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On o,-categorical theories of abelian groups

by
Angus Macintyre (Aberdeen, Scotland)

0. Introduction, In this paper we classify the totally transcendental
complete theories of abelian groups, and the w,-categorical theories of
abelian groups. The results were obtained while working on the corre-
sponding, but more difficult, problem for theories of fields. Our results
about fields will appear in a separate publication [6], where the results
of this paper will be presupposed.

The work of Szmielew [11] gives a classification of complete theories
of abelian groups. However, only at one point do we use a result from her
paper, and the result in question can easily be proved using ultrapowers.

From model-theory we presuppose acquaintance with Morley’s
paper [7], as well as some results of Feferman and Vaught, and Mo-
stowski, on produects of structures [2, 8].

From group theory we presuppose some basie facts about the existence
and uniqueness of certain direct sum decompositions of abelian groups.
These facts can be found in Kaplansky’s book [3].

If @ is an abelian group, let Th(G) be the set of all sentences, of
first-order group theory, that are satisfied in Q. ‘

TrEOREM 1. If G 18 an abelian group, then Th(Q) is totally transcen-
dental if and only if G is of the form D@ H, where D is divisible and H is of
bounded order.

THEOREM 2. If G is an abelian group, then Th(G) is w,-categorical
if and only if @ is of one of the following forms:

(i) K@ H, where H is finite and K is a divect sum of copies of a fized
fimite cyclic group of prime-power order;

(ii) D@H, where H is finite and D is a divisible group with the property
that for each prime p there are only finitely many elements of D of order p.

Using Szmielew’s work, one can deduce from these theorems syn-
tactic characterizations of complete totally transcendental theories of
abelian groups, and o;-categorical theories of abelian groups.

‘We wish to thank Paul Eklof and Ed Fisher for pointing out an
error in a previous version of this paper, and for suggesting the appro-
priate moditfication.
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1. Model-theoretic preliminaries.

1.1. For the fundamental notions of model-theory, one should consult
Tarski [12] or Robinson [9]. ) . .

We will be working with first-order predicate logies .2, wru‘h con-
nectives A and v, quantifiers @ and V, iden.tity-symbol =, finitary
relation-symbols and operation-symbols and variables Vg, ¥y, «oey Uy ... We
assume the usual syntactic notions of term, formula, sentence, ete..

An £-strueture J6 is a relational structure which has a relatl.on or
operation for each relation-symbol or operatiomgymbgl of 2. [./?L] is .the
underlying set of Jt. We assume the usual semant}c notions of satisfaction,
model, consequence, and validity, and the various related uses of the
symbol #|=". )

v If a ]is an ordinal, we form a logic .2(a) by adding to £ distinet nev;v
individual constants ¢, for 7 < a. If A is an .2-structure and s e [46)%
then (4G, s) is the obvious .2(a)-structure where s(7) corresponds to ¢,
for each n < a. N ) .

As is customary, cardinals are identified with initial 0r§1nals. o is

the least infinite ordinal, and o, is the least uncountable ordinal.

1.2. If X is an £-theory, and  is a cardinal, X is said to be x-cate-
gorical (or categorical in power x) if any two members of Mod(ZX) of
cardinality x are isomorphic. For the basic examples and background,
one should consult X.o§ [5] or Vaught [13].

The classical example of a theory that is cabegorical in every un-
countable power is the theory of an algebraically closed field of specified
characteristic. This follows from Steinitz’s work [10]. In [6] we prove
that no other theory of an infinite field is w,-categorical.

The classical example of a theory of abelian groups that is categorical
in every uncountable power is the theory of a non-trivial torsion-free
divisible abelian group. Such a group can be construed as a vector-space
over the field of rational numbers, and the categoricity result follows
easily from elementary facts about the dimension of vector-spaces.

The following theorem is very important.

THEOREM A [Morley, 7). Suppose .2 is countable and Z is an L-theory.
If Z is categorical in ome uncountable power, X is categorical in all un-
countable powers.

It is because of Theorem A that we confine our attention to - cate-
goricity.

In [7] Morley used the important idea of totally transcendental
theory. We give a definition equivalent to Morley’s. (The equivalence
is proved in Theorem 2.8 of [7]. Our formulation follows [4].)

Suppose X' is a theory in a countable logic 2. X'is said to be totally
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transcendental if, for every JG in Mod(ZX) and every s e |J6[%, Th ((J«(,,'s})
has at most w complete extensions in .2(w--1).
The importance of the notion comes from:

TeEOREM B [Morley, 71. Suppose L is countable and X is an £-theory.
If Z'is w,-categorical, X is fotally tramscendental.

2. Conjugacy types. The results of this section are too crude to have
much general interest, but they are useful to us in dealing with certain
abelian groups, because of the existence for these groups of nice direct-
sum decompositions.

DEFINITION. Suppose .6 is a fixed £-structure, and A C |, If
and y are elements of | M|, We say x is A-conjugate to y, and write s a4 Y,
if there is an automorphism f of G, fixing every element of 4, and such
that f(z) = y.

It is clear that a4 is an egunivalence relation. We call the equivalence
classes A-types.

The following lemma is well-known. It follows simply from Lemma 2.1
of Morley’s paper, and his sufficient condition halfway down page 523
of the same paper.

Lemya 0. Suppose L is countable and S is an L-structure. A sufficient
condition for Th(AM) to be totally transcendental is the following:

If W = b and A is a countable subset of |N|, N° has at most o A-types.

The next lemma deals with conjugacy-types in direct sums of
structures. We will apply the lemma only to abelian groups, but for the
proof of the lemma there is no gain in confining ourselves to abelian
groups.

In Feferman-Vaught, page 71, the notion of the weak direct product
of an indexed family of similar relational systems is defined. Under their
very general definition the next lemma would fail, but under a natural
restriction (which they mention) the lemma holds. We refer the reader-
to their paper for the general definition of weak direct product, which
we call direct sum.

Let ¥(vy) be a fixed .2-formula with v, as its only free variable. We
will define the direct sum @I Mg of a family (AG;)sr of £2-structures, but

1€.

only under the following assumption:

For each 4 eI there is a unique ¢; in AG; such that e; satisfies ¥(w,)
in As; in addition e; satisties v, = v for all 7 which are individual constants
of £; and, finally, the set {e;} is closed under the operations of iy, for
each i e I. "

If this assumption is satisfied, then we define @ J6; as the sub-

iel

system of J] JG; consisting of those f in [] A for which f(i) = e for all
i€l i€l
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but finitely many 4 in I. It follows directly from the assumption that
we get a subsystem in this way.

The clagsical example is when the Ay are groups, and ¥(v,) is
a formula defining the identity element. Then the definition above obvi-
ously coincides with the group-theoretic notion of direct sum.

If Moy = b for each i, we write @I M instead of @1 Ao

1€ 1€

It J C1I, we identify @ A; with the subsystem of @ At consisting
ied 1€l

of those f for which f(i) = e¢; whenever ¢ ¢J.

The next lemma originated in the observation that for some inter-
esting classes K of abelian groups there are countably many groups G,
n < o, each of cardinality <w, such that each member of K is a direct
sum of copies of the groups G». Examples to be discussed later are the
class of divisible groups, and the class of groups of bounded order.

Iemma 1. (a) If 6 has af most o A-types for every countable subset A

of . M, then @I Mo has at most o« A-types for every countadle subset A of @ .
i€ . tel

{(b) If, for n < w, Mon has at most w An-types for every countable sub-

set An of Mon, then @ Mon has ot most w A-types for every countable sub-
n<w
set A of @ M.
n<a

We do not prove the lemma, but indicate a proof of (a). (b) is obvious,
and implies the special case of (a) where I is countable. Suppose I is
uncountable, and 4 is a countable subset of @ M. Then for some. count-

i€l

able JCI, AC @JJL. Select a countable J; C I with J ~dJ; = @. Then

any element of @1 46 is A-conjugate to a member of @ A6, and the
i€ ieJUJy
latter has only countably many A-types since J w J. 1 18 countable. Finally,
observe that any automorphism of @ J extends to an automorphism
1eJUJ1 -

of ‘@I Ao. This completes our sketch of the proof.

3. Abelian groups. We formalize the elementary theory of abelian

groups in & logie 2, having the 2-ary operation-§ymbol +, and no other
operation-symbols or relation-symbols. We construe abelian groups as
La-structures <4, 4-). By locking at any standard list. of axioms for
abelian groups, one sees easily that the class of abelian groups is an EC
class of Lg-structures. ’

For the purposes of this Paper, “group” will mean abelian group.

3.1. We follow the notation of [3], except when we indicate otherwise.

We fix some notation for those groups that are the building-blocks
of the theory.
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3.1.1. Z is the additive group of integers.
3.1.2. Q is the additive group of rationals.
3.1.3. If n is an integer >1, Z(n) is the eyclic group of order n.
3.1.4. If p is a prime, Z(p™) is the multiplicative group of all roots

of unity whose order is a power of p. (Alternatively, Z(p™) is the direct
limit of the groups Z(p"’), k < w, ordered by inclusion.)

3.2. If » > 1 and G is a group, we define n@ as the subgroup {nx| = ¢ G}.
If n divides m then m@ C a6

We say @G is of bounded order if n@ = {0}, for some n. We say @ is
divisible if @ = ) aG.

n=1l .

If p is a prime, we define ¢p as the subgroup of ¢ consisting of all
elements whose order is a power of p. If G = G5, we say G is a p-group.

For n>1 we define #,(¢) as the subgroup {® e GAnz =0} We
define t(@) as |J t(@). #{G) is a subgroup of G. @ ig called a forsion-

n=1
group if G =1(G). G is called torsion-free if #(@) = {0}.

3.3. A basic fact about abelian groups is that if D is a divisible sub-
group of & then D is a direct summand of @ [3, page 8]. Furthermore &
has a unigue maximal divisible subgroup. Clearly, any divisible subgroup
of @ is a subgroup of (| »G. However, [ n@ need not be divisible.

n=1 n=l
But if G is w,-saturated then M) n@ is divisible, and so is the maximal
nzl
divisible subgroup of @. For suppose G is w;-saturated, z e () nG and m -
n=1
is an integer. Then the infinitary condition z = myny e () n@ is finitely
satisfiable in G and so satistiable. Thus & is divisible in (1 nG, and
nz=1
(N n@ is divisible.
>1 :
" The trivial group {0} is divisible. Any non-trivial divisible group
is infinite.

4. Theorem 1 (First Part). We can now prove that if ¢ = D@H,
where D is divisible and H is of bounded order, then Th(G) is totally
transcendental. .

Lemva 2. If @ = D@H where D is divisible and H is of bounded
order, and Gy = G, then Gy is of the form D,@H,, where D, is divisible
and H, is of bounded order.

Proof. Suppose @ = D@ H, where D is divisible and H is of bounded

“order. Select # such that nH = {0}. Then n@ = D. Thus G has the property

that n@ is divisible. Suppose @ = G. Then clearly n@, is divisible. n6, is
a direct summand of @, say G, = (nG,)® H,. Since H, is a subgroup of G,
and H; n a6, = {0}, it follows that nH,= {0}. Let D;= nG;. Then
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G = D,®H,, where D, is divisible and H; is of bounded order. Thig
proves the lemma.

‘We now make use of two classical direct-sum decompositions. The
uniqueness of these decompositions is not needed just now, but will be
fundamental when we discuss w,-categoricity.

TaeoreM C [3, page 10]. A mon-trivial divisible abelian group is
a direct sum of groups each isomorphic to Q or to Z(p) for various primes p.

TuroREM D [3, page 17]. An abelian group of bounded order is a direct
sum of groups each isomorphic to Z (p"), for various primes p and integers .

Since all the groups Q, Z(p™) and Z(p" are countable or finite,
and since the collection

{Q} v {Z(p™)| p prime} v {Z(p")| p prime, 0 <k < o}

is countable, we can. apply Lemma 1 to conclude the following:

If G = D@H, where D is divisible and H is of bounded order, and
if 4 is a countable subset of ¢, then G has at most w A-types.

Using' Lemma 2, we see that if G, = D®H, where D is divisible
and H is of bounded order, and if 4 is & countable subset of Gy, then @,
has at most o A-types. :

By Lemma 0, we conclude that if ¢ = D@H, where D is divisible
and H is of bounded order, then Th(6) is totally transcendental. We
have proved the first half of Theorem 1. ’

S. Filtrations. In this section we give a sufficient condition for a theory
not to be totally transcendental. This condition proved useful to us in [6],
and we hope it may have other applications.

Suppose .2 has among its symbols a binary operation-symbol .
Let A be a fixed .2-structure, and let - 4 be the operation on G corre-
sponding to . For convenience we drop the subseript A6, and write -+ in-
stead of + , .

DEFINITION. § is & filtration of 6 it and only if § is a sequence

{Xndn<w, Where:
(i) Bach X, is a subset of |G|, and if m > n then X C X
(i) Bach X, is an abelian group under the operation .

We will be mainly interested in filtrations {Xwdn<w Where each
set X, is definable.

A siubset X of | is said to be definable if there is a formula @ (v,)
of L2, with v, as its only free variable, such that X is the set of all elements
of M which satisty the formula D(vy).

If § is a filtration {Xnin<w, Where each X, is definable, ¥ is called
a definable filtration. '
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5.1. Suppose F is a filtration <‘Xn>m<m of m. Let 0 be the neutral
element of the group <(X,, +>. Then 0 is the neutral element of each

" group <X, +>. For # in X,, —a is the inverse of # in <(X,, +>, and,

for #,y in Xy, z—y is o+ (—y).

Define X as () Xn. Then 0 e X, and X, is an abelian group
under —+. e

We define a map x| from X, to the set of real numbers as
follows:

(a) if #'e Xo, then [] = 0;

(b) if x¢ X, then |zj]= 27", where n is the Jeast integer such
that 2 ¢ X,. ; :

The following are easily verified:

51.1. [l = 0;
51.2. [z| =0 if and only if 2 e X
5.1.3. izl = | —al;

514, lz+yll < max(llaf], Iyl

Now we define a map d from X; to the reals by:

d(w,y) = lz—yl .

Then d is a pseudo-metric on X, satisfying the ultrametric inequality:

5.1.5. d{z,y) < max(d(z,2),d(z,¥)). »

The following observation, familiar in valuation theory, follows
from 5.1.5 and the fact that d is a pseudo-metric.

51.6. If d(w,z2) = d(z,y) then d(z,y) = max(d(w, z), d(z, y)).

d defines a pseudo-metric topology on X, and clearly -- is continu-
ous for this topology. The topology is Hausdorff if and only if X, = {0}.

DerFINITION. Suppose I'" is a subgroup of <(X,, +>. We say I' is
completely filtered by § if and only if :

(@) [~ X = {0}, and

(b) the chain D I~ X D .2 ~nX,D I~
descending.

For us the importance of the notion comes from the following
lemma.

LemmA 3. Suppose L is countable, and A is an L2 - structure. Suppose F is
a definable filtration {Xndn<w of Moy, and I' is a subgroup of <X,, +> which
is completely filtered by §. Then Th(M) is not totally transcendental.

Proof. Assume the hypothesis of the lemma, and the notation of
the preceding discussion. For n < w, let $y(v,) be a formula defining X,.

‘We observe first that we can assume without loss of generality that I"
is countable. For if we start with an arbitrary I" that is completely filtered,

w10 ... 18 gtrictly
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select elements @, for n < o, such that @ne |~ Xn, @0 ¢ [ A Xy,
and let I be the group generated by the elements «,. Then I" is countable,
and is completely filtered by .

So we assume I"is countable. Let s (e]40]”) be a fixed enumeration
of |I'. We will show that Th((A6, s)) has uncountably many complete
extensions in £2(w+1).

Sinee |I'| n X = {0}, the pseudo-metric 4 is in fact a metric on I".
We claim that no point of I'is isolated. Since I'is a metric group it suffices
to prove that 0 is not isolated. Let ¢ be an arbitrary positive real number,
and choose the integer n so that 27" < e. Since I' is completely filtered
by &, I ~ Xp—y # {0}. Belect # in |I'| ~ X,y With & # 0. Then |jz|| < 27",
50 d(®,0) < 27" < & Thus 0 is not isolated in T

‘We now complete the metric group <I", dy to a metric group <I™, d*y,
where I™ is eomplete under ¢*, and I' is dense in I™. I'™* has no isolated
points, and so is uncountable, by Baire Category.

A useful observation about d* is that it satisfies the ultrametric
inequality 5.1.5. This follows easily from the fact that d satisfies 5.1.5
and I'is dense in I Since d* satisfies 5.1.5, it also satisfies 5.1.6.

> We are going to define 1-1 map from I™ to the set of complete ex-
tensions of Th({A, s)} in L(w-+1). This will prove the lemma. The basic
idea is that a point of I™ can be specified by a Cauchy sequence of ele-
ments of I, and in turn this Cauchy sequence can be coded by a set of
formulas of. 2 (w-1). ) '

Let 2 be a point of I™. We define a set X, of L(w+1)-formulas, by
specifying its members, which are of two kinds.

Firgt kind. All‘formula;s

¢n(cm+ Cim) y
where @*(¢, —s(m)) < 27"
Second kind. All formulas
1Pw(Ca+ 0m)
where d*(z, —s(m)) > 2%,
We claim firgt that
Th((46, 8)) v =,

is satisfiable. By the Compactness Theorem it suffices to prove that
if 4 is a finite subset of X, then

Th{(H, 8)) v 4

is satisfiable. We enumerate 4 ag

PuilCotom) 0<i<I and T1Pylenteoy) 0<j<T.
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Consider the corresponding basic open sets of I™:

{t] cl*(z, —s(mi)) < 2“’“} 0<<igI,
and

{tl @*(t, —s(l)) > 27" o0<j<J.

Let U be the intersection of these open sets. Then U is open.
Moreover, by the definition of X;, z ¢ U. Since I is dense in I'™*, we may
select an element # from U ~ |I7.

Let sy be the unique extension of s to w-1 such that su(w)= u.
We claim that

(Ao, su) [= TR((A6, 8)) v 4.

It is obvious that it suffices to prove that
(Mo, su) =4 .

Consider first a member of A4 of the first kind, e.g. Ppnfto+tCm).
Since % is chosen so that )

a*u, —s(mg)) <27,

we have
dlu, —s(my)) < 27™,
whence ‘
luts(malf < 27,
whence

uts(m;) e Xy, .
Since Py, (vo) defines X,,, we conclude that
(‘A(Jy Su) ]= Do+ Cmy)

A completely analogous argument works for formulas of the sec-
ond kind.
We conclude that

(S, 84) |= Th{(SG, ) © 4 .
Since 4 was an arbitrary finite subset of X, we have proved that
Th{(f, 8)) v Zz

is satistiable. Thus X, extends to a complete extension of Th((t,s))
in L(w-1). Select such an extension Xz. We claim the map # -2y is 1-1.
Clearly it suffices to prove that if @ =y then

Th((AG, 8) v Zp v Ty
is not satisfiable.
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Suppose z = y. Select an integer » such that 27" < d*(x, y). Using
the density of I'in I, select u in I' 50 that d*(z, ) < 27" Then d*(x, u)
< d*(=,y), so by 5.1.6 for d*,

' &y, u) = d*(, ).

Then d*x,u) < 27", whereas d¥(y, u) > 2™™

Now —u = g(m) for some m.

‘We conclude that

¢n(cm+cm) e Xy

It follows that

whereas  T1Du(CotCm) € Zy .

Th((A, v oLy,
is not satisfiable.

Therefore z -5, is 1-1, and since I™ is uncountable the proof is
complete.

CoROLLARY. Suppose L2 is cowntable, and M is an L-structure such
that Th(M) 4s totally tramscendental. Suppose §F is a definable filtration
{Xninco of Moy and suppose T is a subgroup of <X, y +> such that (I ~ X
= {0}. Then there exists am integer n, such that for all n > Mgy [ ~ Xy,
= |I'l n X, :

Proof. Assmme the hypotheses of the corollary, but suppose the

conclusion fails. Then there exists an increasing sequence (fmdm<, sSuch
that the chain

I~ XA XD DI A XD~ X

i D o

is _strietly descenfiing. Then {(X,,>m<o is a definable filtration of 6, and
I" is eompletely filtered by {XumIm<aw. By Lemma 3, Th(AM) is not totally
transcendental, contrary to hypothesis. This proves the corollary.

6. Tiheorem 1 (Second Part). We now prove that if & is an abelian
group w1t}1 1.’73.((‘?) totally transcendental, then @ is of the form DoH,
where D is divisible and H is of bounded order. This will complete the
proof of Theorem 1.

) By tZ;[zemma 2, we may assume without logs of generality that G
is w,-saturated, so anG Is divisible by 3.3. We define a filtration
<-Xn>‘n<m of & by:

(8) Xoy=6,

(b) Xngr=(n41)! @, for n> (.

Then (X, ney is obviously a definable filtration i
) 'n<a 1 of G. X, as defined
in the last section, is clearly anG, the maximal divisible sucg;group of G.

Select H 50 that @G = Xo@H. Then H ~ X = {0}

Suppose ‘Th(G) is totally transcendental. Then by the corollary to
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Lemma 3 there exists n, such that H ~ X, = H ~ X, for all n> n,.
It follows that H n X, = H n Xo = {0}. Thus H n (n,+1)! G = {0},
and since H is a subgroup of @ we conclude that (n,-+1)! H = {0}. Thus
H is of bounded order. Since G = X.®H, and X is divisible, we con-
clude that @ is a direct sum of a divisible group and & group of bounded
order. Theorem 1 is now proved.

7. w,-categoricity. From Theorem B and Theorem 1, we now see
that if Th(@) is «,-categorical then G is of.the form D®H where
D is divisible and H is of bounded order. The converse is far from
true.

LemMA 4. Suppose G = D@®H, where D is divisible, H is of bounded
order, and D and H are infinite. Then Th(G) is not w,-categorical.

‘We sketch the (simple) proof. By the Liwenheim~Skolem Theorems
and the fact that @ preserves =, we get, for i =1, 2, groups G; = @,
where G; is of cardinality w,, and G;= Di®H; where D; =D, H;=H,
and D, is countable and D, uncountable. Clearly G; and &, are not iso-
morphic, so Th(@) is not w,-categorical.

7.1. Because of the fact that a finite divisible group is trivial, we
now see that if Th(@) is w,-categorical then either @ is of bounded order,
or G is D@ H where D is divigible and H is finite. In analysing these sub-
cases we shall use a technique very similar to that in the preceding proof,
making use of theorems about the uniqueness of the decompositions
given in Theorems C and D.

Before looking at the separate cases of divisible groups and groups
of bounded order, we get the following lemma out of the way.

LemMa 5. Suppose D is divisible and Th(D) is o, -categorical, and
suppose H is finite. Then Th(D@H) is - categorical.

Proof. Assume the hypotheses of the lemma. Let n be the cardinality
of H. Let ¢ = D®H. Then #H = {0}, and n¢ = D. It is clear that we
can express by a set of first-order conditions that @ is elementarily
equivalent to D, and that G/n@ is isomorphic to the finite group H.

Suppose @ and G are of cardinality w,, and are elementarily
equivalent to G. Then nG™ and nG® are elementarily equivalent to D,
and 6“/nG™ and G2/nG™ are both isomorphic to H. Since D is divisible,
76 and #nG® are divisible. Thus G = nG @ H,, and ¢® = nG®0H,,
where H, and H, are isomorphic to H. Therefore H, and H, are isomorphic
finite groups, and #G" and nG® have cardinality o,. Since Th(D) is
o, -categorical, nGY =~ nG®. It follows that nG@H, ~n6®0H,,
whence G® ~ 6%,

Since 6% and G® were arbitrary members of Mod(Th(D@®H)) of
cardinality «;, we conclude that Th(D@®H) is w,-categorical.

'
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7.2. In this subsection we prove that if D is a divisible group then
Th(D) is w,-categorical if and only if for each prime p there are only
finitely many elements of D of order p. .

We look at the uniqueness statement corresponding to Theorem (.

TesorEM OV, Suppose D is divisible. Then there are indew sets I,
and Ip for prime p, such that .
D=[oQel® Z(2%)e @l 8 Z(p )@ ...
i i€l . ielp

iely

The cardinalities of these index sets are uniquely determined.

For a proof, one should consult [3, page 11]. We indicate how the
cardinalities of these index sets may be characterized. .

(a) For a prime p, I is infinite if and only if i,(.D) is infinite. If ¢,(D)
is finite, the cardinality of #,(D) is of the form p", where n is the cardinality
of I,.

" (b) The cardinality of I, is the dimension of D/¢(D) construed as
a vector-space over the rationals.

In particular, one sees that the conditions on D that I, for a fixed
prime p, has a fixed finite cardinality, or is infinite, are first-order con-
ditions. The situation is quite different for I,, as we will soon see.

Suppose D is divisible. We define a function fp from the set of primes
to w+1, as follows:

(i) folp) = if i,(D) has cardinality p";

(i) fo(p) = @ if t,(D) is infinite.

The next theorem follows directly from Szmielew’s criterion [11]
for the elementary equivalence of abelian groups.

TeeoreEM B. Suppose DV and D® are mon-trivial divisible abelian
groups. Then DV = D® if and only if fow = fpa.

(Remark. One can avoid appeal to [11], as follows. By the Lwen-
heim-Skolem Theorem, it suffices to prove the result when D™ and D®
are countable. Let F be a non-principal ultrafilter on w, and let D(g), ¥
be respectively (D“)°JE, (D®)*/B. Then D® = D%, DY =Dp® p®
and D® have the cardinality of the continuum. Assuming fpm = fom
one readily proves that t,(D™) and t,(D*) have the same cardinality
for all primes p. Finally one shows that D/t(D®) and D®/¢(D®) have
the same dimension as vector-spaces over the rationals. It follows that
D® ~ D¥, whence D = D®.) .

With reference to the decomposition of D given by Theorem CT,
one sees immediately from Theorem E that the elementary type of D is

independent of the cardinality of I,. We exploit this idea in the follow-
ing lemma.

icm®
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Immma 6. Suppose D is a divisible abelian group. Then Th(D) is
o, - categorical if and only if fo(p) < w for all primes p.

Proof. The result is clearly true for the divisible group {0}. Hence-
forward we assume D is an infinite divisible abelian group. Because of
Theorem E and the Lowenheim-Skolem Theorems, we may assume D has
cardinality .

Necessity. Suppose Th(D) is w,-categorical.

Using Theorem C*, decompose D as

[© Q18] @ Z2™)® ... o[ @ Z(p™)]® ..
iely ielp i€lyp

Suppose fp(q) = w for some prime g. Then I, is infinite.

By Theorem E, we can assume without loss of generality that I, has
cardinality c,.

Let J, be an arbitrary extension of I,, of cardinality w,. Let J; be
an arbitrary subset of I, of cardinality w. For a prime p  g; let J, be I,.
Let D™ be

[®Q[®Z(2)]® ... e[ ® Z(»™)]® ...
jeJo jeda jeJp .

Then clearly fpw = fo, so D = D by Theorem E. Clearly D® has
cardinality w,, since J, has cardinality w,. But DY is not isomorphic
to D, since t,(DY) is countable, while (D) is uncountable.

Thus we contradict the w,-categoricity of Th(D). It follows that
if Th(D) is o,-categorical then fn(p) < o for all primes p.

Sufficiency. Suppose fo(p) < w for all primes p. Decompose D as

[i@ Q]G)[i@ Z(2)]@ ... oD Z(p)® .

Then I, is finite, for each prime p. Since D has cardinality w,, it
follows that I, has cardinality o;. ‘

Suppose DV =D, and D® has cardinality «,. Then fow=fp,
80 fpw(p) < @ for all primes p. Decompose D as

[j@ Q]@[y@ Z(2%)]® ... 0l @ Z(p™)]® ...

jedp
Then J, has the same cardinality as I, for each prime p, since
fow(p) = fo(p). Also, J, has cardinality w, since each J, is finite and DV
has cardinality ;. Now it is obvious that D™ ~ D,
Since D™ was arbitrary, Th(D) is ,-cabtegorical.
This completes the proof of the lemma.

7.2'. The condition that fn(p) < w for all primes p is equivalent to
the condition that, for each prime p, D has only finitely many elements
of order p.
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We can now characterize these abelian groups G such that G is not
of bounded order and Th{(@) is o,-categorical.

LEMMA 7. Suppose G is not of bounded order. Then Th(G) is o,-cate-
gorical if and only if G is of the form D& H, where H is finite and D is
a divisible group with the property that for each prime p D has only finitely
many elements of order p.

Proof. Suppose G is not of bounded order.

Necessity. Suppose Th(@) is ,-categorical. Then, by Theorem B,
Th(G) is totally transcendental. By Theorem 1, ¢ is of the form D@H,
where D is divisible and H is of bounded order. By Lemma 4, since Th(6)
is w,-categorical, either D or H is finite. Since @ is not of bounded order
we conclude that H is finite.

We leave the rest of the proof to the reader. It is just like the corre-
sponding part of the proof of Lemma 6.

Sufficiency. Suppose @ = D@H, where H is finite and D is divisible
with the property that, for each prime p, D has only finitely many ele-
ments of order p. Then fo(p) < w for all primes p, so by Lemma 6 Th(D)
is w,-categorical. By Lemma 5, Th(D@H) is w,-categorical, i.e. Th(@) is
o, - categorical.

This proves the lemma.

7.3. We now have to characterize those abelian groups @ such. that
G is of bounded order and Th(G) is wo,-categorical.
We first look at the uniqueness statement corresponding to Theorem D.
The notation @ indicates a direct sum taken over all integers p™
p‘)l

where p is a prime and m is positive.
TeeorEM D¥. Suppose G is an abelian group of bounded order. Then,
for each prime p and positive inicger m, there is an index set Iym such that

G=0[ @ Z(p™)].

o™ ielpm
Moreover, the cardinalities of the index sets Ipm are uniquely determined.

For a proof one should consult Kaplansky, pages 17 and 27.
As with Theorem C*, we indicate how the cardinalities of the above
index sets can be characterized.

Let p be prime, and m a positive integer. We define U, ,(G) as
tp(Gp) N p"G5. Then

Uni1,0(@) C Un,o(@) .

Also, pUm, (&) = {0}, 50 Up (@) can be construed as a vector-space
over GFp, the prime field of characteristie p.
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Then it turns out [Kaplansky, page 27] that the eardinality of I,= is

the dimension, as a vector-space over GF,, of the quotient-space
Um_lrpl UM:D .

Let & be a fixed finite cardinal. It is easily verified that the following
condition on @ is expressible by a first-order sentence of £q: the dimension
of Up1,p/Um,p is k-

From this one sees that the following condition is expressed by an
infinite set of first-order sentences: the dimension of Um-i,p/Upp is
infinite.

This leads us to define a map ue from the set of prime powers
to w+1, thus:

(a) ue{p™) = the dimension of Uy—15(G)/Umy(@), if this dimension
is finite;

(b} pe(p™) = o, if the above dimension is infinite. _

It turns out that ue characterizes the elementary type of G, for G of
bounded order, just as fe characterizes the type of @, for divisible G.
This follows easily from Szmielew’s work, but it is convenient for us to
give a proof.

TusoreM F. Suppose G and G are abelian groups of bounded
order. Then GV = @® if and only if pew = pem.

Proof. Necessity is clear by the preceding remarks.

Sufficiency. Suppose % and G® are of bounded order and
4eo = pew. Using Theorem D' we decompose G and ¢ thus:

V=0l © Z(pT)] and =@l @ Z(p")].
i ieIpm ™ iEme
‘Bince pgw = ugw, it follows that, for each prime power p™, either
Iym and Jp= have the same finite cardinality, or both Ipm and Jym are
infinite.
If Iy» and Jp» have the same finite cardinality, then clearly
D ZpM = ® Z(p™.
IEI,,m 76.71,1:1
We will prove that if Im and J,m are infinite then
@ ZpM = © Z(p™.
iel,m jeJpm .

From this it will follow, from the fact [2, 8] that the direct sum
operation preserves elementary equivalence, that G = @®. This will
prove the theorem.

Suppose then that Iym and Jy» are infinite. Let I = Iym and J = Jpm.
Let A be @ Z(p™), and H® be @J Z(p™). We have to prove that

je

i€l
7Y = g
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We observe that ugw = pugw. Furthermore,

(a) paw(p™) = o, and

(b) paw(g") =0 if ¢" #p™

Since H" and H® are infinite, there exist, by the Lowenheim-Skolem
Theorems, H® and HY of cardinality w, such that B® = H® and
HY = H®. Then B and H® are of hounded order, and umw = pgw
= g = kg

Using Theorem D%, and (a) and (b) above, we deduce that there
exist index sets I’ and J' such that

H‘“’zigzw) and HY= @Zp)

Since H® and H® have ecardinality w,, it follows that I' and J'
have cardinality w,, whence H® and H® are isomorphic. Thus H®
= HY, whence H" = H®,

This concludes the proof.

‘We now prove the analogue of Lemma 6.

LemumA 8. Suppose G is an abelian group of bounded order. Then Th(G)
18 w;-categorical if and only if there is.at most one prime power p™ such
that pe{p™) = . .

Proof. By Theorem F and the Lowenheim—Skolem Theorems, it
suffices to prove the lemma when @ is countable or finite. So we suppose G
has cardinality <o.

Necessﬂ;y If there are two distinet pnme powers ¢" and r* with
selg™) = ,uc(r ) = w, then we can use the same technique as in the necessity

part of Lemma 6, to get non-isomorphic & and G, of cardinality Wy,

with 6y =G =G,. ¢ will have w copies of Z(¢") in its decomposition
relative to Theorem D, while @, will have o, copies of Z(¢"). By

Theorem D7, @ and @, are not isomorphic. We leave the details to the
reader.

Sufficiency. Suppose @ is of bounded order, and there exists at
most one prime power p™ such that ue(p™) = w. Obviously if @ is finite
Th(@) is w;-categorical, If @ is infinite, Th(@) has models of cardinality «,,
and by looking at the direct-sum decompomtlon of such a model we see
that there exists a prime power p™ such that pe(p™ = w.

So we suppose G is infinite and ¢" 1s the unique prime power such
that pe(q") = o. Then pe(p™) < w if 3™+ ¢ Let 6% and 6@ be two
models of Th(&) of cardinality wy, and decompose 6V and G2 ag:

=9l ® 2™, =0l o 2.
1€Ipm M je, J‘
:ﬁSmee =6=69 it follows that pen(p™) = pee(p™ < o if
" # g
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Therefore I,m and J,y» have the same finite cardinality if p™ # ¢*.
Since .G and @® have cardinality w,, it follows that Ij» and J have
cardinality ;. We conclude that ¢ ~ G®.

We conclude that Th(@) is o,-categorical. This proves the lemma.

74. We can now give a complete classification of those abelian
groups @ such that Th(G) is w,-categorical.

Firstly, Theorem B, Theorem 1 and Lemma 4 tell us that we can
confine our attention to groups of bounded order, and groups DOH
where D is divisible and H is finite.

Case 1. @ is of bounded order. We decompose G as
@l @ Z(»™].
p* ielym

Lemma 8 tells us that Th(G) is w,-categorical if and only if
ne(p™) = o for at most one prime power p™. By the remarks following
Theorem D%, it follows that Th(G) is o,-categorical if and only if there
is at most one p™ such that Iy is infinite.

Since G is of bounded order it is clear that there are only finitely
many prime powers ¢" such that I is non-empty. If I, is finite for
each ¢", then @ is finite. If there is exactly one p™ such that Iym is in-
finite, then

G=[® Zp")eH,

i€l pm
where H is finite.

We deduce that if Th(G) is ;-categorical then @ = K@®H, where
H is finite and K is a direct sum of copies of a fixed finite cyclic group
of prime power order. .

Conversely, suppose @ is of this form. Then ue(p™) = o for at most
one p™, so by Lemma 8 Th(@) is o,-categorical.

This proves that if G is of bounded order then Th(@) is w,-categorical
if and only if @ is of the form K@®H where H is finite and K is a direct
sum of copies of a fixed finite cyclic group of prime power order.

Case 2. @ is not of bounded order. Then, by Lemma 7 Th(@) is
o,- categorical if and only if @ is of the form D@®H where H is finite
and D is divisible with the property that for each prime p D has only
finitely many elements of order p.

This completes our classification of w,-categorical theories of abelian
groups, and proves Theorem 2.

8. Concluding remarks. We would like to extend our classification
to theories Th(G) where G is a non-abelian group. Of course, we have
no classification of complete theories of groups, but this need not prevent
us classifying o, - categorical theories of groups. (We have no classification
of complete theories of fields, but in [6] we classify the w,-categorical
Fundamenta Mathematicae, T. LXX 18
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theories of fields.) It seems likely that in order to make an advance on
the problem one will have to use techniques like Ehrenfeucht’s condition,
or Keisler’s finite cover property [1, 41.

When working on this paper we proved the following result, which
may be useful.

TrEOREM 3. Suppose L is countable, and Mo and Moy are L-strue-
tures such that Th(M;) and Th(AG,) are totally iranscendental. Then
Th{Moy,® Moy) 15 totally transcendental.

This result fails if we replace “totally transcendental” by “w;-cate-

gorical”. To see this, take G, a8 Q, M, as g_)zz (p) where I is infinite and p

is prime, and use Lemma 4.
The result also fails for infinite direct sums and products. Thus,
Th(Z(p™) is totally transcendental, but, by Theorem 1, neither

TH@Z (")

nor ,
Th U’:IZ(pn))

is totally transcendental.
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Some theorems about the embeddability of ANR-sets
into decomposition spaces of z*

by
H. Patkowska (Warszawa)

1. Introduction. This paper is a continuation of my earlier paper [18],
in which the following general theorem has been proved:

THEOREM A ([18], p. 290). If X is a connected ANR containing no
n-wmbrella and if the cyclic elements of X are embeddable into E", then X is
embeddable into an n-dimensional Cartesian divisor of B

As a corollary to this theorem and to Claytor’s results ([6] and [7])
the following theorem has been deduced:

THEOREM B ([18], p. 291). If X is a connected ANR which does not
contain any 2-wmbrellas and any homeomorphic images of the graphs of
Kuratowski, then X is embeddable into S

This theorem gives a positive answer to a problem of Marde$i¢ and
Segal ([13], p-637). In [18] some historical remarks concerning Theorems 4
and B have been given, which we do not repeat here. The following re-
marks concern the terminology. Only metrizable separable spaces are
congidered. The ANR-gpaces are always assumed to be compact. We
base our considerations on the definition and the propositions con-
cerning cyclic elements given in [12], § 47, which have been recalled
in [18]. Therefore, we do not repeat them here, although, in general we
give references to respective propositions proved in [12], § 47. By an
n-umbrella we mean a one- pomt union of a (topologwa,l) n-ball @ and
of an arc I relative to a point p e Q and a point g € I.Bya graph we mean
any space which is a homeomorphic image of a compact, at most 1-di-
mensional polyhedron. A connected, acyclic graph (i.e. a graph which
is an AR-set) is called a tree. The graphs of Kuratowski (which are called
primitive skew curves by Mardefié and Segal) are the following polyhedra
K, and K, (cf. [11]): K, is the 1-skelton of a 3-simplex in which the mid-
points of a pair of non-adjacent edges are joined by a segment, K, is the
1-skelton of a 4-simplex. Given a space X, any space ¥ is called a Car:
tesian divisor of X if there is a space Z such that the product ¥ x Z is
homeomorphic with X.
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