306

H. Patkowska

- [5] J. C. Cantrell, n-Frames in Euclidean k-space, Proc. Amer. Math. Soc. 15 (1964), pp. 574-578.
- [6] S. Claytor, Peanian continua not imbeddable in a spherical surface, Annals of Math. 38 (1937), pp. 631-646.
- [7] Topological imersion of peanian continua in a spherical surface, ibidem 35 (1934), pp. 809-835.
- [8] D. S. Gilman and J. M. Martin, Countable decompositions of E³ into points and point-like arcs, Amer. Math. Soc. Notices 10 (1963), pp. 74-75.
- [9] E. R. van Kampen, On some characterizations of 2-dimensional manifolds, Duke Math. J. 1 (1935), pp. 74-93.
- [10] A. A. Kosiński, Some theorems about two-dimensional polyhedra, Fund. Math. 47 (1959), pp. 1-28.
- [11] C. Kuratowski, Sur le problème des courbes gauches en topologie, ibidem 15 (1930), pp. 271-283.
- [12] Topologie II, Monografie Matematyczne 21, Warszawa-Wrocław 1950.
- [13] S. Mardešić and J. Segal, A note on polyhedra embeddable in the plane, Duke Math. J. 33 (1966), pp. 633-638.
- [14] On polyhedra embeddable in the 2-sphere, Glasnik Matem. 1 (21) (1966), pp. 167-175.
- [15] D. V. Meyer, More decompositions of Eⁿ which are factors of Eⁿ⁺¹, Fund. Math. 67 (1970), pp. 49-65.
- [16] R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), pp. 416-428.
- [17] H. Patkowska, On the one-point union of crumpled cubes, Bull. Acad. Polon. Sci., Série sci. math., astr. et phys. 15 (1967), pp. 849-853.
- [18] Some theorems on the embeddability of ANR-spaces into Euclidean spaces, Fund. Math. 65 (1969), pp. 289-308.
- [19] A characterization of locally connected continua which are quasi-embeddable in E² Fund. Math. 70 (1971), pp. 307-314.

Recu par la Rédaction le 16. 10. 1969

A characterization of locally connected continua which are quasi-embeddable into E^2

by

H. Patkowska (Warszawa)

1. Introduction. We shall consider metrizable spaces only. A map f of a compactum X into a space Y is said to be an ε -mapping if $\operatorname{diam} f^{-1}(y) < \varepsilon$ for every $y \in f(X)$. A compact space X is said to be quasi-embeddable into Y if for every $\varepsilon > 0$ there is an ε -mapping $f \colon X \to Y$. The problem of finding a characterization of locally connected continua which can be quasi-embedded into S^2 (E^2) has been raised by Mardešić and Segal in [6] in connection with the following

THEOREM OF MARDEŠIĆ AND SEGAL. If P is a connected polyhedron, hen the following statements are equivalent:

- (a) P is embeddable into S2,
- (b) P is quasi-embeddable into S2,
- (c) P does not contain any homeomorphic images of the Kuratowski graphs K_1 and K_2 and any 2-umbrella.

The graph K_1 is the 1-skelton of a 3-simplex with midpoints of a pair of non-adjacent edges joined by a segment and the graph K_2 is the 1-skelton of a 4-simplex. A 2-umbrella is the one-point union of a disk and of an arc relative to an interior point of the disk and an end-point of the arc.

In [8] I have generalized that theorem, namely I have shown that the equivalence of (a), (b) and (c) holds for each locally connected continuum P satisfying the following condition: There is a number $\varepsilon > 0$ such that no simple closed curve $S \subset P$ with diam $S < \varepsilon$ is a retract of P. Another similar generalization has been found by J. Segal (see [10]). He has shown the equivalence of (a) and (b) for locally connected continua which do not contain any homeomorphic images of the curves K_3 and K_4 (described by Kuratowski in [4]).

In this paper we shall prove the equivalence of (b) and (c) for arbitrary locally connected continua, i.e.

THEOREM 1. A locally connected continuum X is quasi-embeddable into S^2 if and only if it does not contain any homeomorphic images of the graphs K_1 and K_2 and any 2-umbrella.

Any set homeomorphic with S^2 will be said to be a simple surface. Theorem 1 immediately follows from

THEOREM 2. A locally connected continuum X is quasi-embeddable into E^2 if and only if X satisfies the condition given in Theorem 1 and X is not a simple surface.

The next part of the paper is devoted to the proof of Theorem 2.

- 2. Some lemmas. Any continuum containing more than one point will be called cyclic (in the sense of Whyburn) if it is not separated by any point. The notions of a set entirely arcwise connected and of a cyclic element will be useful for us. Recall that a subset A of a given locally connected continuum X is said to be entirely arcwise connected (in X) if $x, y \in A$ and $x \neq y$ imply that each arc (in X) joining x and y is contained in A. We shall base ourselves on the notion of a cyclic element and of the properties of cyclic elements given in [5] (§ 47). They were listed in [9], where the following two properties were also proved:
- (2.2) Let $X = \bigcup_{i=1}^{\infty} \overline{A_i}$, where $A_i \subset A_{i+1}$ and $A_i = \overline{A_i} \neq X$ is a set entirely arcwise connected. If the maximum of the diameters of the components of $X A_i$ is equal to δ_i , then $\lim_{n \to \infty} \delta_i = 0$.

Now, we shall prove the following simple

LEMMA 1. Suppose that $X \subset E^2$ is a locally connected continuum and that $x_0 \in X$ does not belong to the closure of any component of $E^2 - X$. Given an $\varepsilon > 0$, there is a simple closed curve $S \subset X - (x_0)$ such that diam $S < \varepsilon$ and such that x_0 belongs to the bounded component of $E^2 - S$.

Proof. By [5] (p. 363), there is only a finite number of components of E^2-X , say $C_1, ..., C_l$, with diameter greater than $\varepsilon/3$. Let $Q_0 \subset E^2$ be any disk such that diam $Q_0 < \varepsilon/3$, $Q_0 \cap \overline{C}_i = \emptyset$ for i = 1, ..., l and such that $x_0 \in \hat{Q}_0$. We can assume that $\dot{Q}_0 \cap (E^2-X) \neq \emptyset$. Let A denote the union of Q_0 and of the closures of all components C of C_2-X such that $C \cap \dot{Q}_0 \neq \emptyset$. Since each set \overline{C} is a locally connected continuum (cf. [5],

p. 360) and since the diameters of these components converge to zero provided their number is infinite, it follows that A is a locally connected continuum. Evidently, diam $A < \varepsilon$.

Let B denote the union of A and of all bounded components of E^2-A . Then B is a locally connected continuum which does not separate E^2 and diam $B=\dim A<\varepsilon$. Let Q denote the cyclic element of B which contains x_0 . Since $B\supset A\supset Q_0$ and $x_0\in\mathring{Q}_0$, it follows from [5] (p. 238, No. 10) that $Q_0\subset Q$. Thus Q is a cyclic locally connected continuum which does not separate E^2 . Consequently, we infer from [5] (p. 380, No.11) that Q is a disk such that $x_0\in\mathring{Q}$. Evidently, $\mathring{Q}\subset \mathrm{Bd}(B)\subset \mathrm{Bd}(A)\subset X$. Thus $S=\mathring{Q}$ is the required simple closed curve.

The following result of S. Claytor (see [2], p. 632) is the main one which makes the proof of Theorem 2 possible.

LEMMA 2 (Claytor). Each cyclic locally connected continuum which does not contain homeomorphic images of the graphs K_1 and K_2 is embeddable into S^2 .

- 3. A proof of Theorem 2. Since the necessity of the conditions given in Theorem 2 is clear (cf. [6], p. 637), it remains to prove that they are also sufficient. Thus, let X satisfy these conditions. First, notice that:
- (3.1) X does not contain any simple surface.

Indeed, if $S \subset X$ is a simple surface then $X - S \neq \emptyset$. Since X is arcwise connected, it follows that X contains a 2-umbrella, which contradicts the assumption.

Given an $\varepsilon > 0$, we have to prove that there is an ε -mapping of X into E^2 . We shall first show that the following additional assumption can be made:

(3.2) There is a finite set $F \subset X$ such that the least closed and entirely arcwise connected subset of X containing F is equal to X.

Indeed, let F_i denote any finite subset of X such that for each point $x \in X$ there is a point $y \in F_i$ such that $\varrho(x,y) < 1/i$, where i=1,2,... Let A_k denote the least closed and entirely arcwise connected subset of X containing the set $\bigcup_{i=1}^k F_i$. Assume that no A_k is equal to X. Then the sets A_k satisfy the assumptions of (2.2), and therefore there is an index k_0 such that the diameter of each component of $X-A_{k_0}$ is less than $\varepsilon/3$. Let r_0 denote the retraction of X onto A_{k_0} such that for each component C of $X-A_{k_0}$ we have $r_0(\overline{C})=\overline{C}-C$ (cf. [5], p. 263, No. 5). Suppose that there is an $\varepsilon/3$ -mapping $f_0\colon A_{k_0}\to E^2$. Then f_0r_0 is an ε -mapping of X into E^2 , which implies that the additional assumption (3.2) can be made. (Notice that in view of (3.1) the set $A_{k_0} \subset X$ satisfies analogical assumptions to those satisfied by X.)

311

Now, let us remark that:

(3.3) Each cyclic element of X is embeddable into E^2 .

Indeed, let E be a non-degenerate (i.e. containing more than one point) cyclic element of X. Then $E \subset X$ is a cyclic space and Lemma 2 immediately implies that E is embeddable in S^2 . By (3.1), we obtain (3.3)

If E is a cyclic element of X, then a point $x_0 \in E$ will be called a *Euclidean point* of E provided x_0 is mapped onto an interior point of the image of E under some imbedding of E into E^2 . We shall prove that:

(3.4) For every $\varepsilon > 0$ there is an ε -mapping $f \colon X \to E^2$ such that for each $y_0 \in f(X) - \overline{E^2 - f(X)}$ the set $f^{-1}(y_0)$ consists of exactly one point x_0 and there is a cyclic element E of X such that x_0 is a Euclidean point of E (which implies that $x_0 \in E - \overline{X - E}$, since X contains no 2-umbrella).

The proof of (3.4) will be inductive with respect to the number m of the points of the set F mentioned in (3.2). Evidently, we can assume that m > 1. First, we shall consider

The case m=2. Let F consist of the points a_1 and a_2 . In virtue of (2.1), X is the union of an arc L joining these points and of a sequence (finite or not) E_1 , E_2 , ... of the non-degenerate cyclic elements of X (cf. [5], p. 238, No. 9), where $E_i \cap L$ is a non-degenerate subarc L_i of L and $E_i \cap E_j = L_i \cap L_j = \dot{L}_i \cap \dot{L}_j$ for $i \neq j$. Notice that we can assume that the sequence E_1 , E_2 , ... is finite. Otherwise, by [5] (p. 238, No. 9), there is an index n_0 such that the diameter of each element E_n with $n > n_0$

is less than $\varepsilon/3$. Evidently, there is a retraction r_0 of X onto $L \cup \bigcup_{i=1}^{n_0} E_i$ such that $r_0(E_n) = L_n$ for $n > n_0$. Further we reason as in the proof that (3.2) can be assumed. The condition given in (3.4) will be satisfied under the superposition of r_0 and of a suitable map of $r_0(X)$ into E^2 (provided it is satisfied under this map), because for each point $x_0 \in E_n - r_0(X) - E_n$ with $n \le n_0$ the set $r_0^{-1}(x_0)$ consists of the point x_0 only.

Thus we can and do assume that X has exactly n_0 non-degenerate cyclic elements and we shall prove (3.4) by induction with respect to n_0 .

If $n_0=0$ then X=L and (3.4) is trivial. Now, let $n_0\geqslant 1$ and suppose (3.4) to be true for each space Y satisfying analogical conditions to those satisfied by X and having less than n_0 non-degenerate cyclic elements. Consider the cyclic element E_1 and let b_1 , b_2 denote the endpoints of the arc $L_1=E_1\cap L$. By (3.3), there is an embedding $h\colon E_1\to E^2$. Let $E_1'=h(E_1)$, $b_1'=h(b_1)$ for i=1,2. Evidently, we can assume that $X-E_1\neq \emptyset$ and let us assume that b_1 , $b_2\in \overline{X-E_1}$. (If b_1 or b_2 is an interior point of E_1 , then there is no necessity of considering it.) Since X does not contain any 2-umbrella, it follows that b_1' , $b_2'\in \overline{E^2-E_1'}$. Let us as-

sume that none of these points belongs to the closure of a component of $E^2 - E'_1$. If this is not true then the proof simplifies, because the retraction $r: E'_1 \to E'_1$ we are going to construct may be assumed to be the identity outside a neighborhood of the point b'_4 which satisfies this condition

Let $\eta > 0$ be a number selected so that for each set $A \subset E_1'$ the inequality diam $A < \eta$ implies that diam $h^{-1}(A) < \varepsilon/2$. Apply Lemma 1 to the set $E_1' \subset E^2$ and to the points $b_1', b_2' \in E_1'$. Thus, there are two disks $Q_1, Q_2 \subset E^2$ such that $Q_1 \cap Q_2 = \emptyset$, diam $Q_i < \eta$, $S_i = Q_i \subset E_1'$ and such that $b_i' \in \mathring{Q}_i$ for i = 1, 2. Since $b_i' \in E^2 - E_1'$, there is a retraction $r_i \colon Q_i \cap E_1' \to S_i$ (i = 1, 2).

Consider the map $r: E'_1 \to E'_1$ defined as follows:

$$r(x) = egin{cases} x & ext{if} & x \in E_1' - Q_1 - Q_2 \ r_1(x) & ext{if} & x \in Q_1 \cap E_1' \ r_2(x) & ext{if} & x \in Q_2 \cap E_1' \ . \end{cases}$$

It is easily seen that r is an η -mapping, which retracts E_1' onto $E_1'-\mathring{Q}_1-\mathring{Q}_2$. The points $r(b_1')$ belong to the closure of a component of $E^2-r(E_1')$ either and for each point $x \in r(E_1')-\overline{E^2-r(E_1')}$ we have $r^{-1}(x)=(x)$.

Now, for i=1,2 let Y_i denote the closure of the component of $X-E_1$ bounded by the point b_i . It is clear that Y_i is the least closed and entirely arcwise connected subset of X (and of itself also) containing the points a_i and b_i . Since Y_i has less than n_0 non-degenerate cyclic elements, it follows that it satisfies the induction hypothesis. Thus there is an $\varepsilon/2$ -mapping f_i : $Y_i \to E^2$ satisfying the analog of (3.4). Let $\hat{Y}_i = f_i(Y_i)$, $\hat{b}_i = f_i(b_i)$. Since $b_i \in Y_i \cap \overline{X-Y_i}$ and X does not contain any 2-umbrella, it follows from (3.4) applied to Y_i that $\hat{b}_i \in \overline{E^2-\hat{Y}_i}$. By [5] (p. 17), there is a number $\delta > 0$ such that $B \subset \hat{Y}_i$ and diam $B < \delta$ imply diam $f_i^{-1}(B) \le \varepsilon/2$. By the same method as that used to construct the retraction r, we can construct a δ -mapping s_i which retracts \hat{Y}_i into \hat{Y}_i such that the point $s_i(\hat{b}_i)$ belongs to the closure of a component of $E^2 - s_i(\hat{Y}_i)$ and such that for each point $x \in s_i(\hat{Y}_i) - \overline{E^2 - s_i(\hat{Y}_i)}$ we have $s_i^{-1}(x) = (x)$. Then it is easy to observe that there is a homeomorphism h_i of $s_i(\hat{Y}_i)$ into Q_i such that

$$(3.5) h_i s_i(\hat{Y}_i) \cap S_i = r(b_i') = h_i s_i(\hat{b}_i).$$

Now, let

$$X' = r(E_1') \cup h_1 s_1(\hat{Y}_1) \cup h_2 s_2(\hat{Y}_2)$$
.

It follows from the construction that $h_1s_1(\hat{Y}_1) \cap h_2s_2(\hat{Y}_2) = \emptyset$ and $h_is_i(\hat{Y}_i) \cap r(E'_1) = r(b'_i)$. Define $f \colon X \to X'$ as follows:

$$f(x) = \begin{cases} rh(x) & \text{if} \quad x \in E_1, \\ h_i s_i f_i(x) & \text{if} \quad x \in Y_i, \ i = 1, 2. \end{cases}$$

Since $Y_1 \cap Y_2 = \emptyset$ and $Y_i \cap E_1 = (b_i)$, we infer from (3.5) that f is a map. If $y \in f(E_1)$ and $y \neq f(b_i)$ for i = 1, 2, then $\operatorname{diam} f^{-1}(y) < \varepsilon / 2$ because of $f^{-1}(y) = h^{-1}r^{-1}(y)$, because of r being an η -mapping and with respect to the definition of η . If $y \in f(Y_i)$ and $y \neq f(b_i)$, then $\operatorname{diam} f^{-1}(y) \le \varepsilon / 2$, because of $f^{-1}(y) = \int_i^{-1} s_i^{-1} h_i^{-1}(y)$, because of h_i being a homeomorphism, s_i being a δ -mapping and with respect to the definition of δ . Finally, if $y = f(b_i)$ then $f^{-1}(y) = [(f|E_1)^{-1}(y)] \cup [(f|Y_i)^{-1}(y)]$, $\operatorname{diam} (f|E_1)^{-1}(y) < \varepsilon / 2$ and $\operatorname{diam} (f|Y_i)^{-1}(y) \le \varepsilon / 2$, which implies that $\operatorname{diam} f^{-1}(y) < \varepsilon$, because $[(f|E_1)^{-1}(y)] \cap [(f|Y_i)^{-1}(y)] = (b_i)$. Thus f is an ε -mapping of X onto $X' \subset E^2$.

Suppose that y_0 is an interior point of X' in E^2 . Then $y_0 \neq f(b_i)$ for i = 1, 2. If $y_0 \in f(E_1) = r(E_1')$, then $r^{-1}(y_0) = (y_0)$ is an interior point of E_1' , which implies that $f^{-1}(y_0) = h^{-1}r^{-1}(y_0)$ is a Euclidean point of E_1 . If $y_0 \in f(X_i) = h_i s_i(\hat{Y}_i)$, then the definitions of h_i and s_i imply that $s_i^{-1}h_i^{-1}(y_0)$ is an interior point of \hat{Y}_i . Since f_i satisfies the analog of (3.4), we infer that $f^{-1}(y_0) = f_i^{-1}s_i^{-1}h_i^{-1}(y_0)$ satisfies the condition given in (3.4). Thus the induction step and therefore the proof of (3.4) in the case of m = 2 is completed.

The induction step. Now, suppose that the set $F \subset X$ mentioned in (3.2) consists of m points, where m > 2, and assume (3.4) to be true for each space satisfying analogical assumptions to those satisfied by X with the corresponding set having less than m of points.

Fix a point $a \in F$ and let Y denote the least closed and entirely arcwise connected subset of X containing the set F-(a). We can assume that $a \notin Y$ and let C denote the component of X-Y containing a. Then $\overline{C}-C$ consists of exactly one point b (cf. [5], p. 232, No. 4). Let Z denote the least closed and entirely arcwise connected subset of X containing a and b. Then $Z \subseteq \overline{C}$. Since the set $Y \cup Z$ is closed, entirely arcwise connected (cf. [5], p. 232, No. 8) and it contains F, it follows that $Y \cup Z = X$, whence $Z = \overline{C}$.

Now, it is clear that the sets Y and Z both satisfy the induction hypothesis, and therefore there are two $\varepsilon/4$ -mappings, $f_1\colon Y\to E^2$, $f_2\colon Z\to E^2$, which satisfy the conditions analogical to those of (3.4). By these conditions, $f_1(b)\ \epsilon \ \overline{E^2-f_1(Y)}$ and $f_2(b)\ \epsilon \ \overline{E^2-f_2(Z)}$. Further proceedings are similar to the induction step for the case of m=2. We construct two retractions $r_1\colon f_1(Y)\to f_1(Y),\ r_2\colon f_2(Z)\to f_2(Z)$ such that r_if_i are $\varepsilon/2$ -mappings, the point $r_1f_1(b)(r_2f_2(b))$ belongs to the closure of a component of $E^2-r_1f_1(Y)$ ($E^2-r_2f_2(Z)$) and which are such that $r_i^{-1}(x)=(x)$ for each interior point x of $r_1f_1(Y)$ or $r_2f_2(Z)$ in E^2 . Next, we find a homeomorphism h of $r_2f_2(Z)$ into E^2 such that $hr_2f_2(Z) \cap r_1f_1(Y) = hr_2f_2(b) = r_1f_1(b)$ and we construct an ε -mapping f of $X=Y\cup Z$ onto $hr_2f_2(Z)\cup r_1f_1(Y)\subset E^2$ satisfying (3.4).

4. Compact quasi-homeomorphic with S^2 . Given two compact spaces X, Y, X is said to be Y-like (cf. [7]) if for every $\varepsilon > 0$ there is an ε -mapping of X onto Y. The spaces X and Y are said to be quasi-homeomorphic if X is Y-like and Y is X-like. It has been proved by Ganea (see [3]) that each ANR which is quasi-homeomorphic with S^2 is a simple surface. The following corollary to Theorem 2 generalizes Ganea's result:

THEOREM 3. A compactum X is quasi-homeomorphic with S^2 if and only if it is a simple surface.

Proof. Let X be a compactum which is quasi-homeomorphic with S^2 . Since X is a continuous image of S^2 , it follows that X is a locally connected continuum. Since X is S^2 -like, X does not contain any homeomorphic images of the graphs K_1 and K_2 and any 2-umbrella. Suppose that X is not a simple surface. Then, by Theorem 2, X is quasi-embeddable into E^2 .

Fix $S^2 = [x \in E^3 | |x| = 1]$. Since S^2 is X-like, there is a map f of S^2 onto X such that $\operatorname{diam} f^{-1}(x) < 1$ for each $x \in X$. Choose a number $\eta > 0$ such that, for each set $A \subset X$, $\operatorname{diam} A < \eta$ implies $\operatorname{diam} f^{-1}(A) \leq 1$. Let g be an η -mapping of X into E^2 . Then gf is a map of S^2 into E^2 such that no pair of antipodal points of S^2 is mapped onto the same point. This contradicts Borsuk's well known antipodal point theorem (see [1]).

Remark. Using other methods Mardešić and Segal have proved the following theorem (see [7], p. 163): Let X be a locally connected continuum which is either cyclic or 2-dimensional. Then X is S^2 -like if and only if X is a simple surface. Let us notice that the methods of Mardešić and Segal permit us to prove the following sharper

THEOREM 4. A locally connected continuum is S^2 -like if and only if it is either a dendrite (containing more than one point) or a simple surface.

Proof. First, let us show that the segment $I = \langle 0, 1 \rangle$ is S^2 -like. The proof is similar to that of Example 9 in [7]. Let g denote a map of the set $I \times S^1$ onto S^2 which collapses the sets $(0) \times S^1$ and $(1) \times S^1$ to points and which is one-to-one otherwise. Let n be a natural number such that $\frac{1}{n} < \frac{\varepsilon}{2}$ and let I_i denote the segment $\left\langle \frac{i-1}{n}, \frac{i}{n} \right\rangle$ for i = 1, 2, ..., n. Let f_i

be a map of I_i onto $I_i \times S^1$. We can assume that the maps f_i agree, and then they determine an ε -mapping f of I onto $I \times S^1$. Then gf is an ε -mapping of I onto S^2 .

Now, if X is a dendrite (containing more than one point), then X can be ε -mapped onto a tree and each tree is S^2 -like, as can be proved by a method similar to that used in the case of a segment.

On the other hand, if X is a locally connected continuum which is S^2 -like and $\dim X \ge 2$, then $\dim X = 2$ (cf. [5], p. 64) and, by the above mentioned result of Mardešić and Segal, X is a simple surface. If $\dim X = 1$

314

H. Patkowska

and X is not a dendrite, then X contains a simple closed curve, which is a retract of X (cf. [5], p. 271). Consequently, the first homology group of X in the sense of E. Čech $H_1(X,Z)$ is not trivial, which yields a contradiction with Theorem 1 of [7], because $H_1(S^2,Z)=0$.

References

- K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), pp. 177-190.
- [2] S. Claytor, Peanian continua not imbeddable in a spherical surface, Annals of Math. 38 (1937), pp. 631-646.
- [3] T. Ganea, On ε-maps onto manifolds, Fund. Math. 47 (1959), pp. 35-44.
- [4] C. Kuratowski, Sur le problème des courbes gauches en topologie, ibidem 15 (1930), pp. 271-283.
- [5] Topologie II, Monografie Matematyczne 21, Warszawa-Wrocław 1950.
- [6] S. Mardešić and J. Segal, A note on polyhedra embeddable in the plane, Duke Math. J. 33 (1966), pp. 633-638.
- [7] s-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), pp. 146-164.
- [8] H. Patkowska, Some theorems about the embeddability of ANR-sets into decomposition spaces of Eⁿ, Fund. Math. 70 (1971), pp. 271-306.
- [9] Some theorems on the embeddability of ANR-spaces into Euclidean spaces, ibidem 65 (1969), pp. 289-308.
- [10] J. Segal, Quasi dimension type II, Types in 1-dimensional spaces, Pacific J. Math. 25 (1968), pp. 353-370.

Recu par la Rédaction le 16, 10, 1969

On lattices whose lattices of congruences are Stone lattices

by

Iqbalunnisa (Madras)

M. F. Janowitz proves in [3] that the lattice of congruences on any complete relatively complemented lattice is a Stone lattice and poses the question:—Find necessary and sufficient conditions on a complete lattice L for the lattice of congruences on L to become a Stone lattice. This note gives an answer to the above question. We also show that the lattice of congruences on any complete, weakly complemented, weakly modular lattice is a Stone lattice. This is a generalization of the result of M. F. Janowitz, proved by the fact that a complete, weakly complemented, weakly modular lattice is not always relatively complemented.

We further show that, in the case of a finite lattice L, the lattice of congruences on L is a Stone lattice if and only if, given any prime interval I of L, there exists one and only one minimal element in L_p/\sim less than $\{I\}$ (where L_p denotes the set of all prime intervals of L and \sim is the equivalence relation defined on L_p thus: $A \sim B$ if and only if A is a lattice translate of B and B is a lattice translate of A; and $\{I\}$ denotes the class containing I with respect to the relation \sim).

1. Complete lattices.

THEOREM 1. Let L be a complete lattice. The lattice of congruences on L is a Stone lattice if and only if for any congruence θ on L there exist a finite number of elements $0 = b_1 < b_2 < ... < b_n = 1$ such that either (b_{i-1}, b_i) has no non-trivial lattice translate annulled by θ or every lattice translate of (b_{i-1}, b_i) has a non-trivial lattice translate annulled by θ .

Proof. Follows from theorems 1 and 3 of [2].

COROLLARY. Let L be a complete weakly modular lattice. The lattice of congruences on L is a Stone lattice if and only if for any congruence θ on L there exists a finite chain $0 = b_1 < b_2 < ... < b_n = 1$ such that either (b_{i-1}, b_i) consists of single point congruence classes under θ or every subinterval of (b_{i-1}, b_i) has a proper part annuled by θ .