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On game-theoretic methods in the theory
of Souslin sets

by
Ashok Maitra (Calcutta)

1. Introduction. In this note, we shall use the methods of Black-
well [1] to prove the Coreduction® Principle (stated below) for Souslin
sets in certain topological spaces and also establish a result on the
constituents (defined below) of a Souslin set. _ :

Let Y be a topological space. A subset 4 of Y is said to be a Souslin
set if there exists a system {Anm,..n.}, indexed by all finite sequences of
natural numbers, of closed subsets of ¥ such that

©
A=U N Amnemz
{ni} k=1
where the union extends over all sequences of natural numbers.

A subset A of ¥ is said to be a bi-Souslin set if both 4 and Y —4
are Souslin sets.

An' alternative way of describing Souslin sets is through sieves. De-
note by @ the set of all rationals in the open interval (0, 1), and label
the elements of @ as y, 73, ... (we shall hold fixed throughout the paper
this particular labelling of the elements of ). Any system {Wr,7 @},
indexed by the elements of @, of subsets of ¥ will be called a sieve. By
the set sifted by the sieve {W,, r € @} is meant the set of all y ¢ ¥ such that
there is a sequence {rs,} (possibly depending on y) of elements of ¢ such
that 74, > 75y > ... and y e Wy, for all £>1. The alternative way of
describing Souslin sets is this: A is a Souslin subset of ¥ if and only if
there is a sieve {Wr,r ¢ Q} of closed subsets of ¥ such that 4 is the set
sifted by {Wr, 1 €@} (cf. Theorems 9 and 10 in [5], p. 25).

Let A Be a Souslin subset of ¥ and let {Wr,r e Q} be a sieve such
that A is the set sifted by {W:, 7 ¢ @}. For each ordinal ¢ < o, (= the
first uncountable ordinal), let 4, be the set of all y ¢ ¥ such that the
set {reQ: y « W}, when equipped with the usual order on the rationals,
is of ordinal type «. The sets {4.: a < w;} are called the constituenis of
the Souslin set A relative to the sieve {Wy,r €@}
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The aim of this paper is to prove by game-theoretic methods the
following theorems. '

THEOREM 1 (COREDUCTION PRINCIPLE). Lef ¥ be a topological space
in which every open set is a Souslin set. If A, B are Souslin sets in ¥, then
there exist Souslin sets E, F in Y such that ACE, BCF, AnB=FE~TF
and EVF =17,

The classical analogue of Theorem 1 (that is, with ¥ a Polish space
and 4, B analytic subsets of ¥) was established by Kuratowski [3].
Blackwell [1] used game-theoretic methods to prove the classical result.
We shall imitate Blackwell’s methods to prove Theorem 1.

THEOREM 2. Let ¥ be a topological space in which every open set is
a Souslin set. Let A be a Souslin set in ¥ and let {Wr,r € Q} be any sicve
of closed subsets of Y such that A is the set sifted by {W,, r < Q}. Then the
constituents of A (relative to {Wy,r € Q}) are bi-Souslin subsets of Y.

Theortm 2 was proved by methods quite different from ours by
Rogers and Willmott (see corollary to Theorem 12 in [5], p. 30).

In the next section, we build up the machinery needed to prove
Theorems 1 and 2.

2. Sieves and games. Let Y be a topological space and let {Wy,reQ}
and {Z,r <Q} he two sieves of subsets of Y. Following Blackwell [1],
we associate with each y ¢ ¥ a two-person game G(y) as follows: Players I
and IT choose rationals from @ alternately, player I being the first to
makt? a choice, each choice being made with complete information about
previous choices of hoth players. A play = = (rm,, 7u,, Tmyy Tngy --e) 18 & Win
Jor player Tin G(y) if there is a natural number k such that Fmy > Tmg > o
> Py, Y e W,,,‘,. T=1,2, 0k Tuy>tp> > Tngers Y € Ly 4= 1,
2yey k=1, and either 74, > 1y, , or Y ¢ Zr,. The play = is a win for
player TI i}l G(y) if there is & k> 1 such that Tmy > Py = oo > Py
YeWny i=1,2,.,5-1, rm>rm>..> Ty Y € Zryy 1= 1,2, ..
...,k——l,‘ and eit“,her Ty 2= Ty, OF Y ¢ Wy, . Finally the lpla,y 7z ends in
: :er(i: in G(y) if for every k> 1, 7y > Tiwry Y € Wryy Ty > gy, and

Thus, each player at each stage tries to produce a rational » @

which ig strictly smaller than his previous choices and such that ye W, .

or y € Zr according as whether player I pla r

” ys or player IT plays. The
first player to fail in this loses in the rame G £ nei ayer fai

o e & g (). If neither player fails,
) Le.tv P; be the collection of all finite sequences of elements of Q
{including the empty. sequence, which we denote by ¢) of even length,
iet l-"‘121 be the collection of all finite sequences of elements of @ of odd
ength, and let P =P, u P,. By a strategy (in any of the games G(y))

iom°®
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for player I (II) is meant & function from P, (P,) to Q. Denote the set of °
all strategies for players I and TT by @ and W, respectively; that is, @ = @™
and ¥ = Q™ Equip ® and ¥ with the product of discrete topologies
on Q. Since P; and P, are countably infinite, we note that @ and ¥ are
homeomorphic to b , where N is the set of all natural numbers and N
is equipped with the product of discrete topologies on N.

A strategy ¢ for player I and a strategy p for player II uniquely
determine a play (rmy, Fnyy sy Tasy -..) a8 follows:

iy = @(e) ,
Trg = P(Tmyy Tagy e s Pmpoay Prgegy ) 5 k=1,
and

Tmpsn = @(Tmy Pgy ooy Tmgy Tug) , K 210

We shall denote the play determined by player I using the strategy ¢
and player IT using the strategy » by <{p,y>. We say that ¢*e¢d is
a winning strategy in G(y) for player I if for every v ¢ ¥, the play {¢*, ¢
is a win for player I in G(y). Call a strategy ¢* ¢ @ a drawing strategy
for player I in G(y) if for every y € ¥, the play {p* v} is a win for player I
in G(y) or the play <¢* v> ends in a draw in G(y). Analogous definitions
apply to winning and drawing strategies for player IT.

We now prove a lemma which will be used in the sequel.

LEMMA. Tet ¥ be a topological space in which every open set is a Souslin
set. Lot {Wr,r€Q} and {Zr,r «Q} be two sieves of closed subsets of Y.
Define: )

E = {y<X: player I has o drawing strategy in G(y)}
and .
"F = {yeX: player II has a drawing sirategy in G(y)}.

Then E and F are Souslin subsets of Y.

(Here, of course, G(y),y e T, are the games associated, as above, with
the sieves {Wr,r eQ} and {Z,,r ¢Q} of the lemma).

Proof. We shall prove that B is a Souslin set. An analogous proof
works for F.

Let H={(y,¢) e YxX®: ¢ is a drawing strategy for player I in
G(y)}. Observe that E is the projection of H to Y. Thus, if we can prove
that H is a Souslin subset of ¥ x @, it will follow by a result of Bogers
and Willmott [4] that F is a Souslin set in Y. In fact, we shall now sghow
that H is bi-Souslin in ¥ x @. ) '

VWith each Sequence (Fmy, Fmy -oes Tmp—ys Pnpy) € Py (When k=1, the
sequence (Tmyy Fagy «vey Tmp-ay Tng-1) is to be interpreted as the empty
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sequence), we associate setS K (fmy, Tays ooy Pmpcys Pmsly Ly, 7y, .
ooy Tmpgy Topy) A0G M (Tmgy Tngy eory Prgyy Taney) 28 Tollows:

K Py Tngs ooe s Pmagy Popy)

E—1 %1 k-1
= [iﬂl Wr”‘i mﬂ; an;]X [.ﬂl{‘/’ €D: @(Tmyy Tnyy vony Trgyy Tuiy) = rmy] k> 1
= i= =

=¥xX® ifk=1.

L("Mu Tryy eoey Ty Trgey)
= rLe’(,? [W:X {qj € tp(’l“m” Tnyy vy Vimgeyy 'rﬂkd) = 7'}:'7 k=1,

M{rmyy oy oey Paimys Togoy)
= U [Tx{p e D: glrmy, gy oo Tigosy Prgey) = 7}]

7 v,
€QUmta et my, Py )

where

Q(Tmgs Tagy ooy Pmgoyy Trgy) = re@:r=zr.} ifk>1

=0 ) it k=1.

(union over the empty set is to be interpreted as the empty set). It is
eagy to see that the sets

E(rmy;y vy, vy Tigy Tige) 5

L{Tmys Poyy oory Py y Frsey) ,

M (Tmys Tnyy veny Tongey, Prigy)
are all bi-Souslin in ¥ x &. Finally, note that

: H = |[E(s) ~[L(s) v M (s)]]
‘where o

Py = kglf{(rmy ey ooy Tmes Pnz) € Pt Pog > gy, ¥ > Tnis1

i=1,2 .., k—1}]u {e}.

Since P, is countable, it follows that H°

ince cou is bi-Souslin in ¥ x @, and
80 H is bi-Souslin in ¥ x &. This completes the proof of the lemma.

3. Proof of theorems.
Proof of Theorem 1. Let o,
closed subsets of ¥ such that A, B ar
{WeyreQ} and {Z,,7¢ Q). Let {4,
constitnents of 4, B with respect to
respectively. For each ye X, let G(

7eQ} and {Z,,r ¢ Q} be sieves of
€, respectively, the sets sifted by
ay &« <} and {B;, B < w;} be the
the sieves (W, r € Q} and {Z,, r < Q},
Y) be the game associated with the
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sieves {Wr,r < Q} and {Z, r « Q} asin Section 2. Let ¥ and F be the sets
defined in the lemma of Section 2. We shall prove that the sets E, F
have the required properties.

First, by the lemma of Section 2, ¥ and F are Souslin subsets of ¥.
Next, we note that

@) B=av[l(dn By
and
(2) ‘F=Bu LU (B; na(<JﬁAa)] .

To see this, let y € A. Then there exists a sequence {rn¥} of elements of @
such that for every k=1, rmf > rny, and ye Wenz. Now _consider
a strategy ¢* for player I defined by: ’

PH Py Ty veny Ty TH_ ) = Tk

Tt is easy to see that ¢* is a drawing strategy for player I in the game G (y),

.80 y e E. Next suppose that 4 e A, ~ Bz, where f<a<w;. Set H

={reQ: ye Wy} and H,={r eQ: y < Z;}. Then H, and H, are of ordinal
types e and. f§, respectively. Since § < a, there is a similarity mapping
(that is, a one-to-one and order-preserving mapping) ¢ which takes H,
onto a proper segment of H,. Choose an element r*e H,—g(H,) and
define a strategy ¢* for player I (in the game G(y)) as follows:

g*(e) =r*
and
O (Pay Tily ey Ty 1) = glr) I il e Hy
=7 if 'ﬂéEQ-—HQ,

where #* is a fixed but arbitrary element of Q. It is not difficult to see
that ¢* is a winning strategy for player I in the game G(y), s0 y ¢ E.
Thus #D A vl |(4an |UBg)]. Conversely, suppose .

a<op B<a

Y¢A L UJ(4an U Bl

a<wy B<a
We distinguish two cases. - =

Case 1. ye B. As y ¢4, it follows that y e 4, for some a < w;.
Ag H, is well-ordered while H, is not, it is clear that player IT has a-winning
strategy in G(y). Indeed, the set H, contains a strictly decreasing sequence
{ra¢} so that the strategy p* for player II defined by

Y Tirs Tty ooy Tigys Tifyy T4) = T

wins for player IT in the game G(y). Hence y ¢ E.
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Case 2. y ¢ B. It now follows that y e 4. ~ By where a << o,
Hence there is a similarity mapping ¢’ from H, onto a segment of H,.
Define a strategy w* for player IT as follows:

YTy 1)y s Py T, Te) = g'(ry) 3 m e Hy,
= if e @Q@—H,,
where #' is a fixed but arbitrary element of @. It is clear that P ig a Wm-
ning strategy for player II in the game G (y), so that y ¢ B. We have thus

proved that
ECAv[U(Aaf\ﬂLJBﬂ)],

a<wy

from which equation (1) follows. Equation (2) follows analogously.

It is now straightforward to derive from equations (1)~(2) that

ACE BCF,A~B=EnF and Ev F= Y. This completes the proof
of Theorem 1. . : :

Proof of Theorem 2. Fix an ordinal a, < o, and choose a subget T
of @ so that T is of ordinal type «,. Define Z, = ¥ if r ¢ T and Zy =9
if r ¢ T. If B is the set sifted by {Z,, r ¢ @}, then plainly B = @. Moreover,
By=@ if f# ¢ and f< o, and By= 7 if B = ay, where {B;, f < o}
are the constituents of B relative to the sieve {Zr,7 € Q). Let {4a, a < w,}
be the constituents of 4 relative to the sieve {We,7 €@}, For each y ¢ T,
let @(y) be the game associated with the sieves {Wr,7€Q} and {Zy,r e Q}
as in Section 2. Let B, F be the sets defined in the lemma of Section 2.

By the lemma of Section 2, B and F are Souslin  subsets of Y.
Moreover, the proof of Theorem 1 shows that

B=A4vyv U A,
and oz
F=|JA,.
a<ag

It follows that :%JAH Is & Di-Souslin subset ol ¥, since Bw F= T
asag

and_ EnF=0. Ag % Was arbitrary, we have proved that for every
ordinal 6 < w,, ‘I%Ap is bi-Souslin, Consequently,

Ao = pLéLAﬁ— U U Ap)

8<a B<s

is a bi-Souslin subset of ¥. Thig completes the proof of Theorem 2.
" Igemark 1. Theorem 2 can be proved by means of classical methods
a;l o ows. Let D be~ the Cantor set, which we shall think of as a count-
z: & product of copies of the ‘two—element set {0, 1}. Define g sieve
1Pry r € Q} of closed subsets of D : —fie
A ) as follows: Py, = {te D: £, — 1} where i,

8 the nth coordinate of 7. Tet @ he the set sifted by {P,,r €@}
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and let {G., « < w;} be the constituents of G relative to {Pr, r ¢Q}. Then
it is known that the sets G, are Borel subsets of D (see [2], p. 272).
Now consigier the characteristic function {in the sense of Marczewski)

-]
of the sieve {W;, r € Q}, that is, f(y) = Z%Inr,”(y), ¥« X, where Iy, is
n=1
the indicator of the set Wy,. It is easy to verify that the function f is
measurable between the spaces (¥, S) and (D, B), where S is the o-al-
gebra of bi-Souslin subsets of T and B the o-algebra of Borel subsets
of D. Moreover, for each a < w;, do=f"'(G) (cf. [2], . 408). Conse-
quently each 4. is bi-Souslin in Y.

Remark 2. Tt is true that Theorem 1 can also be obtained by imitating
Kuratowski’s method in [3]. But this involves suitably modifying the
sieves {Wy,r €Q} and {Z,,r ¢ Q} with which we started and then the
sets ¥ and F are no longer as naturally related to the orginial sieves as
in our proof. . ' -
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