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On orderings of the system of subsets of ordered sets

by
Milan Sekanina* (Brno)

In many considerations it is necessary to introduce some relation
in the system of all substructures of a given mathematical structure-
Usually one takes inclusion as this relation, but in some cases other types
of relations should also be considered. In this note, some observations
on this subject made in 1] and [2] will be completed.

Let us first introduce some basic notions and notations. If X is
a category, then the class of all morphisms of X will be denoted by M (X),
the class of all objects of X by O(X). § will denote the category of all
gets with all mappings as morphisms, X, the category of all partially
ordered sets with isotone mappings as morphisms .(the notation’ taken
from [2]). 8’, X! are the corresponding categories containing only finite
objects. If X is a set, BExp X denotes the system of all subsets of X. If X is
a partially ordered set, then the elements of ExpX are taken as the full
relational subobjects (the ordering on subset is the restriction of the
ordering of the whole set).

DErFINiTION 1. Let % denote one of the categories 8, §', %,, ¥J. For
each X ¢ Q»(JG), let ox be an ordering of ExpX. We say that the system
{ox: X ¢ O[X)} ‘is stable (locally stable) if for each feHom(X,Y)
(f e Hom(X, X)) X;, X, e Bxp X, X, 0xX,=f(X,) orf(X,) (respectively
(&) exf (X))

Locally stable orderings for the category with sets as objects and
permutations of sets as morphisms have been described in [1]. In [2] stable
orderings for the category X* of partially ordered sets as objects with
one-to-one isotone mappings as morphisms have been studied. Especially
two results have been derived.

PropostTION 1. If {ox: X € O(%%)} is stable, (BxpX, ox) is a lower
semi-lattice for every X and the conditions X,, X, e BxpX, X, C Xy imply
X,0xX,, then the converse is valid, i.e. X,0xX,=X,C X;, and s0 ox 18
the set inclusion.
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PROPOSITION 2. Let X3 be the full subeategory of X3 having finite
partially ordered sets as objects. For X,, X, e Hxp X, let

Xz X, = {if © ¢ X, —X,, then there emists o y € X,—X, such that x < y}.

Then {vx: X e O(Jﬁz*f)} 18 maximal stable and (BExpX, vx) is a lattice for
every X e O (X3, . ‘

Maximality is considered in the sense of the following obvious de-
finition.

DEFINITION 2. The stable (locally stable) system {ox: X € O(X)} is
called mazimal if for every stable (locally stable) system {ox: X e O(%)}
with ¢x C ox one has gx = ox for each X € 0(%).

Now, we shall be interested in stable systems in X, especially in
those for which X, C X,X, pxX,, i.e. which contain inclugion. Let us
starf with a proposition concerning 8.

ProrosITION 3. 1. Let {ox: X € O(8)} be a locally stable system.
Then either

{0, L,CX, X, %0 # Xob={X,0x X=X, C X}
or

X, 5,CX,X, 20 % Xo}=>{X,0x X,»>X,C X;}.
2. Let {ox:"X € O(8)} be mawimal. Then
{XiCX=>0 oz X} or {XiC X=X, 020} .
Proof. Ad 1. Let X, X,CX, X, ¢ X, X,¢ X,.

defined as follows: Jilx) =z, for z e X—-X, uZX, and i = 1, 2. filz) ==,
for zeX,—X,. fiz)=1y, for = eX,—X,. file) =y, for ze X,—X,
fol®) = @, for © e X,— X, fil®) = z, for » eX,nX, and i = 1,2. '
. Then f,(X,) = {x, 2ob il Xe) = {5y, Zob ol X;) = {¥o; 20}y ol X)) = {m0, %}
(if z, does not exist, then the symbol for it is to be omitted). Thus we
cannot have X,oxX,, since then {%0, 20} 02{y,, 2} and simultaneously
{Uos 20} 0x{mg, 2}

Suppose that for certain two subsets X, and X, we have simultane-
ously X, ox X,, @ + X, X, X,C X,. Suppose that there exist Y, Y, CX
such that Y.03Y,,0# Y, = Y,,¥Y,C¥,. Choose DYy, 7, ¢ ,Y -Y,.
Let f: X > X Dbe defined as follows: flo) =, forz e Y., f(x)=1y, othelrwisf‘:.
o Tl{len {.;;2, y;}l» ox{®:}. ;é.n analogous construction for X,, X, yields

Yif 0x1%1, Y.}, Where 4, € T eX,—X,. :
e ;/1, g(yz):’/; ,1‘1.“ 1€ X,—X;. Let g: XX be such a map
a eontradiction.

Ad 2. As ox is maximal, we must have & k
] 0xX; or X, 030 at least
for one X, C X, X, £ 0. Let the first case occur (the seconti case can be

: Let z,e X,— X,.
Yoe X,— X, and, X nX,+#0, %eX,nX,. Let f,,f, be functions )

Then {z,, Ya} ox{@y}={m,, ¥:} 0x{y:}, which is .

icm®
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treated dually). Thus @ox{x} for all ¢ X. Assume X,0x@ for some X,.
Then {z}¢® for all z ¢ X, which is a contradiction. As gx is maximal,
we get 2.

CoROLLARY. All mazimal locally stable systems for 8 are described as
follows

okt X, # 0 # X=X, CX, =X, 05X, and @o%X, for all X,.
0k X, 20 £ X,> X, C X, = X, 05X, and X, 0%0 for all X,.
ok X1 #0 # Xp» X C X, =X, 05X, and  Oo%X, for all X,.
ok X, #£0 # X=X, C X, =X, 05X, and X,0%0 for all X,.

Remarks. For X = @, all orderings coincide. For X with card X
=1, ¢k = ok and ¢k = o%. For X with card X > 1 the orderings are
mutually different. Moreover, ok, ok are lattice orderings; ok, o are
lattice orderings only for X with card X < 1.

Let ¢=1,2,3,4. Then {gk: X ¢ O(8)} is a maximal stable system
and there are exactly these four maximal stable systems for §.

Consider now the category X,. The symbol z|ly will mean that neither
Z <y nor z>=9.

DermrTion 3. Define for X « O(X,) the relation ux on ExpX in
the following way:

If X,, X, « Bxp X, then X, ux X, iff the following assertions are valid.

(1) = € X; = there exist y,, ¥y, € Xy, ¥, < @ < 7.

(2) I {#,y,2} CX,, 0 #y #2+# 2 and 2y, zl}, then z,y,z¢X,.

(8) f {w,y,2}C Xy, s #y#2+xand 2>y, > 2,9z, then'y,ze X,

(4) I {z,y,s} CX o £y #2#zand e < y,z < 2, ylz, then y, 2 ¢ X,.

(8) If {z,y,2}CX;,z <y <z then y e X,.

Remarks. 1. If X contains at most two-element chains, then X, ux X,
=X, CX,. '

2. If X is a chain, then clearly only the validity of (1) and (5) is

" needed.

3. Let X bea partially ordered set with the order dual to that on X.
Then pp= py (BxpX and ExpX are identified in a natural way).

4. X, CX,=»>Xux X,.

LemMMA 1. px is an order on ExpX.

Proof. Reflexivity is clear.

Antisymmetry. Let X,uxX,, XouxrX,. Let ¢ X,. By (1) there
exist y;, ¥, € X,, 4, < < ¥,. If somewhere in this relation equality holds,
we have %, € X,. Let 4, < # < y,. Then by (1) for X,urX; we have some
wreXy, meX,y, 81 <Yy, Y <. Then @i < @< x5 and by (5) e X;. So
X, CX,. Similarly X,D X, and so X, = X;.
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Transitivity. Let X puxX,, XouxX,.

Ad (1). Let ¢ X,. Then there exist 1y, ¥ € Xz, 4 <& < ¥s.
PFurther, 2, 2, exist in X; so that 2, <y, ¥2 <2, 80 2 <@ < 2.

Ad (2). Let {#,y,2}CX,, oy, =,z #y. Then 2,y,2e¢X, and so
@, Y,2eXs.

Ad (3), (4), (8). Similar arguments work as for (2) using (1) for X, ux X,.

LemMA 2. {ux: X € O(K,)} is stable.

Proof. Let f: X »Y, and X, uxX,.

Ad (1). Let zef(X,). Let y e Xy, f(y) = x. There exists by (1) for
Xypx Xy 4, Yo e X, with 4, <y <y;. Then f(3.),f(4:) f(X,) and f(y:)
<2 <f(¥):

) Ad (2). Let {z,y,2}Cf(X), ® #y #2 # o and 2y, ze. o', y’, 2’ exist
in X, such that f(a') ==, f(¥') =, f(¢') = 2. Then a'ly’, &'|’, &’ #y’
#2 #a'. By (2) for X,uxX, o',y',2' e X, and x, y, zef(X,).

Ad (3). Let {z,9,21Cf(X1), e #y#2+#2 and 2> y,2 > 2, yll.
Let f(z') = &, f(y') =¥, f(zf) =2. We have y'|lz’, for ', ¥' we have z'||y’
or o' >y', for o'y, &'’ or 2’ > 2. If o'|ly’ then, as y'|l¢', by (2), @', ¥,
#'eX, and so #,y,2¢X,. The same holds for o'|]’. If 2’ > ¢’, 2’ > ¢,
then by (3) for X, y',2" € X,. So v,z ef(X,).

Ad (4). Dually to Ad (3).

Ad (5). Let {o,9,2} Cf(X,), & <y < 2, f(&) = 2, f(y) = 9, f(') = 2.
Thenz'lly’ or #' < y', ¥z’ or §' < 2, 2|’ or o' < 2.

If at least in two cases incomparability holds, then by (2) «’, ',
2 e X,, 80 2,9, 2ef(X,).

Let us check the remaining cases. )

It w’lﬂy’, y,’ <2 and &' <2/, then «',9' ¢ X, (by (3)) and z, y « f(X,).

If acl < y’, Yl 2’ <2, then y',2" € X, (by (4)) and y, 2z e f(X,).

If ' <y',9' <#, then y' ¢ X, (by (5) for X,) and gjsf(Xz).-

In'the next lemma let {ox: X e O(%K,)} be some locally stable system,
for which X, C X,=X,0xX,.

- Lemwa 3. If X, X,CX,
then X,uxX,.

Proof. If X is an antichain (does not contain distinet comparable
element»s)., .tl.len the assertiqn is true by Proposition 3 and Remark 4
after Definition 3. So we shall assume that X is not an antichain,

Suppose that there exist X,, X,CX , cardX; >2, cardX, > 2,
X; 0xX, and X, non uxX,. Thus at least one of the following cases occurs.

‘ 1° There exists an ¢ X, for which either there exists no y; € X,
with g, <z or there exists no y, ¢ X, with 4, > 2. :

2° There exist {z,y,2}CX,, aly, 4z, y = 2 and {z,9, 2} ¢ X,.

card X, > 2, card X, >2 and X, 0xX,,
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3° There exist {#,¥,7} CX;, #>y,s> 2,y and {y,2} ¢ X,.

4° There exist {z,y,2}CX;, s <y,s<2z,yle and {y, 2} ¢ X,.

5° There exist {#,y,2}CX,, s <y <z and y ¢ X,.

. Ad 1°. Suppose that no y, € X, satisties y, <@. Let a,b e X,a<b.

Let us consider two cases.

(a) X, C (#] where (z]= {ueX: u<a}; then define f: X—+X as
follows: y < #=f(y) = a, f(y)= b otherwise. Then f(X,) = {a, b}, f(X2)
= {b}. Simultaneously X, oxX,={a,b}ox{b}, which is a contradiction.

(b) X, (#]; then define f: XX as follows: y <a=f(y)=a,
f(y) = b otherwise. The conclusion is the same.

For the case concerning y, the reasoning is the same.

Ad 2°, (i) Let a, b, ¢ exist in X such that a < b < ¢. If y, 2 from 2° are
comparable, suppose that y > z. .

(a) Assume ¢ X,. Define f: X—>X as follows: v>a or v>y
=f(v) = ¢, f(z)=>b, f(v) = a otherwise. fe M(X,) and f(X,)= {a,b, ¢},
f(X,) C{a,c}. So {a,b, c}ox{a,c}, which is a contradiction.

(b) Assume y ¢ X,. Define f: X X as follows: v >z or v > y=f(v)
= ¢, f(y) = b, f(v) = a otherwise. Again f(X;)= {a, b, c}, f(X,) C {a, c}.

(¢) For 2 ¢ X,, the construction is dual to that in the previous case.

(ii) Let only at most two-element chains exist in X. Let a be such
a point from {z,y, 2}, for which a ¢ X,. If there exist elements compa-
rable to @ and distinct from a, let b be one of them. In the opposite case
let b be some element of X distinet from a. Define f: X »X as follows:
f(a) = a, f(v) = b otherwise. Then fe M (X,), f(X) = {a, b}, f(Xz) = {B},
which leads to the same sort of contradiction as above.

Ad 3°. (i) Assume the situation as in Ad 2° (i). Assume y¢X,.
Define f: X >X as follows: v<y or v <z=f(v)=a, fly)=2>0, f(v)=r¢
otherwise. Again f(X;) = {a,b,c}, f(X.)C{a,c}. For z¢ X, the con-
struction is the same.

(ii) ¥ X is as in Ad 2°(ii), the same constructions work as there.

Ad 4°. The case is dual to case 3°%

Ad 5° Let us construct f: X - X as follows: v < y=f(v) = =, f(y) = ¥,
f(v) = = otherwise,

So f(Xy) = {z,9,2}, f(X:) = {=,2}

LomvA 4. Let card X, > 2, X, 0xX,. Then card X, > 2.

Proof. (i) Let X be an antichain. Then the assertion is valid by
Proposition 3. *

(i) Tet a,beX,a<b. Assume X,={w}. We have z¢X,. Let
y,2¢X;,y #2 If y,z are comparable, let y > 2.
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Define f: XX a8 follows v < 2=>f(v) = a, f(v) = b otherwise. Then
F(Xy) Cf(Xy), F(Xy) # f(Xy), which implies a contradiction.

LEMMA 5. Let {#}ox{y}. Then « and y are comparable. If x, <y, are
two points in X with %,0xY,, then v <y=>woxYy, if Yo <y and L0xY,,
then y < x=2pxYy-

Proof. (i) For an antichain the assertion is clear by Proposition 3.

(ii) Let a,beX,a<b Let {z}ox{y}; assume zly. Define f and g
on X as follows:

fo)=atfor v<z, f(v)=" otherwise.
gw)y=a for v<y, ¢(v)=", otherwise.

fllah) = glyh) = {a}, f(yh=g({e}) =}

So {a}ox{b}, {b}ex{a}, which is a contradiction.

The proof of the second assertion is evident.

Let X e O(%.). Let Exp*X be the system of all one-element subsets
of X, Exp*X the system of all at least two-element subsets. Let 2k be
the ordering on Exp*X defined by {3k {yy =0 <y. Let 7% be the
ordering of Bxp*X dual to Ax.

Let mx be the relation on ExpX defined as follows.

(«) @k X, for each X,C X.

(B) On Exp*X =% coincides with 1k.

(Y) On Exp*X =k coincides with ux.

(8) If weX, cardX, > 2{z}nkX, iff there exists a <X, such
that z < 9;.

a% is defined similarly, in (@) iy A%k instead of A% and ¥, < @ in (3).

LeMMA 6. 7k, nx are orderings and {zx: X ¢ 0(Xy)}, {7kt X € O(XKy)}
are stable.

Proof. Iet us prove it for mk. Reflexivity is clear. Let X,n%xY:,
Y,7x X,. If X,=0, then ¥, = @. If X, ¢ Exp*X, then Y, ¢ Exp*X and
so X;=Y¥,. The same for X, ¢ Exp**X.

Tranmtwmy The only case to be checked is z ¢ X, Xl, X, e BExp™*X
{x}—zXX“ X, 7% X,. But {#}ax X, follows by (1) in Deflmtlon 3 and by (3).

Stability. It is immediately clear that the relations given by (), (B)
or (3) are preserved by isotone mappings. Let X, X, ¢ Exp** X, X,a%x X,,
f: X+Y. By Lemma 4 applied for uy we have cardf(X,) = 1= cardf(X,)
=1 and then f(X;) = f(X,) by (1) of the Definition 3. If cardf(X,) > 2,
then clearly f(Xy)a%f(X,).

TEEOREM 1. {nk: X e O(XK,)}, {nk: X ¢ O(K,)} are the only mazimal
stable systems coniaining inclusion. If {ox: X € O(X,)} is a locally stable
system containing inclusion, then ox C @k or ox C wk.
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Proof. In view of Lemmas 3 and 5 it is sufficient to prove the follow-
ing assertions (a) and (b).

a) If {w,} ox X, for certain x, and X, (2] ~» X, =0, X;[2) # O,
then ox contains Ax (similarly a dual assertion ean be formulated). Namely,
let yo ¢ Xy, @< 3. Define f: XX as follows: w<m0=>f(m = g, and
f(x) = y,, otherwise. Then {x,}ox{y,} and by Lemma 5 2% C ox.

) If {x,}oxX,, then in X, there exists a y, comparable with a,.

Suppose this is not the case. Take y, € X, (¥, exists, X, is not empty)
and construct f as above. Then {z,}ox{¥,}, which contradicts Lemma 5. .

Now, we shall be interested in the cases where the orderings intro-
duced above are lattice orderings.

PROPOSITION 4. px 48 a lattice order if and only if X is an ordinal
sum (see [3], p. 198) MDN@P where M, P are antichains and N a finite
chain or if X contains only at most two-element chains.

Proof. Let X contain an infinite chain. Then it contains a sequence
By, Lyy eery Tny oo SUCh that o <@y < ..., or ;> x,> ... (it follows e.g.
from the characterization of well-ordered sets by the non-existence of
chain of the type o*—see e.g. [4], p. 214). We shall deal with the first
case; the second one is dual.

Put X, = {@, @5, %, ...}, Xo= {21, %2, &y, %, ...}. We have {z}pzX;,
{2} pxX, for all i. Let Xg ‘be the infimum of Xl, X, for the order px.
For all ¢, there exist 3, 44 € X, such that y1 <o < yz Further for all
y ¢ X, there exists an #',2" ¢ X, such that 2" <y < «". Suppose that
@' < y < «'. Thus we must havey',y"’ € X;such that ¢’ < w’ <y<a'<y".
Hence y ¢ X, in any case. The same is valid for X,. But X, n X, = {x:}
and neither {#,} nor @ can be X,.

Let X contain no infinite chain. Suppose that X is not a chain and
let there exist a,d, ¢ e X, a <'b < ¢. Complete {a, b, ¢} to some maximal
chain ¥ in X. There exist d € X such that d ¢ Y. Thus, let e be an element
of Y for which e|jd. The following cases may occur:

(a) There exist f,geY, f<e<yg f<d<yg.

(b) There exist f,ge¥, f<e<yg, f<d,gid.

(¢) There exist f,ge ¥, f<e<g, ¢>d,fld.

(d) There exist f,ge Y, f<e<g, dlg,d|f.

(e) There exist f,ge ¥, e<f<g, f>d or dual.

(£) There exist f,ge ¥, e<f<g, g>d or dual

(g) There exist f,g¢ ¥, e<f<g, dlif, dlg or dual.

Thus if X does not contain an infinite chain, one can consider the
following four cases.
(1) There exist a,b,¢,d, a<b<d, a<c<d, b
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(2) There exist a,b, ¢, d such that a < b < ¢ and d||d, b||d or b|d, dd.

(3) X = M®N®P, where M, P are antichaing, and ¥ is a finite chain.

(4) X contains only at most two-élement chains.

We shall prove that in cases (1), (2) px is not a lattice ordering.

Ad (1). Tiet X, be a supremum of {a, b} and {a, c}. Then X, ux{a, d},
X,ux{a,b, ¢}, {o,btuxXy, {a,ctuxX;. Bo for z e X, we have a <z,
# < ¢ or o < b, at the same time there exist y, e Xy, %12 ¢, Yo € Xy, 9, <0,
yseX:, U= b. 8o {a,b,c}CX; and this implies X, ={a,b,c}. But
{a,b, ¢} non px {a,d} by (4) of Detinition 3.

Ad (2). Let X; be a supremum of {a, d}, {b, d} in ux, ald, b|d.. Again
X, = {a, b,d}, but {a,b,d} non ux {a,c, d}. Similarly for bj|d, cld.

Thus, let X have the form from (3). We shall prove that ux is
a lattice order. Let N = {By, fla, .., M}ty My < My < ... < . Lot Xy = M:®
Dty ey an}®Py, Xy = Mu®{by,y ooy bp}®DPs;, an <ol < ltmy by < o < by,
M, MZCM P,P,CP, Ny={ts, e, am}C N, Ny={by, ..., by} CN.

Put V*={a;, b} if M, 5@ # My, Ny #OD # Ny, P,#@ or m>1,
P, or p>1.

= {a,} in the following cases:

M, #@#M,, V70 =Ny, P50 or m>1.

M #0=M,, N, #0, P, #0 or m> 1.

M=@=M,, Ny#0=N,.

M#0#M,, Ny#0#N,, P, 0 orm>1, P,=0, p=1.

Put V* = {b;} in cages dual to those in the previous case.

Put V* = {min(a,, b))} if M, =0 =M,, N, #0 # N,.

Put V* = O otherwise. Define V** in a dual way, dealing with P,, P,
instead of AL, M,.

It is routine to check that V=V* o V* o M, v M, v {a,, ..., Gp-1,

Byy «eey bp—1} v Py o Py is the supremum of X, and X, in ux.
Put

W= My~ M, if My~ M, #0.
Wr={n}if M,n M,=0, M, =0 = M,.
Wr={a} it M,=0 % M,, N,#0.
=) it My#0 =M, N, 0.
= {max(a, b)} it My =0 =M,, N, %0 #XN,.
W =0 if M,=0, N, = Gor My=0, Ny=@.
Dually dealing with P,, P, we define W**.
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Put W= W*u W*™* U (N, ~ N,) if for every x e W*— X, ~ X, there
exists a ¢ ¢ W** for which # < y and, dually, for every y ¢ W*—X, ~ X,
there exists an @ ¢ W* with 2 < y. Put W = @ in the other cases. It can
be checked that W is the infimum of X, and X, in ux.

If X contains only at most two-point chains, then ux is identical
with the inclusion. (Remark 1 after Definition 3.)

PROPOSITION 5. mx is a lattice order iff X = N@P where N is a finite
chain and P is an antichain.

w% is a lattice order iff X = M@ N where M is an antichain and N is
a finite chain.

. Proof. Let us accomplish the proof for 7x. Let wk be a lattice order.
Let X contain an infinite chain. Then it contains

(2,) By < &y < Wy <
or
(a2) @y > Ly > .

Case (a,) is as in the proof for ux. Let (a,) occur. Let X, = {w,, &, ...},
X, = {w,, @, 24, ...}. Then {x,, mi}nle, {my, i} wx X, for all 4> 2. Thus
if ¥ is the infimum of X, and X, in wk, then for each 2; we have Yi,YieV
such that y; > #:> yi. V is not a one-element set. Namely, assume V= {v}.
Then v > #; for all ¢ and v < zx for some ;¢ X; and v < ;, for some
ZneX,. 8o v >3, v< 2, which is a contradiction. Thus, for 4 ¢V we
have @', 2" € X; such that ' <y <a'. So VC X, n X, = {x;}.

Let us now consider cases (1), (2), (3), (4) from the previous proof.
(1) and (2) cannot occur by the same arguments. Further, we can now
prove the following two statements.

(8) In X there is no triple {a, b, c} with a < b, allec, b c.

Indeed, assume that we have such triple. Then {a}zx{b, ¢}, {c} nk{b, c}.
Let V be the supremum of {a} and {c}. As Vax{a,c}, {a}=xV, {c}#'V,
we have V = {a, ¢}. But {a, ¢} non #x{b,c}.

(6) In X there is no triple {a, b, ¢} with a <b, ¢< b, alc.

Indeed, assume that we have such triple. Then {a}mk{b}, {c}nk{b}.
Let V be the supremum of {a},{c}. By the same reasons as above V = {a, ¢},
but {a, ¢} non wx{b}.

Thus, if #% is a lattice order, then X has the prescribed form and
that will be assumed in the sequel. Let, again, N = {n;, ..., t}, %y < My
<< ng. Lot Xy, X, CX, Xy = {ay, ., am} © Pyy Xy = {by, ..., bp} © Py,
at,bie N, a) < ... < Om, by < ... < by, PiCP for ¢=1, 2.

Suppose that X; and X, are incomparable in nfg. In the following
formulas put. min(ay, b)) =@a, if Ny, #@=N,, min(a, b) =205, if N,
=@ # N,, {min(ay, b))} = @ if Ny =0 = N,. Similarly for max(an, bp)-

16*
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Op—1, bz, vy bp_l} w

(1) If P, =@+ P, put ¥V = {min(a, b))} v {ay, ...,

v P, v P,

(@) I PyuP,=0 put V= {min(a,b)} © {#2; s tm,bay .00, bpa} v
U {max (am, by)}.

(3) ¥ P,=@ # P, put V ={min (a, b;)} v {tay .., Gm=1, bay ve0y bp} U Py,

(4) P #0=P put V ={min(a;, b))} v {az, ..., @m, b bp 1y Py

Then V is the supréemum of X, and X, in zk.

Suppose again that X; and X, are incomparable in mx.

In the following formulas put {max(a,b)}=@ if N,=0 or

l\T2 g.

(1) I P,nPy#0 put W= (P, Py) v (N~ N,) v {max(a, b))}

@Y PynPy=0, P,#0+#P, put W=
o (M, A I

B3I Pp=0=P, and b, <
v {max{ay, b))} v (¥~ Ny).

4) P, =0 # Py, Ny # @, by <am put W= {an} v {max(a, )} v
w (N, A N,).

(8) It Py 50 =Py, Ny # 9, 0, <bp, put W= {bp} v {max(a, b))} v
w (N n Ny). )

(6N I P,=0 and N,=0 or an < b; put W= {an}.

(Yt Py=0 #P,, N; # @ and by < a,, put W= {a,, an}.

(8) If P, #£0@ =P,, N, # 0 and am< by, put W = {by, by}

(90 If P,=0, Ny=@ or by <a, put W= {bp}.

It can be checked that W is infimum of X, and X,. Thus the propo-
sition is proved.

PROPOSITION 6. Let K be a full subcategory of the category X,. Let X
contain a four-element Boolean lattice as object. Let {ox: X « 0(30)} be stable
and let ox contain indusion for all X ¢ O(X). Then ox is equal to an
inclusion for all X € O(X) provided ox is a laitice order for all X.

Proof. Let B be a four-element Boolean lattice, B = {a,b,¢, d},
a<b<d, a<e<d, cfb. Assume that there exists an X e o(X ) such
that X, ngo, X, ¢ X, for certain X, X,C X. Suppose that card X, > 2,
card.X, > 2. Let 2 e X;—X,. Define f,, f,; X—~B as follows

{max(ay, b))} v {ne} v

amy ty < bpy put W= {min (am, bp)} v

v> 9"=>f1(‘”')
fZ(m) =€y

=f2(u): d,

fifx) = b, filw)

= fy(u) = a otherwise .

icm®
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We have f(X,) = S Xo)= {a, d} as, by Lemms 3, X,uxX, and
80 ¥y, ¥ exist in X, such that y, < # < y,. Further, b ¢ f,(X,),

¢ e fo(Xy), fulX:) C{a, b, d}, fi

As fi(X,)osfi(X,), we have f(X;) # {a, b, d}, and so we have the
following possibilities:

1) fl&y) = {a, b}, fulX)) = {a, c}.

(2) (X)) = {b, @}, folXy) = {e, d}.

(3) fulXy) = {B}, fol Xy} = {e}.

Denote ‘in the sequel the supremum of fi(X,), fo(X,) in op by V.

Ad (1). As {a, b}usV, {a,c}usV (by Lemma 3 and Lemma 4) and
Vusfa, b c} we get V= {a,b,c}. But {a,b,c} non uxp{a,d}, which is
contradiction of fy(X,)es{a, cl}, foX,) o5{a, d}.

Ad (2). The considerations are similar to that in the previous case.
Ad (3). As the mapping f: BB, where f(a) = a, f(d) = d, f(b) = ¢,
(¢) = d, preserves gp, V is preserved by f also, and so V = f(V). Hence

V is of one of the forms {b, ¢}, {a, @}, {a}, {@}. Let W be the infimum of
{8}, {c}. By Lemmas 4 and 5, W is {a} or {d}.

(8) Let W ={a}. Then {c}es{@), {b}es{d}, s0 V # {b, 0}, {a},
{a, d}. The last possﬂ)lllty V = {d} is contradictory to the relation {d}
non gz{b, c}.

(b) If W= {d} the consideration is dual.

Suppose that card X; =1, card X, > 2. By constructing analogical
mappings, we get one of the following cases;

(1) {8} esia, a}, {c}esla, d}.

(2) {b}es{a}, {c}os{a}.

(3) {b}ex{d}, {c}on{d}.

Case (1) was dealt with in case (3) for cardX, > 2, cardX, >

Ad (2). Leb V be again the supremum of {5} and {¢} in ¢p. Then V is
of the form {a}, {b, c}. We have {b} 0n{b, ¢}, {c} 0x{b, ¢} but {a} and {b, ¢}
are incomparable in gz.

X,)C{a,0,d}.

Ad (3). The case is dual to the previous one.

Suppose cardX; =1, cardX,= 1. Then we get (2) or (3) as for
card X, = 1, card X, > 2.

Remark. There exist full subecategories in ,, not containing
a four-element Boolean lattice in which the conclusion is also true, for
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instance the category of all chains (proof follows immediately, e.g., from
the proof of Proposition 1). Among the categories dealt in Proposition 6
there is, of course, a full subcategory in X, containing all finite objects,
ie. Xi. It may be of certain interest to compare this special case with
Proposition 2. '

The previous questions can be asked for different categories and in
many of them they can have a reasonable sense. Let us conclude this
paper with a description of the case of complete completely distributive
Boolean algebras, i.e. in fact the case of the systems of all subsets of sets.
As morphisms we take complete homomorphisms of Boolean algebras,
ie. mappings preserving all meets and joins, the least element 0, the
greatest element 1 and complements (the complement of % is denoted
by «'). Let B¢ stand for this category. ExtX now denotes the system
of all subalgebras 4 of X, which are complete in the sense that all meets
and joins in A eoincide with the corresponding meets and joins in X,
0,1e¢4 and e d=>a"c A. So a subalgebra means in the sequel ‘a sub-
algebra with the properties just prescribed.

Let X ¢ 0(%B¢) and Ax the set of all atoms of X. Then any decompo-
sition B of Az determines a subalgebra of X (with the atoms of the form
V Y,Y ¢R) and any subalgebra of X is obtainable in this way by means
of exactly one decomposition of Ax. '

Let X; and X, be two subalgebras of X. Then X, C X, iff the de-
composition R, belonging to X, is finer than B, belonging to X,.

Ii f is a complete homomorphism between X and Y,X,Ye0(RB)
and X, is a subalgehra in X, , then f(X,) is a subalgebra in Y. , .

PrOPOSITION 7. The only mazimal locally stable systems {ox: X e 0(Bc)}
are the set inclusion and the order dual to the set inclusion. Every locally
stable ordering is included in one of them.

Proof. It is clear that the above-mentioned systems are both locally
stable. Suppose we have an algebra B and a locally stable system
{ez: X € O(Bc)} such that X,¢ Xy, X, ¢ X; and X, p5X,. Let R, and R,
be the corresponding decompositions of Agp. Then Z, R, Z,, Z, ¢ R,
exist such that Z,# Z,,2, ~ Z, = 0 #FInZy, Let aeZ n Z,
beZ nZ,.

Define f: BB as follows: f(@)=a, f(b) = o', f(c) =0 for ceAg,
aF#06+#Db, f{m):c‘s\/cf(c), where z = \/Cc,CCAB. )

It can De checked that f e M (%c), f(X,) = {0, a, a/, 1} f(Xa) = {0, 1}
Similarly one gets g(X,)= {0, a 101}, ¢(Xy) = {0,1} for a suitable
g € M(RBc), which is a contradiction,

Thus X, g:ng»Rg is finer or coarser than E,. Let the first possibility
occur for certain X,, X, (B being fixed), X; # X,. Then {0, 1}02{0, a,a’, 1}
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by the same argument as above. Assume that XippX; and R, is finer
than R, for certain distinet X7, X;. Then we can deduce {0, a,a’,1}gn
{0, 1}, which is a contradiction.

References

[1] M. Sekanina, An ordering of the system of all subsets of a given set, Zeitschr.
Math. Logik Grundlagen Math. 9 (1964), pp. 283-301.

[2] — Categories of ordered sets, Archivum Mathematicum 4 (1968), pp. 25-59.

[3] W. Bierpifiski, Cardinal and ordinal numbers, Warszawa 1965.

[4] G. Birkhoif, Lattice theory, Providence 1967.

Regu par la Rédaction le 29. 7. 1969


GUEST




