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The following theorem on the uniqueness of BTS is a consequence
of the above results:

(5.5) TwmorEM. For any pair (C,H) where B: C—~EC is a projection
Sfunctor from an E-category C inio & semi-classical category HC there
exists a unique continuous BTS (0, BC, 8C, B, F). It is unique in
the following sense: If (C, BC, 8'C, H, I") is another continuous BTS
(and ' = F' o B), then there exist functors (which are uniquely deter-
mined) H: 8C—>8'C and H': 8'C->8C such that

H'oH: SC>8C and Ho-H': 8C->8C
are identity functors and
F=HcF and F=H -F.

(5.6) Remark. We can say that a continuous funetor of shape is a De-
dekind seetion between the functors of shape and the continuong
functors. ,

(5.7) Remark. Itis clear that Theorem (3.1) holds for the eontravariant
functors &, G' also. ' :

(3.8) Exawmpim. Given an arbitrary BTS (0, BC, 8C, B, F), let
Y ¢E-Ob(C. Then, by Definition (2.1), MEyoB: (—Tns is
a continuous contravariant functor. Then, by Theorem (5.1), there
exists a contravariant functor H such that Miog=HoF. Tt is
easy to see that it must be H = MZ,.

(5.9) Exawpre. Let H: ¢—>HC be the homotopy functor from the
topological category of compact pairs ¢ to the homotopy category
of compact pairs HC. Then H is a projection functor and ¢ is
an H-category. The Cech homology and cohomology functors
and the cohomotopy functors =» are H-invariant and continuous
on C. Thus they are shape-invariant in the sense of Theorem (5.1)
(see [2]. and compare [3] and Example (5.8)). H. -objects are precisely
the pairs homotopically dominated by polyhedral pairs.

References
[11 XK. Borsuk, Concerning homoton Tt 3
o 2 g Py properties of compacta, Fund. Math. 62 (1968),

[2] K.Borsuk and W. Holsztyiiski, Concerning the orderin
s ] L
Fund. Math. 68 (1970), pp. 107-115. " 9 0F shapes of compacte

3] S. Godlewski Homomorphisms of cohomoto ! ndam.
s Py groups induced b
classes, Bull. Acad. Polon. Sei. 17 (1969), pp. 27’7-;%”3. v et

[4] B. Mitchel, Theory of Category, New York and London 1965.

Regu par la Rédaction le 7, 10. 1969

Some results on fixed points — III

by
R. Kannan (Calcutta, Ind.)

Recently many authors have proved fixed point theorems (see for
example [1], [4], [5], [8]) for operators mapping a Banach space X into
itself. In each of these theorems it has heen assumed that the mapping
is non-expansive ie., if ¢ maps the Banach space X into itself, then

(a) lp@)—pyl <lz—yl, forax,yeX.

The main purpose of the present paper is to prove some fixed point
theorems for operators mapping a Banach space into itself which, instead
of the non-expansive property, possess.the following: if ¢ is a mapping
of & Banach space X into itself, then
(b) lp@)—eWll < t{le—g@l+ly—e@)i} fora,yeX.

It may be noted that condition (a) implies the continuity of the
operator in the whole space while condition (b) has no such implieations.
Moreover, it is known [6] that (a) and (b) are independent. For relevant
works on fixed point theorems for operators mapping a metric space M
into itself which satisfy condition (b) on M, one may refer to [6] and [7].

Before going into the theorems, we state the following well-known
definitions and results.

DEFINITION (2], p. 27). A norm ‘in a normed linear space X is
uniformly conver if

2l = lgall =1 (n=1,2,..), 1}.1_]2 [lZa~+yall = 2

imply :
lim [jwgp—yal|=0 for xu,yne X .
n—+o0

THEOREM A ([2], p. 28). Let X be a uniformly convex normed linear
space and let &, M be positive constanis. Then there exists @ constant 0 with
0 < <1 such that

ol < M, i< M, —ylze
imply
ll -yl < 26 max (fjll, yll) -
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TEEOREM B [12]. Bvery uniformly convex Banach space is norm-
reflexive.

TaEoREM O [11]. A necessary and sufficient condition that a Banach
space X be refleive is thai: : .

Fvery bounded descending sequence (tramsfinite) of mom-empty closed
convex subsels of X has a non-empty intersection.

We are now in a position to prove our theorems.

THEOREM 1. Let X be a reflexive Banach space and let K be a non-
empty closed convex bounded subset of X. If ¢ be a mapping of K into itself
such that

@) le@) —pll < tHle—e@|+ly -}, 2,y ¢ K
and

— 8(H
i) sup ly—pw) <222,
yeHd . . .
where H is any non-empty convew subset of K which is mapped into itself
by ¢ and 6(H) is the diameter of H, then ¢ has a unique fized point in K.

For any non-empty closed convex subset ¥ of K we define the
following: A -

Je—g ()

Lz —yll
rx(lf')=sup‘r‘,y[‘+sup 5y el
. yeF - zelr ~
r(F) = infr,(F)
TEF

and
Fo={eF: ry(F) = r(F)}.

We first prove the following lemma.
Lemws. F, is non-empty, closed and conve.

Proof of the lemma. For positive integer n, let

Flx,n) = {y el m!lm;yi] < 1'(F)+% — sup ——”z“(f(z)n}

[
zel =

and let Oy =) F(z,n).
zel

It then follows that {C,} is a decreasing sequence of non-empty,
closed, convex and bounded sets. Since X ig reflexive, it follows Dby
Theorem C that F. = [} (', is non-empty, closed and convex. This proves
the lemma. "

Proof of the theorem. Let & denote the family of all non-emptys
closed and eonvex subsets of K, each of which is mapped into itself by ¢.

By ‘fhe result of Smulian [117 and Zorn's lemma it follows that § has
2 minimal element, which we denote by F.

icm®

Some results on fized poinis — IIT 171

Let & ¢ F,, the non-emptiness of 7, being a consequence of the lemma.
Then

g — Y —
< sup 1290 sup Y =2l
yer = yer 2
= 15(F) = r(F)

So, ¢(F) is contained in a closed spherical ball U centred at g (®)
and radius r(F). Therefore ¢(F ~U)CF U and hence, by the minimality
of F, we get FC U. Hence for y ¢ F, |p(z)—y| < r(F).

So,
(&) sup flo(@)—yl <r(F) .
Now
! — e—ep(2
o) = sy PO o=l
yeF < el =
80,
(' le—e@)l
(B) i) < "0 omp EPOL gy
Also
— - g —
sup E=2@ . le—o@l o)
ZeF 2 zeR 4 zel 4
< @4—31113 HE:MI, by condition (i)
8 zeR 4
i g
e
Btk sef 4
So,
lo — 1 >l —_— No
sup B ot o 2l o=
3 <~ zeF tel zeF E
— oy B le—g )l
it e
ro(F) v (F)
T2 T Ty
So, from (B), rug(F) < r(F), which implies that
Tou ') = r(F) ie., p@)eF,.
() Hence ¢ maps F, into itself.
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We now show that, if ' eontains more than one element, F; is a proper
subset of F. Otherwise, let F, = F. Then for 2,y ¢TI
1o(F) = 1y(F) = r(F) .
So, EEFP [lz—1t)| = s:g}g[]y—tﬁ for #, y < F. This implies that ?}},P”w —il= M,
a constant, for all z ¢ F. Hence 6(F) = f}?} lle—1| = M, where 6(F) de- -

notes the diameter of F. This, however, implies for x ¢ F' that

D) supllp(@) —i| = 6(F) .
Again,
loo)—ptg < E=pE el
éa—gi), by eondition (ii).

Proceeding in the same manner as in obtaining (A), we now get.
§(F R ) .

Suppll?’ (@) —yll < %, which contradicts (D) because F contains more than
yE. = :
one element.

Hence we infer that if F contains more than one element, then I, is
a proper subset of F. But this, in view of (0), contradicts the minimality
of 7. Hence F contains only one element. Since ¢ maps F into itself,
¢ has a fixed point in K.

The unicity may be proved as follows.

Suppose that ¢(2) = =z, p(y) = y, where %,y ¢ K. Then

Hence & = p(z) = ¢(y) = y. This completes the proof.

Note. Kirk [8_] has proved a fixed point theorem with the help of
'Theorem C-and using the concept of normal structure (which is defined
in [3]) where, however the unicity is not guaranteed.

THEOREM 2. Let K be a non-empty, bounded, closed and convexr subset

of @ uniformly conver Banach space X. Let @ be a mapping of K into itself
such that

(i) IW(T)mqD(y)}] < H-T—@(-’”);I_,_”?/“P(?I)H

= P T 5 ,.’L‘,'ye]f
2

and

N _3(F) .
(i) i‘:lg.;~*¢(z)]l~\~7, where F is any non-empty convex subset
of K which is mapped into itself by g,

icm®
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Then the sequence {Tn}, where Ln1 y converges to the fized

=mu+<P (#n)
2
point of @ in K, where x, is any arbitrary point of K.

Note. One may refer to a theorem of Krasnoselski ([2], p. 30 and [9]),
where the same conslusion as above is obtained under different as-
sumptions.

Proof. The existence of the fixed point of ¢ in K is given by Theo-
rem 1. We consider the sequence {#»—¢(2s)}. Two cases arise.

Case I. There exists an £ > 0 such that [jwy — @ (@) = & for all n > N,
Let y be the fixed point of ¢ in K. Now

[(@n—9)— (plam) —9)|| = len—p (@)l > 5, n>N.

Since X is uniformly convex and x, ¢ K, we have

s =yl = || 2 (o) _2-0l0) U
< dmax (loa—yll, lp(za) —p@)), n>N, 0<d<1.
Now . .
Hlo(20n) — @ (N < 3llien — @ (@)l +ly —@ (W]
< 4llmn—yll-+lly —@ @+l () — @ (@a)il] -

o, lip(@s) —p W)l < @a—yll

Hence [[pr1—y)| < Slga—yl, n>N, 0 <d <.
. {lwa—vl}, n> N, is & monotone decreasing sequence tending to zero.
Henee lima, =y and this proves the theorem:

Case II. There exists a sequence of integers {ng} such that

&Hm’lk—w(mﬂk)“ =0.
Now
l@n: — @ (@n)ll

) gl < 1P =2(Easll o~

= {p(®a)} is & Cauchy sequence and hence it converges, say, to ». So
lim &y, = lm e (wng) = .

Also
= (] < =+ 50— )] -+ (@)~ 0]
So,
| =00 -~ - e

for each positive integer %. )
This implies that « = p(u), i.e., % is the fixed point of ¢ in K.

Fundamenta Mathematicae, T. LXX 12
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Also
Jonsa—u = | T2 _ 2t p(0)
< Hliwn —ull+ Hip (@) — @ ()] -
But
lo(on)—ptu)] < =gl lu—p ]
llzn —4] , [l (@n) — g ()]
STy T 3 .

Therefore [lp(2a)—o(w)]| < lltn—ul.
oo NErra—ull < lwn—ul, and since lima,, = «, we have lima, = u. This
proves the theorem.

THEOREM 3. Let X be a uniformly convex Banach space and let ¢ be
a mapping of X info dself such that

() lpto) ~pte)l < =2 sl ;¥

and
§(H)

(ii) :EEIEJI lly—eWi < 5 where H is any mnon-empily conven subset
of X which is mapped into itself by ®. .
Then if ¢ has a fived point u in X, the sequence {wn} given by

_ Znt (@)

Y 5 ; wheve z, is amy arbitrary point of X, converges to w.

Proof. Consider the closed sphere K with « as centre and d (=|lu—ay)
a8 radius. If y ¢ K, then we get :

lo () —ul = llp(y) — p(w)|

ly—o@)l , lu—gw)]
STt
ly—ll | lu—o()
STyt
80, lip(y) —ull < lly—u| < d.
Henece p(y) ¢ K, i.e., ¢ maps K into itgelf. Also K i3 bounded, closed,
convex and non-empty. Hence, by Theorem 1, ¢ has a unique fixed point
in K and, by Theorem 2, {,} converges to u. This proves the theorem.

THEOREM 4. Let X be a Banach space and @y an arbitrary point of X.
Let ¢ be a mapping of X inio itself such that

Ipto)—pi < B2l sl -,y
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Then if the sequence {#n}, where Tpi1= ﬁ‘i};@ﬂ, 'cqnverges o ¢,
then & is the umique fized point of ¢ in X. ‘

Proof. We define an operator ¢, as follows

z z
(@) = §+£(2‘—) . .

Then @, maps X into itself and the sequence {&,} becomes the sequence’
of iterates of z, by ¢,.

Now for @,y ¢ X we have

lpa(@) — )]l < ngyll +llw—z($)u+lly—iv(y)l!

o=yl lo—@@)l | l—ply)
=,w2y+w g( I ly ffyllt

“

Hence

[lrn 1 — (O] < lpa(n) —pu(E)] _

e —&l | len—@alzn)]] | 1E—@u &)
L T —

<

< l]xnz—fil+llmn~2wn+1li+ll§—§u+1ll+me;tm(é)ﬂ.
o Nngs — @ N < llom — &+ oom — B | - 16— @na] .
Since lima, = &, the above inequality implies & = g,(£). So & = @,(£)
_—=.§_+?L(§El, which gives &= @(£). This proves the theorem.

Browder and Petryshyn [10] have proved the following:
Let X be a uniformly convex Banach space and let ¢ be a mapping
of X into itself such that . ‘ B
le@—eWli<lo—yl, @,yeX.

Then a necessary and sufficient condition for u = qu(u) to have a solution
in X 1is that the sequence of iterates {xn}, Tni1 = @(2n), with x, arbitrary,
be bounded in X. .

Combining Theorems 3 and 4, we obtain

 THEOREM 5. Let ¢ be a mapping of a uniformly conver Banach space X
into 4iself such that ) :

) lpte) gy < =gl =gl

and
(ii) suplly—o Wl < é%), where F is any non-empty comves subset of
yeh 2 4
X which is mapped into itself by g.
12%
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Then @ has a fized point w in X if and only if the sequence {#na},

- Zn @ (@n)
2

Finally we prove the following theorem.

THEOREM 6. Let {fa} be a sequence of elements in a Banach space X,

Let vy be the unique solution of the equation u—g¢(u) = fu where ¢ is o mapp-

ing of X into iself such that

i1 , @, being an arbitrary point in X, converges to w.

lp@) —e@) < ”w_‘g’(m)“j,_

=gl ..

If |ifall =0 as m—>oo, the sequence {vn} converges to the solution of the
equation = @(u).
Proof. We have

1ot = Ion— )] -+ 1 (02) p (0)]-+ o~ (om)]
<t om0l fom g Onll g

=t 2 Wl gy

It follows, therefore, that {v.} is a Cauchy sequence in X. Hence it
converges, say, to v ¢ X. Also,

o —@ ()l < llo—all+ [lon —@ (on)]| +- [l (2n) — @ ()}

g“«y__apn“_!_nful[_!_”"’"”‘g(”ﬂ)“_{_””—g’(’v)n_
o lo—of < 2o —va|+3|ful for arbitrary positive integer n. Hence
it follows that v = ¢(v) and this completes the proof.

I am thankful to Dr. B. K. Lahiri, Kalyani University, for his kind
help and suggestions during the preparation of this paper.
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