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Proof. Same ag Theorem 2.9.

THEOREM 4.9. Let S = {G.: ac A} be a locally finite Lebesgue cover
of a wiiform space (X, ). Then 'S has a A -refinement which is locally fimite
and Lebesgue.

Proof. By the proof of Theorem 3.2 above, it suffices to show that
8= {6 acd} and F = {F: ae A} are Lebesgue covers of X and
is o uniform shrink of G, then X = /L {G., X—F,} is Lebesgue in the

aE€.

uniform sense. As before we may assume that there exists U e U such
that F. = {z: U(2) C .} for all a ¢ 4. Choose V ¢ U such that V is sym-
metrie and V*C U. Let # ¢ X and define A; = {a e A: V(x) C G,}. Note
that § ¢ 4, implies that V(z) n (X — @) # B, 50 let ze V() ~ (X —Gp).
Then for y e V(x) we have (z,y) ¢ V and (%, 2) ¢V, so that (v, 2) ¢ V:C U.
Thus # € U(y), and hence y ¢ Fy. Therefore V(x) ~ Fy= G forall e A—A,.
Finally we have V(z)C [ ﬂ G [ ﬂ (X —Tp)], so that 3 is Lebesgue.

THEOREM 4.10. Every locally f'Lmte Lebesgue cover of a uniform space
(X, W) is Lebesgue normal.

5. Concluding remarks. It is still unknown whéther ah arbltrary
Lebesgue cover of a metric space (X, o) has a locally finite Lebesgue
refinement. Thig problems seems very difficult. An affirmative answer
to this question would answer a number. of unsolved problems in Di-
mension Theory as well as give the extremely _Strong property that every
Lebesgue cover is Lebesgue normal.
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On compactifications with continua as remainders

by
J. W. Rogers, Jr. (Atlanta, Ga.)

1. Introductxon A compactification of a space X is a compact Haus-
dorff space X with a dense subspace X' homeomorphic to X. The set
X X' is called a remainder of X in X. We are concerned here with spaces
that have every continuum (compact connected metric space) as a re-
mainder in some :compéactification. Aarts and van: FEmde Boas have
shown [1] that every locally compact, non-compact, separable metric
space is such a space. Harlier, in [4], K. D. Magill had given an argument
that, as observed in [2], shows that every Peano continuum is a re-
mainder in some compactification of any locally compact, non-pseudo-
compact Hausdorff space. (A space is pseudocompact if and only if there
is no unbounded real-valued continuous function on it.) More recently,
Steiner and Steiner have observed [5] that the methods of Aarts and van
Emde Boas are also applicable to Magill’s theorem. We show here that
their methods can in fact be used to generalize both their theorem and
Magill’s, i.e. we show in Theorem 2 that non-pseudocompactness is
a necessary and sufficient condition on a locally compact Hausdorff
space X in order that every continuum be a remainder of a certain type
of X in some compactification of X.

It would be of interest to characterize the spaces which have every
continuum as a remainder in gome compactification, without any added
conditions on the remainder. 'We give in Section 3 an example to show
that there is a pseudocompact space with this property.

2. Theorems.

DrrrnNITIoN. A collection G of subsets of a space X is discrete (in X)
if and only if each point of X lies in an open subset of X which does not
intersect two elements of @.

THEHEOREM 1. A completely regular space is pseudocompact if and only
if there is mo infinite discrete collection of open subsets of it.

Proof. If a space X is not pseudocompact, it is not difficult to get
a map f from X into the non-negative real numbers such that f(X) contains
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every non-negative integer. For each positive integer =, let O, denote
the set of all points of X whose images lie in the segment (n—3%, 7+ 1).
Clearly 0y, 0,, ... is an infinite discrete collection of open sets in X.
Suppose that X is pseudocompact, but there is an infinite discrete
collection Oy, Oy, ..., of distinet open subsets of X. It follows that the
closures of 0; and O, are mutually exclusive-if ¢ # j. For each #, let P,
denote a point of O,, and let f, denote a continuous function from X
into [0,n] such that fu(Pn)=n and fu(X—0)= 0. Let f(4) = fa(4)
o0

if A is a point of On, and f(4) =0 if A is & point of X —[J Oy. Then fis
i=1
an urbounded real-valued continuous function on X, which is impossible.

DEFINITION. Suppose X is a compactification of a space X. Then
the remainder R of X in X is sequentially accessble if and only if it is
true that if P is a point of R, then there is a sequence {O:} of distinct
open subsets of X which is discrete in X ~—P.

TrEoREM 2. If X is a locally compact Hausdorff space, then every
continuum is a sequentially accessible remainder of X in some compactifica-
-tion of X if and only if X is not pseudocompact. !

Proof. We first show that the first condition implies non-pseudo-
compactness by considering the one-point compactification X=Xvo
of X. Since o is sequentially accessible, there is a sequence {0} of distinct
open subsets of X which is discrete in X — o= X. So from Theorem 1,
X is not pseudocompact. :

Conversely, suppose that X is. not pseudocompaet. Then from Theo-
rem 1 and the local compactness of X there is an infinite discrete collection
0y, 0, ... of distinct open subsets of X whose closures are compact. For
each i, let P; denote a point of O;. Then since X is completely regular,
there is a map fir X~—[0,1] such that fi(P:) =1 and f(X—0;) =0.

Now suppose that K is any non-degenerate continuum (if K is de-
generate, the one-point compactification has the desired properties). As
in [1], we consider K to be a subset of the Hilbert Cube I, and take
a countable dense subset Ay, 4,,... of distinct points of K. Let d be
a metric for I”. For each positive integer j, there is a sequence e ,
i, ..., %, of distinet points of K such that Cf= 4,,CL = 4;, and
it 0.<<i<y, then d(0}, Oyy) <1fj. If 0 <i<my, let N(C}) =4, and

j—1
if j>1and 0 <i<ny,let N(O)= i+2;n,. Tor each positive integer i,
=

n
let a;= C3_,0%, where n and j are the positive integers such that
e=1

N .(05;) =1, and 0%_,0] is the straight-line interval in I* from 0!, to O2.
Clearly, for each <, there is a map g;: [0, 1]—a; such that gi(1) = 07, and
9u(0) = Ci = 4,. o
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For each point P of X, let h(P) = 4, if P lies in X— | O and let
=1

h(P) = gifi(P) it P lies in Oy for some positive integer 4. Using the fact
that the collection Oy, O,, ... iz discrete it is easy to show that k is a con-
tinuous transformation from X into I%. We observe that

(1) A( G P;) contains | J4: (I i=N (C’,’;,) for any positive integer j,
i=1 i=1

then h(Pi) = gifi(P:) = g:(1) = O;, =4;),
(2) it &> 0, there is a positive integer I such that each'point of

I
R(X— | 0y) lies at a distance less than & from some point of K (Pick
i=1 )

13
k>1/e and I> Y m. Then if ¢>I and i= N(C}), then j>& and
e=1 .
1/j < & Bub h{0;) lies in a;, each point of which lies at a distance less
than 1/j from one of the points 03, ey Gf.,. Also, h(X—(Ul0¢)=A,,,
a pbint of K.), and : )

(3) if P is a point of K, there is an infinite discrete (in X) collection
Vi, V,, .. of open sets in X such that the collection h(V3), h(V,), ... i8
diserete in I”—P (Pick inductively an increasing sequence i, #ly, ... of
positive integers such that for each 4, h(Pn) = Am for some positive
integer m., and the sequence {4} of points, all distinet from one another
and from P, converges to P. Then for each positive integer j, let V; de-
note the set of all points @ of Oy, such that d(Am, (@) is less than } the
distance from A, to any other point of the sequence {Am,}.).

Now, as in [1], we consider the graph H of hin a(X) x I, where «(X)
denotes the one-point compactification X w o of X. Since & is continuous,
H is a closed subset of X x I which is homeomorphic to X. Thus H is
a compactification of X with remainder H—H in o xI".

H—H contains o x K, for suppose P is a point of K, and U and V
are open sets in «(X) and I containing o and P, respectively. Then

XU is compact and can contain at most finitely many points of iL=J1 Ps.

So by observation (1) above, h(U) contains all but at most finitely many

of the points of GA;, which is dense in XK. There is a point ¥ of U, then,
i=1

such that & (®) lies in V, so that (B, h(B)) is a point of H in U xV distinet

from (o, P). Thus each point of w xK is & limit point of H. .
Also, w XK contains H—H, for suppose (w, Q) is a point of ‘w.XI y

and 1d(Q, K)= &> 0. Let V denote an open subset of I containing @

of diameter <e, and I denote a positive integer as in observation (2)
I

above. Then no point of A(X— |J 0s) is in V. Let U denote the open set
R
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r .
in o(X) containing o such that U—w = X—|J 0;. Theuw U xV is an
i=1

open set in «(X)x I” containing (w, @) but no point of H.

So the remainder of X in H is o %X, which is homeomorphic to K.
We need only show that o x K is sequentially accessible. Suppose P is
a point of K, and V,,V,, ... is a sequence of open sets in X a§ given in
observation (3) above. For each n, let W, denote the set of all points
(B, h(B)) of H such that E is in V,. That the sequence {W;} of open sub-
sets of H is discrete in H—
observation (3).

"3. An example. It is well known that the only compactification of
the first uncountable ordinal [0, 2), with the order topology, is the one-
point compactification, and that [0, 2) is pseudocompact. So not every
non-compact locally compact Hausdorff space can be compactified by
the addition of any continuum. We now give an example to show
that there is a pseudocompact, .locally- compgpet . Hausdorff space X
which has every continuum as a remainder in some compactification,
which shows the need for the requirement of sequentlal accessibility in
Theorem 2.

There - are: only ¢ -topologically ~différent “¢ontinua. Let ¢ denote
% transformation from the number interval [0, 1] into the class of all
continua sueh that (1) if K is a continuum, then K is homeomorphic
to C(t) for some 7 in [0, 1], and (2) if 0 <% < 1, < 1, then C(t) and C(1,)
are not homeomorphic.

Let M =[] C(t). By the Tychonov theorem, M is compact. Let

tefo,1]

=[0,9) x M. Then X is pseudocompact ([3], Theorem 9.14, p. 134).
Also, X=[0,0]1xMis a compactification of X.

Now, each continuum K is homeomorphic to ¢ (a) for some a in [0, 1].
We use the projection map ps: M->C(a) to attach O(a) to X. Let X’
= X v C(a) and define f: XX’ such that f is the identity on X, and
if (2, P)is in 2 XM, then f(2, P) = p4(P). Topologize X’ by taking as
open sets those subsets O of X’ such that £7(0) is open in X. Then f is
a continuous transformation from the compact space X onto the Haus-
dorff space X', so that X’ is a compactification of X with remainder
homeomorphic to K.
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