

The following theorem on the uniqueness of BTS is a consequence of the above results:

(5.5) THEOREM. For any pair (C, E) where E: C→EC is a projection functor from an E-category C into a semi-classical category EC there exists a unique continuous BTS (C, EC, SC, E, F). It is unique in the following sense: If (C, EC, S'C, E, F') is another continuous BTS (and S' = F' ∘ E), then there exist functors (which are uniquely determined) H: SC→S'C and H': S'C→SC such that

$$H' \circ H \colon SC \rightarrow SC$$
 and $H \circ H' \colon S'C \rightarrow S'C$

are identity functors and

$$F' = H \circ F$$
 and $F = H' \circ F'$

- (5.6) Remark. We can say that a continuous functor of shape is a Dedekind section between the functors of shape and the continuous functors.
- (5.7) Remark. It is clear that Theorem (5.1) holds for the contravariant functors G, G' also.
- (5.8) EXAMPLE. Given an arbitrary BTS (C, EC, SC, E, F), let $Y \in E$ -Ob C. Then, by Definition (2.1), $M_{EC}^Y \circ E : C \to E$ ns is a continuous contravariant functor. Then, by Theorem (5.1), there exists a contravariant functor H such that $M_{EC}^Y = H \circ F$. It is easy to see that it must be $H = M_{SC}^Y$.
- (5.9) Example. Let H: C→HC be the homotopy functor from the topological category of compact pairs C to the homotopy category of compact pairs HC. Then H is a projection functor and C is an H-category. The Čech homology and cohomology functors and the cohomotopy functors πⁿ are H-invariant and continuous on C. Thus they are shape-invariant in the sense of Theorem (5.1) (see [2] and compare [3] and Example (5.8)). H-objects are precisely the pairs homotopically dominated by polyhedral pairs.

References

- [1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968), pp. 223-254.
- [2] K. Borsuk and W. Holsztyński, Concerning the ordering of shapes of compacta, Fund. Math. 68 (1970), pp. 107-115.
- [3] S. Godlewski, Homomorphisms of cohomotopy groups induced by fundamental classes, Bull. Acad. Polon. Sci. 17 (1969), pp. 277-283.
- [4] B. Mitchel, Theory of Category, New York and London 1965.

Reçu par la Rédaction le 7. 10. 1969

Some results on fixed points — III

by

R. Kannan (Calcutta, Ind.)

Recently many authors have proved fixed point theorems (see for example [1], [4], [5], [8]) for operators mapping a Banach space X into itself. In each of these theorems it has been assumed that the mapping is non-expansive i.e., if φ maps the Banach space X into itself, then

(a)
$$\|\varphi(x) - \varphi(y)\| \leq \|x - y\|$$
, for $x, y \in X$.

The main purpose of the present paper is to prove some fixed point theorems for operators mapping a Banach space into itself which, instead of the non-expansive property, possess the following: if φ is a mapping of a Banach space X into itself, then

(b)
$$\|\varphi(x) - \varphi(y)\| \leq \frac{1}{2} \{\|x - \varphi(x)\| + \|y - \varphi(y)\|\}$$
 for $x, y \in X$.

It may be noted that condition (a) implies the continuity of the operator in the whole space while condition (b) has no such implications. Moreover, it is known [6] that (a) and (b) are independent. For relevant works on fixed point theorems for operators mapping a metric space M into itself which satisfy condition (b) on M, one may refer to [6] and [7].

Before going into the theorems, we state the following well-known definitions and results.

DEFINITION ([2], p. 27). A norm in a normed linear space X is uniformly convex if

$$||x_n|| = ||y_n|| = 1 \ (n = 1, 2, ...), \quad \lim_{n \to \infty} ||x_n + y_n|| = 2$$

imply

$$\lim_{n\to\infty}||x_n-y_n||=0\quad\text{ for }x_n\,,\,y_n\in X\,.$$

Theorem A ([2], p. 28). Let X be a uniformly convex normed linear space and let ε , M be positive constants. Then there exists a constant δ with $0 < \delta < 1$ such that

$$||x|| \leqslant M$$
, $||y|| \leqslant M$, $||x-y|| \geqslant \varepsilon$

imply

$$||x+y||\leqslant 2\delta\,\max(||x||,||y||)$$
 .

THEOREM B [12]. Every uniformly convex Banach space is norm-reflexive.

THEOREM C [11]. A necessary and sufficient condition that a Banach space X be reflexive is that:

Every bounded descending sequence (transfinite) of non-empty closed convex subsets of X has a non-empty intersection.

We are now in a position to prove our theorems.

THEOREM 1. Let X be a reflexive Banach space and let K be a non-empty closed convex bounded subset of X. If φ be a mapping of K into itself such that

(i)
$$\|\varphi(x) - \varphi(y)\| \leqslant \frac{1}{2} \{\|x - \varphi(x)\| + \|y - \varphi(y)\|\}, \ x, y \in K$$

(ii)
$$\sup_{y \in H} \|y - \varphi(y)\| \leqslant \frac{\delta(H)}{2},$$

where H is any non-empty convex subset of K which is mapped into itself by φ and $\delta(H)$ is the diameter of H, then φ has a unique fixed point in K.

For any non-empty closed convex subset F of K we define the following:

$$egin{aligned} r_x(F) &= \sup_{y \in F} rac{\|x-y\|}{2} + \sup_{z \in F} rac{\|z-arphi(z)\|}{2}, \quad x \in F, \ r(F) &= \inf_{x \in F} r_x(F) \end{aligned}$$

and

$$F_c = \{x \in F \colon r_x(F) = r(F)\}.$$

We first prove the following lemma.

LEMMA. Fc is non-empty, closed and convex.

Proof of the lemma. For positive integer n, let

$$F(x,n) = \left\{ y \in F \colon \frac{\|x - y\|}{2} \leqslant r(F) + \frac{1}{n} - \sup_{x \in F} \frac{\|z - \varphi(z)\|}{2} \right\}$$

and let $C_n = \bigcap F(x, n)$.

It then follows that $\{C_n\}$ is a decreasing sequence of non-empty, closed, convex and bounded sets. Since X is reflexive, it follows by Theorem C that $F_c = \bigcap_n C_n$ is non-empty, closed and convex. This proves the lemma.

Proof of the theorem. Let $\mathfrak F$ denote the family of all non-empty-closed and convex subsets of K, each of which is mapped into itself by φ . By the result of Smulian [11] and Zorn's lemma it follows that $\mathfrak F$ has a minimal element, which we denote by F.

Let $x \in F_c$, the non-emptiness of F_c being a consequence of the lemma. Then

$$\begin{split} \|\varphi(x) - \varphi(y)\| &\leqslant \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \quad y \in F \\ &\leqslant \sup_{y \in F} \frac{\|x - y\|}{2} + \sup_{y \in F} \frac{\|y - \varphi(y)\|}{2} \\ &= r_x(F) = r(F) \; . \end{split}$$

So, $\varphi(F)$ is contained in a closed spherical ball \overline{U} centred at $\varphi(x)$ and radius r(F). Therefore $\varphi(F \cap \overline{U}) \subset F \cap \overline{U}$ and hence, by the minimality of F, we get $F \subset \overline{U}$. Hence for $y \in F$, $\|\varphi(x) - y\| \leqslant r(F)$.

$$\sup_{x\in F}\|\varphi(x)-y\|\leqslant r(F)\;.$$

Now

$$r_{q(x)}(F) = \sup_{y \in F} \frac{\|\varphi(x) - y\|}{2} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{2},$$

so,

(B)
$$r_{\varphi(x)}(F) \leqslant \frac{r(F)}{2} + \sup_{x \in F} \frac{||z - \varphi(z)||}{2} \quad \text{(by (A))}.$$

Also

$$\sup_{z \in F} \frac{\|z - \varphi(z)\|}{2} = \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4}$$

$$\leq \frac{\delta(F)}{8} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4}, \quad \text{by condition (ii)}$$

$$= \sup_{z, t \in F} \frac{\|z - t\|}{8} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4}.$$

So,

$$\begin{split} \sup_{z \in F} \frac{\|z - \varphi(z)\|}{2} & \leq \sup_{z \in F} \frac{\|z - x\|}{8} + \sup_{t \in F} \frac{\|t - x\|}{8} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4} \\ & = \sup_{z \in F} \frac{\|z - x\|}{4} + \sup_{z \in F} \frac{\|z - \varphi(z)\|}{4} \\ & = \frac{r_x(F)}{2} = \frac{r(F)}{2} \,. \end{split}$$

So, from (B), $r_{\varphi(x)}(F) \leqslant r(F)$, which implies that

$$r_{\varphi(x)}(F) = r(F)$$
 i.e., $\varphi(x) \in F_c$.

(C) Hence φ maps F_c into itself.

We now show that, if F contains more than one element, F_c is a proper subset of F. Otherwise, let $F_c = F$. Then for $x, y \in F$

$$r_x(F) = r_y(F) = r(F)$$
.

So, $\sup_{t\in F}\|x-t\|=\sup_{t\in F}\|y-t\|$ for $x,y\in F$. This implies that $\sup_{t\in F}\|x-t\|=M$, a constant, for all $x\in F$. Hence $\delta(F)=\sup_{x,t\in F}\|x-t\|=M$, where $\delta(F)$ denotes the diameter of F. This, however, implies for $x\in F$ that

(D)
$$\sup_{t \in F} ||\varphi(x) - t|| = \delta(F) .$$

Again,

$$\|\varphi(x)-\varphi(y)\| \leqslant \frac{\|x-\varphi(x)\|}{2} + \frac{\|y-\varphi(y)\|}{2}, \quad y \in F$$
 $\leqslant \frac{\delta(F)}{2}, \quad \text{by condition (ii).}$

Proceeding in the same manner as in obtaining (A), we now get $\sup_{y \in F} \|\varphi(x) - y\| \leqslant \frac{\delta(F)}{2}, \text{ which contradicts (D) because } F \text{ contains more than one element.}$

Hence we infer that if F contains more than one element, then F_c is a proper subset of F. But this, in view of (C), contradicts the minimality of F. Hence F contains only one element. Since φ maps F into itself, φ has a fixed point in K.

The unicity may be proved as follows.

Suppose that $\varphi(x) = x$, $\varphi(y) = y$, where $x, y \in K$. Then

$$\|\varphi(x)-\varphi(y)\|\leqslant \frac{\|x-\varphi(x)\|}{2}+\frac{\|y-\varphi(y)\|}{2}=0.$$

Hence $x = \varphi(x) = \varphi(y) = y$. This completes the proof.

Note. Kirk [8] has proved a fixed point theorem with the help of Theorem C and using the concept of normal structure (which is defined in [3]) where, however the unicity is not guaranteed.

THEOREM 2. Let K be a non-empty, bounded, closed and convex subset of a uniformly convex Banach space X. Let φ be a mapping of K into itself such that

$$(i) \|\varphi(x) - \varphi(y)\| \leqslant \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \ x, y \in K$$
and

(ii) $\sup_{z \in F} ||z - \varphi(z)|| \le \frac{\delta(F)}{2}$, where F is any non-empty convex subset of K which is mapped into itself by φ .

Then the sequence $\{x_n\}$, where $x_{n+1} = \frac{x_n + \varphi(x_n)}{2}$, converges to the fixed point of φ in K, where x_0 is any arbitrary point of K.

Note. One may refer to a theorem of Krasnoselski ([2], p. 30 and [9]), where the same conslusion as above is obtained under different assumptions.

Proof. The existence of the fixed point of φ in K is given by Theorem 1. We consider the sequence $\{x_n - \varphi(x_n)\}$. Two cases arise.

Case I. There exists an $\varepsilon > 0$ such that $||x_n - \varphi(x_n)|| \ge \varepsilon$ for all n > N. Let y be the fixed point of φ in K. Now

$$||(x_n-y)-(\varphi(x_n)-y)||=||x_n-\varphi(x_n)||\geqslant \varepsilon, \quad n>N.$$

Since X is uniformly convex and $x_n \in K$, we have

$$\begin{aligned} \|x_{n+1} - y\| &= \left\| \frac{x_n + \varphi(x_n)}{2} - \frac{y + \varphi(y)}{2} \right\| \\ &\leq \delta \max \left(\|x_n - y\|, \|\varphi(x_n) - \varphi(y)\| \right), \quad n > N, \ 0 < \delta < 1. \end{aligned}$$

Now

$$\begin{aligned} ||\varphi(x_n) - \varphi(y)|| &\leq \frac{1}{2} [||x_n - \varphi(x_n)|| + ||y - \varphi(y)||] \\ &\leq \frac{1}{2} [||x_n - y|| + ||y - \varphi(y)|| + ||\varphi(y) - \varphi(x_n)||]. \end{aligned}$$

So,
$$\|\varphi(x_n)-\varphi(y)\| \leqslant \|x_n-y\|$$
.

Hence $||x_{n+1}-y|| \le \delta ||x_n-y||, \ n > N, \ 0 < \delta < 1.$

.. $\{||x_n-y||\}, n > N$, is a monotone decreasing sequence tending to zero. Hence $\lim x_n = y$ and this proves the theorem.

Case II. There exists a sequence of integers $\{n_k\}$ such that

$$\lim_{k\to\infty}||x_{n_k}-\varphi(x_{n_k})||=0.$$

Now

$$\|\varphi(x_{n_k}) - \varphi(x_{n_l})\| \le \frac{\|x_{n_k} - \varphi(x_{n_k})\|}{2} + \frac{\|x_{n_l} - \varphi(x_{n_l})\|}{2}.$$

. $\{\varphi(x_{n_k})\}\$ is a Cauchy sequence and hence it converges, say, to u. So $\lim x_{n_k} = \lim \varphi(x_{n_k}) = u$.

Also

$$||u-\varphi(u)|| \leq ||u-x_{n_k}|| + ||x_{n_k}-\varphi(x_{n_k})|| + ||\varphi(x_{n_k})-\varphi(u)||.$$

So,

$$\frac{\|u - \varphi(u)\|}{2} \leqslant \|u - x_{n_k}\| + \|x_{n_k} - \varphi(x_{n_k})\| + \frac{\|x_{n_k} - \varphi(x_{n_k})\|}{2}$$

for each positive integer k.

This implies that $u = \varphi(u)$, i.e., u is the fixed point of φ in K.

Also

$$||x_{n+1} - u|| = \left\| \frac{x_n + \varphi(x_n)}{2} - \frac{u + \varphi(u)}{2} \right\|$$

$$\leq \frac{1}{2} ||x_n - u|| + \frac{1}{2} ||\varphi(x_n) - \varphi(u)||.$$

But

$$\begin{split} \|\varphi(x_n) - \varphi(u)\| &\leq \frac{\|x_n - \varphi(x_n)\|}{2} + \frac{\|u - \varphi(u)\|}{2} \\ &\leq \frac{\|x_n - u\|}{2} + \frac{\|\varphi(x_n) - \varphi(u)\|}{2} \,. \end{split}$$

Therefore $\|\varphi(x_n) - \varphi(u)\| \leq \|x_n - u\|$.

: $||x_{n+1}-u|| \le ||x_n-u||$, and since $\lim x_{n_k} = u$, we have $\lim x_n = u$. This proves the theorem.

Theorem 3. Let X be a uniformly convex Banach space and let φ be a mapping of X into itself such that

$$\text{(i)} \ \|\varphi(x) - \varphi(y)\| \leqslant \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \ x, y \in X$$

and

(ii) $\sup_{y \in H} ||y - \varphi(y)|| \le \frac{\delta(H)}{2}$, where H is any non-empty convex subset of X which is mapped into itself by φ .

Then if φ has a fixed point u in X, the sequence $\{x_n\}$ given by $x_{n+1} = \frac{x_n + \varphi(x_n)}{2}$, where x_0 is any arbitrary point of X, converges to u.

Proof. Consider the closed sphere K with u as centre and d (=|| $u-x_0$ ||) as radius. If $y \in K$, then we get

$$\begin{split} \|\varphi(y)-u\| &= \|\varphi(y)-\varphi(u)\| \\ &\leqslant \frac{\|y-\varphi(y)\|}{2} + \frac{\|u-\varphi(u)\|}{2} \\ &\leqslant \frac{\|y-u\|}{2} + \frac{\|u-\varphi(y)\|}{2}. \end{split}$$

So, $||\varphi(y) - u|| \le ||y - u|| \le d$.

Hence $\varphi(y) \in K$, i.e., φ maps K into itself. Also K is bounded, closed, convex and non-empty. Hence, by Theorem 1, φ has a unique fixed point in K and, by Theorem 2, $\{x_n\}$ converges to u. This proves the theorem.

THEOREM 4. Let X be a Banach space and x_0 an arbitrary point of X. Let φ be a mapping of X into itself such that

$$\|\varphi(x)-\varphi(y)\|\leqslant \frac{\|x-\varphi(x)\|}{2}+\frac{\|y-\varphi(y)\|}{2},\quad x,y\in X.$$

Then if the sequence $\{x_n\}$, where $x_{n+1} = \frac{x_n + \varphi(x_n)}{2}$, converges to ξ , then ξ is the unique fixed point of φ in X.

Proof. We define an operator φ_1 as follows

$$\varphi_1(x) = \frac{x}{2} + \frac{\varphi(x)}{2}.$$

Then φ_1 maps X into itself and the sequence $\{x_n\}$ becomes the sequence of iterates of x_0 by φ_1 .

Now for $x, y \in X$ we have

$$\begin{split} \|\varphi_{\mathbf{l}}(x) - \varphi_{\mathbf{l}}(y)\| & \leqslant \frac{\|x - y\|}{2} + \frac{\|x - \varphi(x)\|}{4} + \frac{\|y - \varphi(y)\|}{4} \\ & = \frac{\|x - y\|}{2} + \frac{\|x - \varphi_{\mathbf{l}}(x)\|}{2} + \frac{\|y - \varphi_{\mathbf{l}}(y)\|}{2}. \end{split}$$

Hence

and

$$\begin{split} \|x_{n+1} - \varphi_1(\xi)\| & \leq \|\varphi_1(x_n) - \varphi_1(\xi)\| \\ & \leq \frac{\|x_n - \xi\|}{2} + \frac{\|x_n - \varphi_1(x_n)\|}{2} + \frac{\|\xi - \varphi_1(\xi)\|}{2} \\ & \leq \frac{\|x_n - \xi\|}{2} + \frac{\|x_n - x_{n+1}\|}{2} + \frac{\|\xi - x_{n+1}\|}{2} + \frac{\|x_{n+1} - \varphi_1(\xi)\|}{2}. \end{split}$$

 $\|x_{n+1} - \varphi_1(\xi)\| \leqslant \|x_n - \xi\| + \|x_n - x_{n+1}\| + \|\xi - x_{n+1}\| .$

Since $\lim x_n = \xi$, the above inequality implies $\xi = \varphi_1(\xi)$. So $\xi = \varphi_1(\xi) = \frac{\xi}{2} + \frac{\varphi(\xi)}{2}$, which gives $\xi = \varphi(\xi)$. This proves the theorem.

Browder and Petryshyn [10] have proved the following:

Let X be a uniformly convex Banach space and let φ be a mapping of X into itself such that

$$\|\varphi(x)-\varphi(y)\| \leq \|x-y\|, \quad x, y \in X.$$

Then a necessary and sufficient condition for $u = \varphi(u)$ to have a solution in X is that the sequence of iterates $\{x_n\}$, $x_{n+1} = \varphi(x_n)$, with x_0 arbitrary, be bounded in X.

Combining Theorems 3 and 4, we obtain

Theorem 5. Let φ be a mapping of a uniformly convex Banach space X into itself such that

(i)
$$\|\varphi(x) - \varphi(y)\| \le \frac{\|x - \varphi(x)\|}{2} + \frac{\|y - \varphi(y)\|}{2}, \ x, y \in X$$

(ii) $\sup_{y \in F} ||y - \varphi(y)|| \le \frac{\delta(F)}{2}$, where F is any non-empty convex subset of X which is mapped into itself by φ .

Then φ has a fixed point u in X if and only if the sequence $\{x_{n+1}\}$, $x_{n+1} = \frac{x_n + \varphi(x_n)}{2}$, x_0 being an arbitrary point in X, converges to u.

Finally we prove the following theorem.

THEOREM 6. Let $\{f_n\}$ be a sequence of elements in a Banach space X. Let v_n be the unique solution of the equation $u - \varphi(u) = f_n$ where φ is a mapping of X into itself such that

$$\|\varphi(x)-\varphi(y)\| \leqslant \frac{\|x-\varphi(x)\|}{2} + \frac{\|y-\varphi(y)\|}{2}, \quad x, y \in X.$$

If $||f_n|| \to 0$ as $n \to \infty$, the sequence $\{v_n\}$ converges to the solution of the equation $u = \varphi(u)$.

Proof. We have

$$\begin{split} \|v_{n}-v_{m}\| &= \|v_{n}-\varphi(v_{n})\| + \|\varphi(v_{n})-\varphi(v_{m})\| + \|v_{m}-\varphi(v_{m})\| \\ &\leq \|f_{n}\| + \frac{\|v_{n}-\varphi(v_{n})\|}{2} + \frac{\|v_{m}-\varphi(v_{m})\|}{2} + \|f_{m}\| \\ &= \|f_{n}\| + \frac{\|f_{n}\|}{2} + \frac{\|f_{m}\|}{2} + \|f_{m}\| \; . \end{split}$$

It follows, therefore, that $\{v_n\}$ is a Cauchy sequence in X. Hence it converges, say, to $v \in X$. Also,

$$\begin{split} \|v-\varphi(v)\| & \leqslant \|v-v_n\| + \|v_n-\varphi(v_n)\| + \|\varphi(v_n)-\varphi(v)\| \\ & \leqslant \|v-v_n\| + \|f_n\| + \frac{\|v_n-\varphi(v_n)\|}{2} + \frac{\|v-\varphi(v)\|}{2} \;. \end{split}$$

: $||v-\varphi(v)|| \le 2||v-v_n|| + 3||f_n||$ for arbitrary positive integer n. Hence it follows that $v = \varphi(v)$ and this completes the proof.

I am thankful to Dr. B. K. Lahiri, Kalyani University, for his kind help and suggestions during the preparation of this paper.

References

- [1] L. P. Belluce and W. A. Kirk, Fixed point theorems for families of contraction mappings, Pacific J. Math. 18 (1966), pp. 213-217.
- [2] F. F. Bonsall, Lectures on some fixed point theorems of functional analysis, Tata Institute of Fundamental Research, Bombay 1962.
- [3] M. S. Brodskii and D. P. Milman, On the centre of a convex set, Dokl. Akad. Nauk SSSR (N.S.), 59 (1948), pp. 837-840 (The author had no access to this paper).
- [4] Ralph De Marr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), pp. 1139-1141.
- [5] M. Edelstein, On nonexpansive mappings of Banach spaces, Proc. Cambridge Philos. Soc. 60 (1964), pp. 439-447.

- [6] R. Kannan, Some results on fixed points II, Amer. Math. Monthly 76 (1969), pp. 405-408.
- [7] Some results on fixed points, Bull. Cal. Math. Soc. 60 (1968), pp. 71-76.
- [8] W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), pp. 1004-1006.
- [9] M. A. Krasnoselski, Two remarks on the method of successive approximations, Uspehi Math. Nauk (N.S.) 10, No. 1 (63), 1965, pp. 123-127. (The author had no access to this paper.)
- [10] W. V. Petryshyn and F. E. Browder, The solution by iteration of nonlinear functional equations in Banach spaces, Bull. Amer. Math. Soc. 3 (72), 1966, pp. 571-575.
- [11] V. Smulian, On the principle of inclusion in the space of type (B), Mat. Sb. (N.S.) 5 (1939), pp. 327-328. (The author had no access to this paper.)
- [12] A. E. Taylor, Introduction to Functional Analysis, 1958, p. 231.

ST. XAVIER'S COLLEGE Calcutta, India

Reçu par la Rédaction le 17. 10. 1969