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characterization of locally connected continua
which are quasi-embeddable into #*

by
H. Patkowska (Warszawa)

1. Introduction. We shall consider metrizable spaces only. A map f of
a compactum X into a space Y is said to be an e-mapping if
diamf (y) < ¢ for every y ef(X). A compact space X iy said to be
quasi-embeddable into Y if for every &> 0 there is an e-mapping f: X > Y.
The problem of finding a characterization of locally connected continua
which can be quasi-embedded into §* (B*) has been raised by Mardekié
and Segal in [6] in connection with the following

THEOREM OF MARDESIG AND SEGAL. If P is a connected polyhedron,
hen the following statements are equivalent:

(a) P is embeddable into S,
(b) P is quasi-embeddable into S,

(¢y P does mot comtain any homeomorphic images of the Kuratowski
graphs K, and K, and any 2-umbrella.

The graph K, is the 1-skelton of a 3-simplex with midpoints of a pair
of non-adjacent edges joined by a segment and the graph K, is the
1-skelton of a 4-simplex. A 2-umbrella is the one-point union of a disk
and of an are relative to an interior point of the disk and an end-point
of the are. ‘

In [8] I have generalized that theorem, namely I have shown that
the equivalence of (a), (b) and (c) holds for each locally connected con-
tinuum P satisfying the following condition: There is a number &> 0
such that no simple closed curve § C P with diam§ < ¢ is a retract of P.
Another similar generalization has been found by J. Segal (see [10]).
He has shown the equivalence of (a) and (b) for locally connected con-
tinua which do not contain any homeomorphic images of the curves K,
and K, (described by Kuratowski in [4]).

In this paper we shall prove the equivalence of (b) and (c) for
arbitrary locally connected continua, i.e.
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THEOREM 1. A locally conmecied continuum X is ‘quasi-embeddable
into S if and only if @t does not contain any homeomorphic images of the
graphs K, and K, and any 2-umbrella.

Any set homeomorphic with 8% will be said to be a simple surface.
Theorem 1 immediately follows from

THEOREM 2. A locally connected comtinuum X .is quasi-embeddable
into BP if and only if X satisfies the conditicn given in Theorem 1 and X is
not a simple surface.

The next part of the paper is devoted to the proof of Theorem 2,

2. Some lemmas. Any continuum containing more than one point
will be called cyclic (in the sense of Whyburn) if it is not separated by
any point. The notions of a set entirely arcwise connected and of a cyclic
element will be useful for us. Recall that a subset 4 of a given locally
connected continuum X is said to be entirely arcwise connected (in X)
if 2,y ¢ A and « # y imply that each arc (in X) joining # and y is con-
tained in A. We shall base ourselves on the notion of a cyclic element
and of the properties of cyclic elements given in [5] (§ 47). They were
listed in [9], where the following two properties were also proved:

(2.1) Given two different points a,be X, the least closed and entirely
arcwise connected subset of X containing a and b is the union of an
arc L joining a and b and of all the cyclic elements of X which have
at least two points in common with L. Moreover, if By, B, are two
eyclic elements having this property, then E; ~ L is a non-degenerate
subarc Ly of L and By nBy=1L, A Ly=I; ~L,. (I denotes the
boundary of the arc L.)

(2.2) Let X = | J Ay, where A;CAsyq and A;= A, X 45 a set entirely

i=1
arcwise connected. If the mazimum of the diameters of the components
of X—Ay is equal to &, then limd;= 0.
=00

Now, we shall prove the following simple

Lmwma 1. Suppose that X C B is a locally conmected contimuum and
that o € X does not belong to the closure of any component of E*—X. Given
an ¢> 0, there is a simple closed curve 8 C X —(w,) such that diam§ < e
and such that z, belongs to the bounded component of B*— 8.

Proof. By [5] (p. 363), there ig only a finite number of components
of #—X, say i, ..., C;, with diameter greater than /3. Let Q,C B
be any disk such that diam@, < ¢/3, Q,~ Ji= 0 for i= 1,..,0 and
such that &, € @). We can assume that @, ~ (B*— X) - @. Let A denote
the um'on' of @, and of the closures of all components ¢ of H,— X such
that C ~ @, # @. Since each set J ig a locally connected continuum (cf. [5],

im© Locally connected continua which are quasi-embeddable into E* 309

p. 360) and since the diameters of these components converge to zero
provided their number is infinite, it follows that 4 is a locally connected
continuum. Evidently, diam A4 < e.

Let B denote the union of 4 and of all bounded components of E*—A.
Then B is a locally connected continuum which does not separate E?
and diam B = diam A < e Let @ denotg the cyclic element of B which
containg z,. Since BD A D@, and x, €@y, it follows from [5] (p. 238,
No. 10) that @, C . Thus @ is a eyelic locally connected continuum which
dees not separate E®. Consequently, we infer from [5] (p. 380, No.11)
that @ is a disk such that z,¢{. Evidently, @ C Bd(B)C Bd(4)C X.
Thus § = Q is the required simple closed curve.

The following result of S. Claytor (see [2], p. 632) is the main one
which makes the proof of Theorem 2 possible.

Lemma 2 (Claytor). Fach cyclic locally commected continuum which
does mot contain homeomorphic images of the graphs K, and K, is em-
beddable into S

3.A proof. of Theorem 2. Since the necessity of the conditions given
in Theorem 2 is clear (cf. [6], p. 637), it remains to prove that they are
also sufficient. Thus, let X satisfy these conditions. First, notice that:

(3.1) X does not contain any simple surface.

Indeed, if S CX is a simple surface then X—8 # @. Since X ig
arewise connected, it follows that X contains a 2-umbrella, which contra-
diets the assumption.

Given an ¢ > 0, we have to prove that there is an e-mapping of X
into E’. We shall first show that the following additional assumption
can be made:

(8.2) There is a finite set FCX such that the least closed and entirely
arcwise connected subset of X comtaining F is equal to X.

Indeed, let 7, denote any finite subset of X such that for each
point z e X there is a point y € Fy such that o(z, y) < 1/i, wherei =1, 2, ...
Let A; denote the least closed and entirely arcwise connected subset

p
of X containing the set L_cjlf’i Assume that no Ay is equal to X. Then

the sets 4 satisfy the ‘:Ls;umptions of (2.2), and therefore there is an
index %, such that the diameter of each component of X—Ay, is less
than ¢/3. Let 7, denote the retraction of X onto A such that for each
component ¢ of X—A4;, we have (C)= C—C (cf. [5], p. 263, No. 5).
Suppose that there is an e/3-mapping fy: Ay, —>E% Then fory is an
e-mapping of X into E?, which implies that the additional assumption
(3.2) can be made. (Notice that in view of (3.1) the set Az, C X satisfies
analogical assumptions to those satisfied by X.) )
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Now, let us remark that:
(3.3) HBach cyclic element of X is embeddable into P

Indeed, let E be a non-degenerate (ie. containing more than one
point) cyclic element of X. Then B C X is a cyclic space and Lemma 2
immediately implies that E is embeddable in §%. By (3.1), we obtain (3.3)

If F is a cyclic element of X, then a point z, ¢ B will be called
a Buclidean point of B provided @, is mapped onto an interior point of
the image of E under some imbedding of ¥ into E* We shall prove thap:

(3.4) For every ¢ > 0 there is an c-mapping fi X —E? such that for each
Yo e f(X)— P —f(X) the set (9, consists of emactly ome point w,
and there is a cyclic element B of X such that m, is a Buclidean point
of B (which implies that 2, ¢ B—X— B, since X contains no 2-um-
brella).

The proof of (3.4) will be inductive with respect to the number m
of the points of the set F mentioned in (3.2). Evidently, we can assume
that m > 1. First, we shall consider

The case m = 2. Let F consist of the points a; and a,. In virtue
of (2.1), X is the union of an are L joining these points and of a sequence
(finite or not) Ey, B,, .. of the non-degenerate cyclic elements of X
(cf. [B], p. 238, No. 9), where E; ~ L is a non-degenerate subarc Liof L
and B;~ By = L; ~Ly= L; n L; for 4 3 j. Notice that we can assume
that the sequence By, F,, ... is finite. Otherwise, by [5] (p. 238, No. 9),

there is an index 7, such that the diameter of each element B, with n > n,
No

is less than /3. Evidently, there is a retraction 7, of X onto L w |J By
=1

such that r,(FE,) = L, for n > n,. Further we reason as in the proof
that (3.2) can be assumed. The condition given in (3.4) will be satisfied
under the superposition of 7, and of a suitable map of r(X) into E?
(provided it is satisfied under this map) becanse for each point z, € By—
— 1o X)— B, with n < no the set 7y (1) consists of the point x, only.
Thus we can and do assume that X has exactly #, non-degenerate
cyclic elements and we shall prove (3.4) by induction with respect to #,.
If ny= 0 then X =1L and (3.4) is trivial. Now, let n, > 1 and sup-
pose (3.4) to be true for each space Y satisfying analogical conditions
to those satisfied by X and having less than u, non-degenerate cyclic
elements. Consider the cyclic element E, and let b,, b, denote the end-
points of the arc L, = F, ~ L. By (3.3), there is an embedding h: B, ~F*.
Let B1= h(Eh), b;="h(b;) for i =1, 2. Evidently, we can assume that
X—B, +# @ and let us assume that b,, b, e X— B,. (If b, or b, is an interior
point of By, then there is no necessity of comsidering it.) Since X does
not contain any 2-umbrella, it follows that b;, bse B°— ;. Let us as-
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sume that none of these points belongs to the closure of a component
of B*—E;. If this is not true then the proof simplifies, because the retrac-
tion r: Bi—F; we are going to construct may be assumed to be the iden-
tity outside a neighborhood of the point b; which satisfies this condition.
Let 7> 0 be a number selected so that for each set 4 C Ej the
inequality diamA4 < % implies that diamk™*(4) < /2. Apply Lemma 1
to the set E; C E* and to the points bj, b; € E;. Thus, there are two disks
@1,0.C E? such that @, ~Q,=@, diam@; < 7, Si=Q;C E; and such
that b} e (s for 4= 1, 2. Since b; ¢ B*— Fy, there is a retraction r;: Q4 ~
B8 (i=1,2)
Congider the map r: FB;—H; defined as follows:
&z if 2eB—Q—Q,,
ra)=me) if zeQ ~H,
1) i weQyn Bi.

It is easily seen that r is an 7-mapping, which retracts Bi onto
Bi—0Q,—§,. The points r(b}) belong to the closure of a eomponent of
E*—7(E;) either and for each point zer(B;)— 172—«4"(E1) we have
r &) = (). .

Now, for ¢=1,2 let ¥; denote the closure of the component of
X — B, bounded by the point b;. It is clear that ¥; is the least cloged and
entirely arcwise connected subset of X (and of itself also) containing the
points a; and by. Since Y; has less than n, non-degenerate cyclic elements,
it follows that it satisfies the induction hypothesis. Thus there is an
/2 mapping fi: ¥;—~E* satisfying the analog of (3.4). Let ¥; == fi Yy,

= fi(b:). Since by e ¥Y; ~ X —¥; and X does not contain any. 2—umbrella,,
113 follows from (3.4) applied to ¥, that b; ¢ B*— 7. By [5] (p. 17), there
is a number 6> 0 such that BC ¥, and diamB < ¢ imply diamf;(B)
< ¢/2. By the same method as that used to construct the retraction r,
we can construct a §-mapping s; which retracts Y; into ¥; such that .
the point si(bs) belongs to the closure of a component of B*—sy(¥,) and
such that for each point z e sy ¥Vi)—H—s;(¥,) we have 874 (@) = ().
Then it is easy to observe that there is a homeomorphism h; of si(T:)
into @ such that

(3.5) Risd ¥) ~ 85 = r(b}) = hisi(by) .
Now, let

X'=r(B) v h131(3?) U hysy(Yy) .
It follows from the construction that hys;(¥,) A hysy(¥;) =@ and
Resi( o) A r(B1) = r(b7). Define f: X X' as follows:
rh(x) if zel
fa) = { . o
hi.hfg(w) if &Te Yf, b= 1, 2.
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Since ¥, ~ ¥, =0 and Y;~ B, = (b;), we infer from (3.5) that f is
a map. If yef(B,) and y £ f(by) for i=1,2, then diamf (y)< &2
because of f~(y) = ™7 (¥), because of » being an n-mapping and with
respect to the definition of 7. If y « f(¥:) and y 5 f(b), then diamf~(y)
< ¢/2, because of f(y)=fi'si'hi'(y), because of h; being a homeo-
morphism, §; being a §-mapping and with respect to the definition
of 5. Pinally, i y=f(b) then fy)=J[(f1B)7 ()] v (AT )],
diam (f1B,) " (y) < &2 and diam(f|¥:) N (y) < ¢/2, which implies that
diam f(y) < &, because [(f1B) )] ~ [(fI¥0)*(9)] = (bs). Thus f is an
s-mapping of X onto X' C B2

Suppose that y, is an interior point of X’ .in E’. Then y, # f(bs)
for i =1, 2. If y, « f(B;) = r(E3), then " *(y,) = (y,) is an interior point
of B}, which implies that f~Y(y,) = A~ (y,) is a Euclidean point of B,.

If 9, € f(X:) = hysi(Ty), then the definitions of h; and s imply that

57"h7*(y,) is an interior point of ¥;. Since f; satisfies the analog of (3.4),
we infer that f'(y,) = fi 's7 'h7'(y,) satisfies the condition given in (3.4).
Thus the induction step and therefore the proof of (3.4) in the case of
m = 2 i3 completed.

The induction step. Now, suppose that the set F C X mentioned
in (3.2) consists of m points, where m > 2, and assume (3.4) to be true
for each space satisfying analogical assumptions to those satistied by X
with the corresponding set having less than m of points.

Fix a point a « F and let ¥ denote the least closed and entirely arc-
wise connected subset of X containing the set F—(a). We can assume
that ¢ ¢ ¥ and let C denote the component of X —Y containing @. Then
C— C consists of exactly one point b (cf. [5], p. 232, No. 4). Let Z denote
the least closed and entirely arcwise connected subset of X containing a
and b. Then Z C (. Since the set ¥ v Z is closed, entirely arcwise con-
nected (cf. [5],_1). 232, No. 8) and it contains F, it follows that ¥ v Z = X,
whence Z = C.

Now, it is clear that the sets ¥ and Z both satisfy the induction
hypothesis, and therefore there are two /4 -mappings, f;: ¥ B fy: Z ~EF,
which satisfy the conditions analogical to those of (3.4). By these con-
ditions, fi(b) e BP—f(Y) and fy(b) e B®—f,(Z). Further proceedings are
similar to the induction step for the case of m = 2. We construct two
retractions ry: fi( ¥) >f(Y), r,: f(Z) ~f,(Z) such that r; fiare /2 -mappings,
the point 7, /,(b) (rfs(b)) belongs to the closure of a component of F*— 7 fi(Y)
(E*—1.f5(Z)) and which are such that r; Ya) = () for each interior point
of nfi(Y) or r.fy(Z) in E*. Next, we find a homeomorphism % of rofolZ)
into B* such that hrfy(Z) ~ 1 fy(T) = hryfy(b) = 7,.fi(b) and we construct

an e-mapping f of X=Y U Z onto hrofl(Z) o v, fi)(Y)C B®  satisty-
ing (3.4).
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4. Compacta quasi-homeomorphic with %, Given two compact spaces
X,Y, X is said to be Y-like (cf. [7]) if for every &> 0 there is an
s-mapping of X onto ¥. The spaces X and Y are said to be quasi-homeo-
morphic if X is Y-like and ¥ is X-like. Tt has been proved by Ganea

. (see [3]) that each ANR which is quasi-homeomorphic with §* is a simple
. surface. The following corollary to Theorem 2 generalizes Ganea’s result:

THEOREM 3. A compactum X is quasi-homeomorphic with & if and
only if it is a simple surface.

Proof. Let X be a compactum which is quasi-homeomorphic with S2.
Since X is a continuous image of 8% it follows that X is a locally connected
continuum. Since X is §%like, X does not contain any homeomorphie
images of the graphs K; and K, and any 2-umbrella. Suppose that X is
not & simple surface. Then, by Theorem 2, X is quasi-embeddable into E2.

Fix §* = [# ¢ B*| |#| = 1]. Since §* iy X-like, there is a map f of §*
onto X such that diamf’"l(m) < 1 for each » e X. Choose a number > 0
such that, for each set 4 C X, diam A < 7 implies diamf (4) < 1. Let ¢
be an #-mapping of X into E® Then ¢f is a map of S into E* such that
no pair of antipodal points of 8* is mapped onto the same point. This
contradicts Borsuk’s well known antipodal point theorem (see [1]).

Remark. Using other methods Marde$i¢ and Segal have proved
the following theorem (see [7], p. 163): Let X be a locally connected
continuum which is either cyclic or 2-dimensional. Then X is 8*like
if and only if X is a simple surface. Let us notice that the methods of
Mardekié and Segal permit us to prove the following sharper

THEOREM 4. A locally commected comtinuum is S*-like if and only if
it is either a dendrite (coniaining more than one point) or a simple surface.
Proof. First, let us show that the segment I = (0,1> is §*like.
The proof is similar to ‘that of Example 9 in [7]. Let g denote a map of
the set I xS onto § which collapses the sets (0) x 8* and (1) x 8* to points
and which is-one-to-one otherwise. Let # be a natural number such that

—ib—<§ and let I; denote the segment <%1,—:; for i=1,2,..,n Let fi

be a map of I; onto I;x 8. We can assume that the maps f; agree, and
then they determine an e-mapping f of I onto I xS8. Then ¢f is an
&-mapping of I onto S

Now, if X is a dendrite (containing more than one point), then X can
be e-mapped onto a tree and each tree is §°-like, as can be proved by
a method similar to that used in the case of a segment. .

On the other hand, if X is a locally connected continuum which
is 8*-like and dim X > 2, then dim X = 2 (cf. [5], p. 64) and, by the above
mentioned result of Marde§ié and Segal, X is a simple surface. If dim X = 1
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and X is not-a dendrite, then X contains a simple closed curve, which
is a retract of X (cf. [5], p. 271). Consequently, the first homology group
of X in the sense of B. Cech H,(X, Z) is not trivial, which yields a contra-
diction with Theorem 1 of [7], because H,(S8?% Z) = 0.
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On lattices whose lattices of congruences
are Stone lattices

by

Igbalunnisa (Madras)

M. F. Janowitz proves in [3] that the lattice of congruences on any
complete relatively complemented lattice is a Stone lattice and poses
the question:—Find necessary and sufficient conditions on a complete
lattice L for the lattice of congruences on I to become a Stone lattice.
This note gives an answer to the above question. We also show that the
lattice of congruences on any complete, weakly complemented, weakly
modular lattice is a Stone lattice. This is a generalization of the result
of M. F. Janowitz, proved by the fact that a complete, weakly comple-
mented, weakly modular lattice is not always relatively complemented.

‘We further show that, in the case of a finite lattice I, the lafitice
of congruences on L is a Stone lattice if and only if, given any prime
interval I of I, there exists one and only one minimal element in Ly~
less than {I} (where L, denotes the set of all prime intervals of L and ~
is the equivalence relation defined on L, thus: A ~B if and only if 4 is
a lattice translate of B and B is a lattice translate of A4; and {I} denotes
the class containing I with respect to the relation ~).

1. Complete lattices.

TurorREM 1. Let L be a complete lattice. The lattice of congruences
on L is a Stone lattice if and only if for any congruence 6 on L there exist
a finite number of elements 0= b; < by < ... < bp==1 such that either
(Bie1, bi) has mo mon-trivial lattice translate annulled by 6 or every lattice
translate of (bi-1, by) has -a non-trivial lattice translate annulled by 0.

Proof. Follows from theorems 1 and 3 of [2].

CorOLLARY. Let L be a complete weakly modular lattice. The lattice
of congruences on I is a Stone lattice if and only if for any congruence 6 on L
there exists a finite chain 0 = by, < by << ... < by = 1 such that either (bi-1, bs)
consists of single point congruence classes under 6 or every subinterval
of (bi-1, b:) has a proper part annuled by 6.
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