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On ring theoretic lattice modules

by
David G. Whitman (Riverside, Calif.)

The lattice of ideals of a commutative Noetherian ring with identity
has been abstracted by the notion of a Noether lattice. This note gener-
alizes this by presenting an abstraction of the lattice of submodules of
a unitary module over a commutative ring with identity. The basic idea
is to extend R. P. Dilworth’s formulation of a prineipal element in
a multiplicative lattice into a module setting.

Section 1 gives basic definitions and gomne examples. Section 2 presents
an abstract version of Nagata’s principle of idealization thereby enabling
much of the theory of Noether lattices to be extended immediately to
Noetherian ring theoretic modules. In Section 3 form modules and locali-
zation are investigated. i

§ 1. Ring theoretic lattice modules. Let L be a complete modular
lattice with maximum element I and minimum element O and with
a multiplication satisfying:

(1.1) (AB)C = A(BC),
1.2) : AB=BA,

(1.3) (\.,/ Au)(\ﬂ/ By) = \é A.Bg,
(1.4) JA=A.

Under these conditions L is said to be multiplicative. An L-module
M is a complete modular lattice with maximum element m and minimum
element Oy, and which admits a (left) multiplication from I satisfying:

(1.5) (AB)N = A (BY),
) (V)Y )=  4ap,
xm IN=N and ON=0y.

Associated with an L-module M are operations called residual
division. If A ¢L and N ¢ M, then N: A is the join of-all N' ¢ M such
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that AN’ < N. Similarly if N and N’ belong to M, then N: N’ is the
join of all 4 €L such that AN' < V.

Now in order to abstract the notion of a module over a commutative
ring it is necessary to formulate an abstraction of a prineipal element.
The following definition is due to E. W. Johnson [3]. An element N of
an L-module M is said to be principal if for arbitrary 4 e L and N'e M
the following holds:

(1.8) [ANMN': N))N = ANAN', -
(1.9)  (F'VAN): N = (N N)vA.

An L-module M is said to be principally generated if every element
is a join of principal elements. A principally generated multiplicative
lattice satisfying the ascending chain condition is called a Noether lattice.

For the remainder of this paper L will denote a principally generated
multiplicative lattice. A principally generated L-module is said to be
ring theoretic provided every element of L is a join of principal elements A
which satisfy the following for all Ny, N, ¢ M:

(1.10) (N,VAN,): A= Ny: AVN,
(1.11) A(N,AN,: A) = AN, AN,

Such elements of L will be called M-principal. A ring theoretic
module is said to be Noetherian if it satisties the ascending chain con-
dition. For the remainder of this paper, M will denote a ring theoretic
L-module. Arbitrary elements of I will be denoted A, B, (,.. and
prineipal elements a, b, ¢, ... Arbitrary elements of M will be denoted
N, Ny, N, ... and principal elements n, n,, %, ...

Examples of principally generated multiplicative lattices and ring
theoretic lattice modules are abundant. The lattice L(R) of graded ideals
of a graded commutative ring R with identity is a principally generated
multiplicative lattice, and the set of graded R-submodules of a graded
unitary E-module is a ring theoretic L(R)-module. Furthermore, an
arbitrary (possibly non-commutative) ring with identity which satisfies
the ascending chain condition on ideals has a principally generated
multiplicative lattice for an ideal system provided:

(112) AB= BA, for ideals 4, B of R,

(1.13) Every ideal is a join of principal ideals RaR such that RaR
= aR = Ra. ’ :

Verification of the above statements is straightforward.
The following lemma, cites some elementary facts about M.
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LevmA 1.1, The following hold for L and M:
a A (Ne: W)= (A No): N, A (Wez 4) = (A NJ): A
@) N:V Ne= A (N:N), N:Vda= A\ (N: 4o).

(8) N:AB=(N:A):B, N: AN, = (N:A): N,=(N:DN,): A.

(4) If A<B, then AN <BN and AN<N; and if N,<N,, then
AN, < AN,. :

(5) N>A(N:A), N> (N:N,)N,, and N: A > N.
(6) I= N,:N, if and only if N, < N,.

() If A<B, then N:BN:A; if Ny <Ny, then Nt AN A

and N: N, > N:N,.
(8) Ny:Np= Ny:(N,VN,), Ni: Ny= (N1ANy): N;.
(9) (A:B)N<AN:B, A:B<AN:BN. .
(10) If n e M is principal, then nAN = (N:n)n and An:n= AvOy:n.

(11) If aeL its M-principal and n e M is principal, then an is princi-
pal in M.

Proof. The proofs of (1)-(9) are quite simple and may be omitted.
(10) may be proved as follows: nAN = InAN = (IAN:n)n = (N:n)n,
since n is principal. Also since n is principal, An:n= (OumVAn):n
= Oy:nVA. (11) may be proved in a way very similar to the proof of
Corollary 3.3 in [2], g.e.d.

The following theorem generalizes the notions of factor module and
submodule. '

THEOREM 1. Let N,/ N, be an interval of M, let A < Ny: Ny, and let LjA
denote the set of B €L such that B > A. Then L|A. is a principally generated
multiplicative lattice under the multiplication B-C = BCVA and N,/N,
is a ring theoretic module over LA when multiplication is defined by B-N
= BNVN,, for BeL[A and N ¢ NyJN,.

Proof. It can be easily verified that L/A is a multiplicative lattice.
In [1, p. 488] Dilworth proved that, when L is Noetherian, if  is principal
in I, then avA4 is principal in L/4. As his proof does not rely upon the
ascending chain condition, it also suffices for the general case. This clearly
implies that L/A is principally generated.

It is easily verified that N,/N, is complete, modular, and satisfies
(1.5)~{(1.7). Every element of L[4 is a join of N,/N,-principal elements
because elements of the form av A where a is M -principal are also Ni/Ny-
principal in LjA. (1.11) is shown as follows: Let N, N'e Ny/N,. Now
(lavd)-N)AN' = ((avA) NVN)AN' = (aNVN,)AN' since AN < N,. By
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modularity (aNVvN,))AN = (aNVN')AN,. Since a is M -principal
(aNAN)VN, = a(NAN': a)vN, = (avA)-(NA(N': a)). Letting :’ denote
residuation with respect to L/A and N,/N,, it is easy to compute that
N (avA)=DN':(avA)AN, = (N':a) AN,. Therefore (a VA)-NAN’
= (aVA)-NA(N': (avA)) and (1.11) is satisfied. (1.10) can be verified
similarly for avA4. Also it can be shown similarly that, if n < N, then
nV.N, is principal in N,/¥, with respect to Lj4, q.e.d.

At the end of this section it seems appropriate to pose the following
problem: Classify the non-commutative rings which have a Noether
lattice for an ideal system. '

§ 2. The principle of idealization. Again in this section Z will denote

a principally generated multiplicative lattice and M a ring theoretic:

Z-module. The essential result in this section is the following theorem
which is called the principle of idealization after itg ring theory counter-
part (see [4, p. 2]). '

TEEOREM 2. Let LOM denote the set of all ordered pairs (A, N)
where A e L and N ¢ M are such that Am < N. Under the operations below,
LOM is a principally generated multiplicative laitice. Furthermore if L
and M are Noetherian, then LOM is a Noether latiice.

(A1, N)V(4,, N,) = (4,v4,, N,VHN,),
('Aly Nl)/\(AmNz) = (AIA'A-27 NlANz) ’
(41, N))(4s, ,) = (414,, A, N,vA,N,) .

Proof. The details of proving that ZOM is a multiplicative lattice
are quite straightforward and will be omitted, It remaing to. show that
LM is principally generated. To show this it suffices to show that
elemepts of the form (a, am) and (0, n) are principal, where a is M - princi-
Dpal, since every element of LM is clearly a join of such elements. The
following calculation shows that (@, am) satisfies (1.8). Let (A , V) and
(B, N') be arbitrary elements of LPM. Now it is easy to compute that
(B, N'): (a, am) = (B: a, N': a). Hence ((A, N)A((B, NY): (a, a,m))}(a, am)
= {(A, N)A(B:a, N': a))(a, em). By definition of meet and product
in LM the latter reduces to ((A./\B:a)a,a(N/\N’:a))., Since a is
M -prineipal, this equals (a4 B, aNAN’). Now ((a, am)(4, N))A(B, N')
= (a4, adm v a¥N)A (B, N') = (€A AB,admy aN AN'. Since Am <,
(a,am)(A,_N)A(B, N')=(adAB, aNAN’). Thus (@, am) satisfies (1.8).
The other identities for (0, n) and (@, am) can be verified similarly.

If L and M are Noetherian, then any ascending chain {(d4,; ¥,)}

will terminate when hoth chain {4 and {¥;} termi
is & Noether lattios, go.d. {44} {¥:} terminate, and hence L@M
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The principle of idealization provides a useful technique in developing
the theory of Noetherian ring theoretic L-modules, where I is a Noether

" lattice. For the remainder of this paper L and M will be assumed Noetherian.

The following corollaries indicate the nsefulness of Theorem 2. A Noether
lattice is said to be local if it has a unique maximal prime element.

CoROLLARY 1. Let L be local with unique maximal prime element P,
and let N # 0 ¢ M. Then every minimal set of principal elements gener-
ating N has the same cardinality which is equal to 1(N/PXN).

Proof. This result is known already in the case M =1L (see [2]).
Now (0, N) e LOM which is local with maximal prime element (P, m).
Let ny, ..., nx be a minimal set of principal generators for . Hence (0, N)
= (0, n)V...vV(0, ng) where each (0, n;) is principal in LAM. So by the
already known result about Noether lattices, & = L0, MI(P, m)(0, N )
=1{(0, M)j(0, PN)) =1(N/PN), q.ed.

CoROLLARY 2. Let A € L, and let Ny N’ « M. Then there exists a positive
integer v such that for n>r A"NAN' = A" "(A"NAN").

Proof. In [2] this result is proved for the case L= M.

Passing to LOM, it follows that there exists an » such that for n > r,

(4, Am)™0, M)A(0, N') = (4, Am)* (4, Am)(0, N)A(0, N")).
Simplifying both sides yields (0, A"NAN') = (0, AV (A'NAN ).
Thus for n>r, A"NAN = A" (A'NAN'), q.ed.

§ 3. Form lattices and localization. In this section two of the standard
constructions of ring theory, form modules and localization, are abstracted
to ring theoretic lattice modules. Throughout this section L will be
a Noether lattice and M a Noetherian ring theoretic L-module. The
convention A4°—= I, for i <0, will also be adopted.

Let A s I e L. Then the form lattice of L with respect to A, de-

noted F(A4), is the set of all formal sums > B;, where Al> Bi > Bt
i=0 e

> AB; and B; > A™, together with the following operations:
(2 B)v(Y o) = Ymove,
1 3 i
(X B)a (Y o) = X Bincn,
3 K T

(2 B’) (2 Oi) = 2k+\7'/=i(Bk CjVAHl)’ and

D Bi< 0 it and only if Bi< Ci, for all .
+ i
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The form lattice of M with respect fo A, denoted G'(A, M), is the set

i=

of all formal sums 3 Ny, where A%t > Ny > Nip1> AN, and Ny > Ay,
i=0 . N

together with the operations

(S 95 ) = Sovamy,

T

(Z Nf)A(iZ ¥) = S(¥irF), and

i

2N¢<2’N§ if and only if ¥; < Nj, for all 4.

If » is principal in M and n < A"m, n < ARy, vthen the leading
form of n, denoted n’, is ) (Ai“"nvA“'lm).
i=0
As might be supposed, the following is true.

) TeRoREM 3. F(A) is a Noether lattice and G(A, M) is a Noetherian
ring theoretic F(A)-module under multiplication given by

(Z Bi) (2 N!) = Z k+\7'/=¢ BiNjvA™'m,

Furthermore if L is local, then F(4) 4s local.

Proof. The easiest way to obtain this result is to apply the theory
4 -transforms for Noether lattices as developed by E. W. Johnson in [2].
Let R(L, A) denote the A-transform of L which Johnson proves to be
a Noether lattice which is local when L is local. In R(L, A) consider the

—1) et i
element I = _20,; B;, where B;=— 4™, Upon examination it is obvious
that (L, A)I°Y and F(4) are isomorphic as multiplicative lattices

under the correspondence 21 I +_Zc,: Oi<> Y 0. Thus P(4) is a Noether
. . i=— = i=0

lattice since R(L, 4)/I"” is a Noether lattice.
To get the module structure of G (4, M) consider the Noether lattice

L'=L@®M and then consider the form lattice F(4')=F’ of I' where
A'= (4, Am). i > (4%, iy 3 (47 4
(4, Am). Now the mterva,lgu (4 +’,A’m)/1_=20 (4" A" ') is a ring

: r i+1 1
theoretic F" /év‘o (4™, A*m)-module by Theorem 1. Under the obvious

1’ o i+ . .
correspondences 1"/1_;0 (4™, 4'm) is isomorphic to F(A) and
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0 o0
z;(A"“, A*m)/_fa (A7 A™') is isomorphic to G(A, M). This com-
1= 1= i .

pletes the proof, gq.e.d. '

It should be pointed out that the previous theorem could also be
proved by long and tedious computation. Indeed, it can be verified that
leading forms of principal elements in L and M are principal in F(4)
and G(4, M). Also straightforward computation shows that the leading
forms of M -principal elements are G-principal. Furthermore an appli-
cation of the Artin—Rees lemma (Corollary 2 above) can be made to
show F and G Noetherian.

The basic idea for abstracting localization was given by Dilworth
in [1]. Here Dilworth’s results will be extended via the principle of ideali-
zation. The first step in the development of localization for M is to note
that the standard primary decomposition theorems for Noetherian mo-
dules over Noetherian commutative rings with identity also hold for M.
The details of proof for this can be lifted easily from the standard proofs
in ring theory (see for example [6]). Also thig could be shown by using
the principle of idealization and the well known results about primary
decomposition in Noether lattices. For the remainder of this paper it
will be assumed that the reader is conversant with this decomposition
theory as well as the usual terminology of P-primary, P-component,
and so forth.

Now let D e Land N, N'(#m) ¢ M and define N~N'(D), if Np= Np,
where Np denotes the isolated component of N with respect to the sets
of primes less than or equal to D; also set mp = m. Also let [N] denote
the equivalence class of N and let Mp be the set of such equivalence
classes. Thefollowing result describes the relation between Lp and Mp.

THEOREM 4. Mp is a Noetherian ring theoretic Lp-module under the
operations -

[N:]V[N.]= [N, VN],
[N IALN,] = [N:AN],
[4][N]=[4D].

Proof. The basic idea iz to show that ~ is a congruence relation
with respect to join, meet, product, and residuation. The result then
is immediate because then the above operations are well defined and
satisfy the required properties of a ring theoretic Ip-module. In particular,
equivalence classes containing prineipal (M -principal) elements are
principal (M -principal) since principal (M -principal) elements are defined
by identities. -


GUEST


228 D. 6. Whitman
The congruence properties of ~ will be shown by passing to ZOM
and using the fact that ~ is a congruence relation in a Noether lattice
(this is shown in [1, p. 489]). The following is true and will be proved in
a lemma below: N~N'(D) and A~A4'(D) if and only (4, )
~ (4, N')((D,m)). Now assume N,~Ni, Ny~N;, and A~4'. The
congruence with respect to v is shown in the following way: (0O, N;VN,)
= (0, N;)v(0, Ny)~(0, N1)v(0, N:) = (0, N{VN;) by the above remark
and the congruence property of ~ in Z@M. Also by the above remark
it follows that N;vN,~NivN;. Similarly N,AN,~NiAN;. By the
congruence of ~ with respect to product in a Noether lattice (0, AN,)
= (4, m)(0, Ny)~(4',m)(0, N1) = (0, AN;). Thus AN,~AN;. It can
also be shown similarly that ¥y : Ny~Ni: Nyand N,: A~Ni: A'. Hence ~
satisfies the desired congruence properties, g.e.d.

Lemma. (4, N)~(B,N)(D,m)) if and only if A~B(D) and
N ~N'(D).

Proof. The following statements can be proved easily from the

definitions of prime and primary elements. The prime elements of ZOM
are exactly those elements (P, m), where P is prime in L. Furthermore

primary elements in LM are of the form (¥ : m, N) where N i§ P-primary ‘

or (@, m) where @ is P-primary.
Now to prove the lemma it clearly suffices to show that (4, ¥)p,

k n

= (4p, Np). Let N= A Ny and A= A @Q: be normal decompositions
i=1 i=k+1

for ¥ and A, where Ny is P;-primary and ¢; is P;-primary. Now

(4, N)= A (@, m)A A (Ni:m, Ny) since Am < N implies that Ny : m =>4,
7 i

)

for i=1,...,k By the remarks in the previous paragraph it follows

that /f\ (@5, m) is a normal decomposition for (4, m) and that A @gm, Ny -

is a normal decomposition for (N :m, N). Now it can he easily proved
from Lemma 5.2 of [2] that (EAF)p = EpAFy, where B, F;and D belong
to an arbitrary Noether lattice. In particular, (4, N Yapamy= A (@5, M)D,m

7
A /’\ (Nezm, Nidapmy = (ApA(N:m)p, mA Np) = (AAN:1m)p, Np). The
last element equals (4p, Np) because 4 < N: m, q.e.d.

References

[1] R.P. Dilworth, Abstract commuiative ideal theory, Pacific J. Math. 12 (1962),
pp. 481-498.
[2] E.W. Johnson, A-Transforms and Hilbert

Sunetions in local lattices, to appear
in Trans. Amer. Math. Soe. ’ PP

e ©

icm

On ring theovelic lattice modules 229

[3] E.W. Johnson, Completions of Noetherian lattices, to appear.

4] Masayoshi Nagata, Local Rings, New York 1961. ) ]

%5% D.G. Whitman, Ring Theoretic Lattice Modules and the Hilbert Polynomial,
Thesis, University of California, Riverside 1968. 3

[6] O.Zariskiand P. Samuel, Commutative Algebra, Vols. I and II, New York 1958.

UNIVERSITY OF CALIFORNIA AT RIVERSIDE
Riverside, California

Regu par la Bédaction le 27. 3. 1969


GUEST




