  D(f)=gofeht.

We will show that @ is continuous. An e-neighborhood of % in A6 will
be denoted by Si(k).

Thus let Si{k) ~a~Yc,¢’) be an open set in =, ¢’). We will
gshow that

7= min{3(b,

O (8u(k) 7 e, o))

is open in =x7'(b,}’). Suppose that fe® '(S,(k) ~a (e, ¢"). Then
gofoh™ e 8ik). Now 0 < d(B(f), k) < e. Since F is compact, g: p~(0')
—~p~Y¢') and h: p~Yb)~p~*(c) are uniformly continuous. Hence, if a > 0
is given, there exists u(a) > 0 such that if {z,2'} C p~%(d') with d(z, ')
< u(e), then dfg(2),g(+)) <a, while if {y,y'}Cp='(b) with d(y,y’)
< p(a), then d(k(y), h(y') < . Put

T= s——d(@
Now consider Suo(f) ~a=(b, b').

V>0,

I f e Suw(f) ~ 2, b'), then

a(f,f') < p(z), so that g(Gr(f) Gr(f’ )) u(z). Now let @ e p=*(¢). Then

(2, @) (@ )eGr(qs(f) Bub (B(f)) (@) = (g of e k") (2). The inequality
o(6x(f), Gr(f") < u(v), implies that there exists

yep '(b), with d(((h"l) (@), (Fe b7 (@), (v, J“(.ﬂ/))) < (7).
Write ¥ = h™'(2). Then &((f o B™")(x), (f'  h™Y)(
dllgofo W) @), (g of < W) <.

But sinee d(A7'(), h7(%) < u(r), we have d(z,2)<v. Thus we
see that

2)) < u(z), so that

lfo, (@(1) @), Gx(@ (1)) <=
Similarly, we can conclude that d((w, (@(f’))(m)),(}r(di(f)))<r

Hence we have shown that g(Gr (@), 6r(o(f '))) <7, and consequently
a(®(f), (f)) <z Thus &(B(f"), k) <&, and 8o we have shown that

Bualf) o (b, ) C 67H(8UR) ~ (e, o)) -

icm®
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Therefore @ is continuous, as asserted. It easily follows that & is
a homeomorphism.

Let fea(b,d"). If & ep~i(b), then d(f(z),(g-f)(z)) <e s0 that
a(f (@), (1) (a( ))<a Since (h(x), (@(f) )(h(x)))eGr(qs(f)), we see that
d((z, f(@)), Gx((f))) < e As above, we infer that o(Gr(f), Gr(d(f)) <,

so that d(f, ®(f)) <e. Bubt then 7 satisfties the condition of (2.1), as
claimed. Thus = is completely regular.

We can certainly conclude that x is an open map, and hence that
the function ¢: B X B~ (A0), defined by ¢ (b, ') = a~1(b, '), is a Ls.c.
carrier. ‘

The metric of A induces a metrie on each fiber, and we will now show

(4.4) The metric induced by S on ==Y(b,b’) = (p
to the metric given by

a(f, )=

=107 s equivalent

xs;;l-lx)(b){d( (=), g(=)} .

Proof. To be consistent with the notation used above, we will de-
note an s-neighborhood of f: p-1(b)—>p~1(d’), in the metric induced
from A6, by 8.(f). N{f) will denote an e-neighborhood of f in the metric 4.

But N(f) C8{f), for if g e N(f), then a((z,f(a)), (&, g(w))) < for
all zep-3(b), so that o(Gr(f), Gr(g)) <e and thus ge S,(f).

On the other hand, consider ¥,(f). Since F' is compact, f is uniformly
continuous. Thus, if «> 0 iz given, there exists u(a)> 0 such that if
d(,y) < p(a), then d(f(x),f(y)) <o We may assume that u(a)< o
We claim that S,q4(f) C N.(f). In order to see this, let g ¢ 8u3a(f). Then
Q(Gr(f), Gr(g)) < p(3e). Let zep'(b). There must exist z' ep~Yd)
with d((z, g(@)), (2, f(#)) < pu(3e). But then d(z, ') < u(4e), so that
a(f(®), f(2") < }e. Thus d(f(z), g(#)} < ieFie=¢, s0 that geN.(f).
Hence the metrics are equivalent, as asserted.

Since F is compact, we now see that the metric of A6 induces the
compact-open topology on z~1(b, b'). But F is a compact ANR, so that
([4], - 186) F¥ is an ANR. But then ([4], p. 96) F is LC" for all . Finally,
we conclude from (4.3) and (3.5) that the collestion {z—(b, b’')} (b,d’' ¢ B)
is equi-LC" for all n. Since dimB < oo, we see that dim(B >':B) < oo
Thus we have enough equi-local connectedness to satisty the hypothesis
of (2.3) for the Ls.c. carrier ¢. It only remains to investigate the complete-
ness of 6. Thus we have

(4.5) b 48 topologically complete.

Proof. We will first show that if U and V are open sets in B such
that U and 7 are compact, then =T x V) is topologically complete.
10%
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We will denote a={(U x¥) by #g.v. Let the collection of graphs of
functions in Agx7 be denoted by M5x7. Let the collection of cloged and
bounded subgets of B x E be denoted by F(¥ x E); then w7 C 94(B x B).
With the Hausdorff metric, T,(¥ x¥) is a metric space. Since F is com-
plete, a classical result ( [5], p. 198) allows us to conclude that 7(E x B)
is complete. Thus CL (Msg«7), the closure of Mog7 in To(B xH), iy also
complete. We will show that Hpw7 I8 2 Gs-set in CL(ALUXV)

First, let Ae CL(JLny;) Suppose that 4 =lim{Gr(f;)}, where
fur p(be)—>p~4bi), for bie U and bie V. By taking a subsequence, we
may assume that g(Gr(fi), 4) < 1/i for each 4. But then if (z,y) e 4,
we can find @ e p~X(bs) with d(as, ®) < 1/i and d(fi(ws), y) < 1/i. Thus {z;}
converges to z, and {fi(#:)} converges to y, so that {d;} converges to p(x),
and {b7} converges to p(y). If we put b = lim {b;}, and b’ = lim {b;}, then
(z,y) ep~{b) xp~}(b"). Thus we see that A Cp~'(b)xp~'(b’), where
beU and b’ 7.

Now define
IA Cop~Yb) xp~Yb') and

A—,i = A € CL(-/K)UX'V) dl .
—1, bl > :
| up {iam({a) x () ~ 4]} > 1/
We assert that #; is closed for each i. To see this, let B = Lim {B;},
where Bjedt; for j=1,2,..., and B« (E xE). Since B; e +;, then

Jm (diam({{z} x p=b9) ~ By} > i,

where B; C p~3{by) x p~Y(bj), and (b;,b7) e U xV for j=1,2,..

Let 7 be given with 0 <5 <1/3i. Then we can find (y,%) and
(25, 1)) in By, with d(ty, ) > 1/i—7, where z; ¢ p=b;) and {t;, 1} C p—(b))
Now, by (3.4), p~(T) and p~Y¥) are compact. Hence we can assume
{by taking subsequences, if necessary) that {z;} converges to & ¢ YD),
and that {i;}, {t7} converge to ¢, e p=%(¥) respectively. Clearly (z,1) ¢ B
and {x,%') e B:

Now sinee {is} converges to ¢ and {1} converges to ', we can choose j
80 large that d(l;,?) <7 and d(if,t') < 5. Then a@t, ) +-a, ¢+, )
> d(ty, 17), s0 that d(t, ') > 1}i—n—n—n = 1/i— 3. Hence d((w 1), (x, 1))
>1/i—37, so that

diam(({} x p=1(b") ~ B)>1/i—3n (where BC 27Hb) X p=X(b")) .
But % can be chosen arbitrarily small, so that we must have
. i&?m{dlam(({m} X p=Yb’ )) B} >1fi.

Hence B e #:, 80 that #; ig closed, as claimed.
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We will now show that fzx7 = CL{Apx7) — U #;. First, if f: p=1(b)

o p-i(b'), then Gr(f)¢ 4 for all 4, since or o« p-3(b), () % p1(0"))
A Gr(f) = {{r, f(#))}, which has diameter 0.
Thus it will suffice to show that

CL(J5x7) — U C Moz 57 -

To - see this, let A & CL{Mpx7)— U #;. Suppose that A Cp—1(b) x

X p~b") and that 4 = im {Gr(f;)}, where iz p7Hbs) —>p~1(b7), with b; e T
and bjeV. It follows easily that b =lim{bs} and b = Lim{b;}, while
belU and b V. If xep(b), we can find x;ep~1(d;), with {z;} con-
verging to «, and also such that (z;, fj(.r,)) € Ny;(A) (perhaps after taking
subsequences).

Then there exists (yj,2;) A, with d(zy,y;) <1/j and d(fxzy), %)
< 1/j. We may assume that the {z;} converge to z e p~(b). Cleaxly the {y;}
converge to z, so that the {(y;, 27)} converge to (z, 2). But each (y;, 2;) € 4,
and 4 is elosed, so that (w,z) ¢ A.

Thus we have that ({#}xp~(b)) ~» 4 # @. Now if (z,y)e4 and
(,¥") e 4, then we must have y = y’, for if d(y,y’)> 0, then 4 ¢ #;
for some 4, which. is impossible. We can therefore define a function
I p~Yb)—>p~Yb') by f(x) =1y, where y is such that (#,y) e A. Clearly
A = Gr(f). It also follows that f is continuous, since p—1(b’) is eompact
(13, p. 228). But then A4 ¢ 7,7, 50 that fop.5 = CL(Mp.7)— L A4,

=1

Hence Mp.7 is a Gs-set in the complete metric space CL(.JK:D”),
so that ([1], p. 308), Moz s topologically complete. Since the metric
on M5« was obtained from that on dﬁ;ﬁﬁ, we can evidently find a com-
plete metric for Mp.7. Since = is continuous, #—*(U x V) is open in M55,
s0 that a~(U x7T) is-topologically complete. Thus, since B is locally
compact, we see that ¢ is locally topologically ecomplete. Finally, by
([1], p. 314), A6 is topologically complete.

Thus A6 has a complete metric, so that we have verified all the
hypotheses of (2.3).

Now let A(B) = {(b,b)] be B}C B:xB. We can define s: A(B)—~J
by s(b, b) =idpy. s is evidently continuous, and s(b,bd)ep(b,d)
=a~%b, b) for all b e B. Since A(B) is closed in B xB, we can apply
(2.3) to find an open set U, where U D A(B), and a continuous extension
5: U of s, where 75(b, b’) = (b, b’) for all (b, ') e U.

Let beB. Then (b,b)e U, so that we can find an open neighbor-
hood V of b, with (b,b) ¢V x¥V C U. Define

Br: Vup V)=V by  dple, 2) = (5(p(), d))(a)
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where
ceV and wzepYV).
We claim that $p is continuous.

Let X = {(f, #)] f: p~(0) >p~X(') and z € p~1(B)}. N°C M x B, Define
¢: N~F by e(f, %) = f(x). We will show that e is continuous. Suppose
that W is open in K, and consider e¢~(W) CN. Let (f, ) e e~{(W), and
choo.se £> 0 such that Ne(f(a:)) C W. Since F is compact, f is uniformly
continuous, so that given « > 0, there exists u(z) > 0 such that if aly,y)

< pi(a), then d(f(y),f(y’)) < a. We can assume that p(«) < a. Put o(e,f)

= u(le). We elaim that (Syep(f) X Naep(®@)) ~ N C e=1(W).

To see this, let (g, ") € (Sue.n(f) X Noep(®)) ~ N. Then o(Gz(f), Gr(g))
< (e, f), 50 that there must exist #” ¢ p~Yb), with d(@', @) < (s, f)
and d(f(a"), g(@)) < b(e, f). But then d(z, 2") < 25(e, f) = u(4e). Hence
d(f(a), f(")) < }e. Finally, we have d(f(z), ¢(a)) < fe-+d(e,f) <&, s0
that g(z’) e ¥,{f(x)) C W. Thus e is continuous.

Now 8y is obtained as the composition

(¢, 2)~((p(2), ) 2) (5 (p (@), 0, 2] > (3(p (2), o]} () ,

80 thjﬂ; 8y i3 continuous. We also observe that §p satisfies psp(c,z) = ¢
and 3(p (), o) = @, for all (c, z) eV X p~YV).

Hgnee, in the language of ([1], p. 404), 3, is a slicing map for ¥,
and V is a slicing neighborhood. But every point of B has such a neighbor-
hood and map, 80 that p: BB is a sliced fiber space (3], p. 97). We then
conclude, since B is metrie, that » is & Hurewicz fibration ([1], p. 405).
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A characterization of strong inductive dimension*

by
" J. M. Aarts (Delft)

§ 1. Introduction. In [7] Nishiura has presented a theory for (weak)
inductive invariants of separable metrizable spaces. (Weak) inductive
invariants (first introduced by Lelek [5]) are obtained by replacing the
empty set in the definition of (weak) inductive dimension by members
of some family of topological spaces (see § 3 for precise definition).

By studying inductive invariants it is determined what part of
dimension theory is due to the induetive nature of the definition of di-
mension and what part is due to the speecial role of the empty set.

In the paper of Nighinra, this has resulted in a characterization of
weak inductive dimension on separable metrizable spaces by means of
seven (independent) conditions.

Essentially, by weakening one of these conditions, a characterization
of the strong inductive dimension on the class of all metrizable spaces
is obtained (see § 2). In § 3 a theory for strong inductive invariants is
developed in order to prove the independence of the conditions by which
dimension ig characterized (see § 4).

Throughout, B(U) denotes the boundary of U. dimX stands for the
strong inductive dimension of X. All spaces under discussion are
metrizable.

§ 2. A characterization theorem. An extended real-valued function f
defined on the class of metrizable spaces, is said to be fopological (mono-
tone) if f(X)=f(T) (f(X) < f(¥)) whenever X is homeomorphic to (is
a subset of) T. fis called pseudo-inductive if in each space X every non
empty closed set has arbitrarily small neighborhoods U such that f(B(T))
< f(X)—1 (we agree that co—1 = oo). f is weakly subadditive if for all X
and ¥ we have

FE O T) <FE AT L

(cf. [7] inductively subadditive).
Now we state a theorem which characterizes dimension.

* Research supported by National Science Foundation Grants GP-6867 and
GP-8637.
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