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Regulated semilattices and locally compact spaces

by
S. Leader and L. Finkelstein (New Brunswick, N. I.)

1. Introduction. In 1937 M. H. Stone [6] showed that every Boolean
algebra lives in some totally disconnected, compact, Hausdorff space as
a topological base of compact open subsets. In 1962 H. De Vries [2]
extended Stone’s theory to include all compact, Hausdorff spaces by
equipping the Boolean algebra with a suitably axiomatized ‘‘compingency”
relation a<b. The Boolean algebra is represented as a base of regular,
open sets [3] with a <b corresponding to @ # A C B. Stone’s theory is
the special case of De Vries’ theory with & <b taken to be 0 # a < b.

We present here a generalization of De Vries® theory with the Boolean
algebra replaced by a semilattice [7]. The latter involves ouly the meet.
Join and complementation play- no-explicit role in our theory. Moreover,
since our semilattice need not have an identity our theory applies to
locally compact spaces. Our “regulator” differs from the “compingency”’
of De Vries in that we find it convenient to make a <b correspond to
A C B with the special case 4 = @ included.

A classical example of our theory is the construction of the real
line from the semilattice of bounded, open intervals of rationals. In the
other direction our theory is a special interesting case of a general theory
presented in [4].

At the end of our paper we consider the case in which our semilattice
is a lattice.

2. Regular semilattices. Recall [7] that a semilattice (8, -)isaset 8
with a binary operation - (denoted hereafter by juxtaposition) which
is associative, commutative, and idempotent. We define the partial
ordering a < b in S t0 be a = ab. We shall call a semilattice (8, *) reqular
if the following two conditions hold:

(8,) There exists 0 in 8 such that 0a =0 for all a in 8.
(8,) If wa =0 for all ® in 8 such that &b = 0, then a = ab.

(*) Supported by the National Science Foundation TUndergraduate Research
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In terms of the ordering, ab is the greatest lower bound of a,b.
0 is a lower bound of S. (8,) is equivalent to
(S5) Given p < g there ewists ¢ # 0 such that cg =0 and ¢ < p.

Let A and B be subsets of S. We say B. §-covers 4 if every member
of § which annihilates B annihilates 4. Thus (8,) gives the equivalence
of a < b and b §-covers a. We say A clings to B if ab # 0 for all a4 in A
and all b in B. An wlircf.lter in a regular semilattice 8 is a subset 7 of &
which is maximal with respect to the property
(Fo) @yy .oy an € F implics ayay ... an # 0.

Equivalently, an ultrafilter is a subset I of § such thab
(F1) a,beF implies ab el

and

(F,) ceF if and only 1if ¢ clings to F.

3. Regulated semilattices. A regulated semilattice (8,-, <) consists
of a regular semilattice (§,-) with a binary relation (the ‘regulator” <)
on § subject to the following axioms:

(A;) a<b implies a <D.

(A:) 0<0.

(Ag) If a<b and c<d then ac <bd.

(Ay) If a<b and b<c then a<e.

(A;) Given p<g wih g+ 0 there emist finite sequences ay, ..., a, and

Uiy ooy bu in 8 such that {a; ..., an} S-covers p, by # 0 for some i,
and a;<bi<q for all 4. '

(Ag) Given a,b,c with a<b there ewist fimite sequences iy ey du and
b1y ey bn in 8 such that (b, dy, ..., dn} S-covers ¢, aeq= 0 for all i,
and di<e; for all .
(A7) If {ary ..., an} S-covers p and ai<q for all © then p <q.
For A, B subsets of a topological space we define .4 € B to mean
that the closure 4 of A is contained in the interior B° of B,

. TEEOREM 1. Lt X be o locally compact, Hausdorff space with a topo-
logical base 8 swch that

(i) Every member of § is the interior of a compact subset of X.
(ii) A, B eS8 implies A ~BeS.
(iii) @ e 8.

Then (8, ~,€) is a requlaied semilattice.

iom®

Regulated semilattices and locally compact spaces 51

Proof. (ii) makes (8, ) a semilattice. (iii) gives (S,). (8, holds
because 8 i3 a base whose members are regular, open sets by (i) ([3]).
Now (A;)—~(A,) clearly hold for € in any topological space. So does (A,)
once the reader has verified that {Ci,..., 0y} §-covers ¢ if and only if
¢C C, v ...w Cy. Using this equivalence the reader can readily derive
{A;) and (Asg) from (i) since loeally compaet, Hausdortf spaces are regular.

4. The representation theorem. Our main result is that every regulated
gemilattice can be represented in the form given by Theorem 1. The
proof will be given by a series of lemmas.

THEOREM 2. Given a regulaied semilatiice (S, -, <) there exists a unique,
locally compact, Hausdorff space X with a base § of interiors of compact
sets such that (8, ~, €) is isomorphicto (8, -, K). X is compact if and only
if the semilattice (8, -) has a finite subset whose annihilator is trivial.

LemMMA 1. Let ' be a subset of 8 satisfying (Fy). Let r cling to F and
{@yy oy an} S-cover r. Then some a; clings to F.

Proof. Suppose no a; clings to F. Then we could choose b; in F with
aby=0fori=1,..,n Let b=>,... by. Then b ¢ F by (F,). Also ba;=0
for all 4. Therefore, since {a, ..., @,} §-covers r, br = 0. But this contra-

- diets the hypothesis that r clings to F.

Define an end B to be a nonempty set of nonzero elements of §
such that

(B,) a,bel implies ab e B.
(By) If beE then a<b for some a in .
(By) If p<q and p clings to B then qe E.

LummA 2. If B is an end, then B dlings to H.

Proof. Apply (B,) and the condition 0 ¢ B.

Lemma 3. If B is an end, p < g, and p B then g B.

Proof. By (B,) there exists » in ¥ with r <p. By (A)r<q.B0qeE
by (E;) and Lemma 2. .

LeMMA 4. Given g.7% 0 there ewists an end B to which q belongs. -

Proof. Using (A;) with p = 0, (A,), and (A,), choose b # 0 with b <€q.
By the Axiom of Choice b belongs to some ultrafilter F in 8. We define E by
(41) p e it and only it there exists a member 7 of F with r <p.

By setting 7= b in (4.1) we see that g < B. Moreover, gince 0 ¢ P,
(4,) and (4.1) imply 0 ¢ . Hence, to show that B is an end we need only
verify (By), (B,), (Hs). ) .

It pye B for i =1, 2 then (4.1) yields r; in F with r¢<p¢. By (A3)
77y < P1Py. AlSo 1,75 ¢ F by (Fy). So 9.9, € B by (4.1). Hence (B,) holds.

4*
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Given p in E choose 7 in accordance with (4.1). By (As) choose an
9-cover {a,,..,an} of r together with by, ..., b such that a;<bs;<p.
By Lemma 1 some a; clings to 7, hence belongs to F by (F,). So by (4.1)
the corresponding b; belongs to E. 8o (E,) holds.

Let p <g and p cling to B. Apply (4;) to get a; and b:. By (E,) and
TLemma 1 we may assume that a, clings to H. Choose any » in F'. Apply (A,)
0 ay, by, 7 to get di<e; such that {b;, dy, ..., dn} §-covers r and eja; =0
for i=1, ..., n. Then by (4.1) no d; belongs to F since no e; can belong
to E because ‘a, clings to B but a,e;= 0. Therefore b, ¢ I' by Lemma 1
and (F,). Since b, <g from (A;), ¢ € B.by (4.1). 8o (H;) holds.

LEMMA 5. The following are equivalent:
(i) g clings to every end to which p belongs.
(i) p < ¢

Proof. Suppose (ii) false. Then choose ¢ in accordance with (S).

By Lemma 4 there is some end F to which ¢ belongs. Then p ¢ B by
Lemma 3. But ¢ fails to cling to B since ¢g = 0. So (i) is false. Thus,
(i) implies (ii). The converse follows from Lemmas 2 and 3.

Let X be the set of all ends from our regulated semilattice. Let [¢] be
the subset of X consisting of all ends to which the element ¢ of § helongs.
That is,

(4.2) Belq] if and only if qe B.
LemMA 6. [ab] = [a] ~ [b].
Proof. Apply (E,), Lemma 3 and (4.2).
LeMuMA 7. [q] = O if and only if ¢= 0.

Proof. [0]=@ by (4.2) since 0 belongs to no end. The converse
follows from (4.2) and Lemma 4.

LemwA 8. The set 8 of all [q] with ¢ belonging to § is a base for a topo-
logy in X.

Proof. Consider any member E of X. Let G be the set of all [¢] in §
to which ¥ belongs. We need only show G is nonvoid and directed down-
ward by inclusion [5]. Since by definition every end is nonempty there
exists some g belonging to E. By (4.2) [q] € G. Let [a] and [b] belong to B.
Then [ab] € G by (4.2) and (E,). 8o by Lemma 6 B is directed downward.

Lemwma 9. In the topology given by Lemma 8 [ql, the closure of [g], i
the set of all ends which cling to q.

Proof. The proof follows from the following chain of equivalent
conditions:

Belg)

B ¢[a] implies [#] ~ [q] # O. (Lemma 8).
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E e [2] implies [zq] # ©. (Lermnma 6)
z ¢ B implies @q # 0. ((4.2), Lemma. 7)

E clings to g. (Definition).

TmmMA 10. [q] 45 o regular open set: [g] = [q].

Proof. The proof follows from the following chain of equivalent
conditions.

Ee rqjo

T e[p]C gl for some p. (Lemma 8)

There exists 2 membar p of F such that g clings

to every end to which p belongs. ((4.2), Lemma 9)

p < ¢ for some p in E. . (Lemma 5)
ge B ‘ (Lemma 3)
B e[ql ((4.2)).

TEmmA 11. If p <q then [p] C [q].
Proof. Apply Lemma 9, (B;), and (4.2).
TEMMA 12. The following are equivalent:
(1) {ryy ooy Ta} S-covers 1.
(ii) If an end B clings to v then B clings to some 71.
(i) ] Clrad v - v [l
Proof. (i) implies (il) by Lemma 1. Conversely if (i) is false we can
choose ¢ such that gr # 0 and gre= 0 for all i. By Lemma 4 gr belqngs
40 some end E. So both ¢ and r belong to B by Liemma 3. Hence B clings
to » by Lemma 2. But B clings to mo r; sinee gry= 0. So (ii) is false.
Lemma 9 gives the equivalence of (ii) and (iil)-
TEMMA 13, Given r there ewist fonite sequences Diy 4jy 73 =1y, m)
such that
() {rey ey ™m} 8-covers 1,
(ii) rs < gy <py for all j. ‘
Moreover, gwen p with 1 <p we con also fulfill
iii) py<p for all j. _
g?r)oﬂ. 11:1 {fiew of (A;) we can ignore the trivial case r = 0. Given
r 5 0 apply (As) and (A,) with a= b =Q and ¢= r‘to get dy<es for
i=1,..,n so that the ds §-cover 7 If we ?Jre afso given '{"<5p use (;’36)
instead of (Ag) to gain the additional condition e; <. In elt}}er case g;
each d; # 0 apply (A;) to d:i<es to get ; and g; for mi—1 <) < my V;l‘
my= 0 such that for these j’3 the 7’8 §-cover dy and_“rfél qjées—- or
these j's take p; = e;. Then we clearly have (i), (i), and (iii) with m = Ma.

LEMMA 14. [5] is compact for every ¢ in 8.
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__ Proof. Consider any ultrafilter & in the power set of X guch that
[¢]e . We must show that & has a cluster point in X. Define B a4
follows:

(4.3) peE if there exists r<p with [r] in F.

We contend that ¥ is an end. ,

Given p in F then r as given by (4.3) cannot be 0 by Lemma 7
since @ cannot belong to F. Hence (4.3) and (A;) imply Pt 0.

To show . is nonvoid apply Lemma 13 with 7 = ¢. Then Lemma 19
yields some 7y with [ry] in 7. By Lemma 11 and (i) of Lomma 13 g/l e 7.
Hence (ii) of Lemma 13 and (4.3) imply p; e .

To verify (E,) let p and p’ belong to K. Choose » and ¢’ aecording
to (4.3). Then r' <pp’ by (4g). Therefore, since [71] ¢ F by Lemma 6,
pp' € B by (4.3).

To verify (E,) let p e E. Choose r according to (4.3). Apply Lemma 13.
Then by Lemma 12 some [ry] belongs to F. Hence by Lemms 11 [g/] e F.
30 by (ii) of Lemma 13 and (4.3) p; ¢ B. Since Py <p by (iii) of Lemma 13
we get (I,). .

To verify (B,) let r<p and » cling to . We contend p ¢ B Apply
Lemma, 13. Then by Lemma 1 some 7y (say #,) elings to B, From Lemma 13
we ‘have 1n<u<€p<p. Choose p, in H and 7, according to (4.3). Ap-
plyn_:g (As) with a, b, ¢ replaced respectively by 7, g1, 7o we obtain d; < e
fo.r i=1, ey such that {g,, dy, ..., du} §-covers r, and ryeq == () for all 7.
Since r; clings to B no e belongs to K. Hence no [dy] bealongs to F since
jby (4.3) and Lemmas 11, 12, and 13 we conclude: [d] e F and d<e
imply ¢ < E. So by Lemma 12 [g,] ¢ ¥. Hence by Lemma 11 (p]ed
S0 p e B by (4.3). ‘ o

Sf) B is an end. Clearly [a] ¢ & whenever ¢ ¢ & by (4.3) and Lamma 11.
That is, every basic neighborhood [a] of the point & in X Delongs to F.
So F is a cluster point of &, '

Lemwma 15, If [p1Clq] then P <q.

. Pro pf. For each end ¥ to which ¢ belongs we can use (M,) to choose
ain E with a <g. Tn terms of (4.2) each point B in [q] belongs to some [a]
with a<y. Thus, using our hypothesis and Lamma li, we can find a finite
covering {[a,], ..., [ax]} of [p] with a; < g for all 4. By ]jemln;l‘ 12 {a O}
8-covers p. Hence p <¢ by (A,) ' T

Lenwma 16. X 4s {'locally compact.

Proof. Given any bhasic nei
have b e E by (4.2). By (E,)
we have ¥ ¢[a] and [a]C

glllborhoocl [b] of a point ¥ of X we
Wweget ain B with a <b. By (4.2) and Lemma 11
[b]. Apply Lemma 14.

Lemua 17. X s compact if and only

annihilator is trivial. J 8 has a finite subset whoso
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Proof. If X is compact it is covered by finitely many members
of 8. The only basic set digjoint from every member of the covering is 0.

‘Conversely, let {r,...,7s} in § be annihilated only by 0. So {r, ..., 7}

8-covers every member 7 of 8. By Lemma 12 every basic set [#] is covered
by [7,'; ] ... v [rs] which therefore must be X. Hence X is compact by
Lemma 14.

Lemma 18 (Uniqueness). Let X, 8§ and X', §' satisfy the conditions
of Theorem 1. Let (8, ~, €) be isomorphic to (8, ~, €). Then there exisis
a homeomorplism belween X and X' which induces the isomorphism
between 8 and 8.

Proof. Given the igomorphism ¢ on 8 to 8’ let E; be the end in §
consisting of all members of 8§ to which the point # belongs. Then o maps By
into an end ol in §'. The members of oE; intersect in a unique point y
in X'. Define f(z) =1vy. Then f(4)=o(4) for every member 4 of 8.
8o f is a homeomorphism between X and X'

5. Regular semilattices and totally disconnected spaces. Given a regular
gemilattice (8, ) one can attempt to introduce a regulator by defining

(8.1) a<b to be a<b (ab=a).

Under (5.1) the conditions (A:)—(A;) and (A;) are easily verified.
However (Ag) need not hold. Under (5.1) we can reformulate (As) as
follows:

(8s) Given a,c¢ there ewist d, ..., dn such that {a,dy, ..., da} S-covers ¢
and ad;= 0 for all 4.

As an example of a regular semilattice which violates (S,) consider
the set of all convex, open subsets of the plane under intersection. Then
(8,) is falge for any pair a, ¢ of distinet, overlapping discs.

However, even without (S;) the bulk of the proof of Theorem 2
remains valid for arbitrary regular semilattices under (5.1). (Aq) is first
used in the proof of Lemma 4. But under (3.1) ends are just ultrafilters.
So Lemms 4 follows directly from the Axiom of Choice. The proofs of
Lemmag 5 through 12 remain valid since (Aq) is not used at all there.
Since under (5.1) ends are just ultrafilters () implies [p] is closed. 'So
Lemma 15 follows from Lemma 5. We thereby obtain the following
theorem. .

THREOREM 3. Given a regular semilattice (8, -) there exisis a unique,
totally disconmected, Housdorff. space X with a base 8 of open-close'cl sets
such that (8, ~) s isomorphic to (S, ) and every sub.‘eet 5 of § with the
finite interseetion property (o) has nonvoid intersection in X. E've:ry ‘member
of § is compact if and only if (8, +) satisfies (Sy). X 18 oompaz{t .zf and only
if (S;) holds and S has a finite subset whose annihilator is trivial.
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6. Regulated lattices. We introduce here & structure which lies
between our regulated gemilattices and the compingent Boolean algebras
of De Vries [2]. ‘

We call (8, A, v, <) a regulated lattice it (8, A, V) I8 a distributive
lattice, (8, A) is a regular semilattice, and < is a binaxy relation on §
gubject to the following axioms:

—

(By) a<b implies a < b.

(By) 0<a forall a.

(By) If a<b and c<d then ahc<bAd.

(B) If a<b and c<d then ave< bvd.

(Bs) Given p <q with ¢ 5 0 there ewists v # 0.such that p <r<q.

B,) Given a,b,c with a <b there exist 4, ¢ such that d <e, d < ¢ < bvd,

and ane = 0.

. PR-OPOSITION. 1. Let (8, A, V) be a disiributive lattice for which (S, A)
is a regular semilattice. Then the following are equivalent:

(i) {ryy e, ra} S-covers 7.
(11) TV Ny

Proof. (ii) in.lplies (i) by the distributive law. Conversely, if (ii) is
false then (S,') yields ¢ with er;= 0 for all i and er == ¢ # 0 thereby
contradicting (i). ' '

ProrosITION II. The following are equivalent:
(1) (8, A, v, <) 18 a requlated laitice.

(i) (8, A, v) is a distributive ladtice and (8
somilattion. (8, Ay &) is o regulated

Proof. Given (i) we need only verif ve (ii )
; 3 y (A1)—(A;) to prove (ii). (&)
(Ag) are preclse{y (By), (By). (A,) follows from (B,). (4,) follows frolnr;
(Bg)y (Ba)- (Bs) gives (A;) with o =1, a, = p, and b, = 7. (A,) with n = 1
follows from (B,) and Proposition I.
. 2}0 p.r(ive (A;) note tll.f-]:t under Proposition I and (B,) the hypothesis
1;1 (1 7) J:Zle ds p < a<g with &= a,v...vas. To get the conclusion p <¢
T1])1p y 1() 2) gﬂd (Bg) with 4=b=0 and ¢=p to get ¢ such that p <e.’
en by ('3). = aAp<ghe< g. Hence p<g by (A,). So (A;) holds
Therefore (i) implies (ii). ' ' .
.anversely, let (ii) hold. We must verify (B;)-~(B,). (By), (By) are
ja;gazg )_]gst E&i), (AZ). (B,) follows from (4,), (A,). By (A,) the hypothesis
) Implies o <bvd and ¢ €bvd. Hence aw<bvlll' A ince under
the distributive law {a, ¢} §-covers ) ey ot
1 ave. So we have (B,). (B;) foll
: N v 4)- ) follows
rom (A;) with 7 =b,v...vh, under (4,), (B, and (A,). .I*‘in:mlly, (By)
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tollows from (Ag) with d = ¢A(dV...vds) and €= e,V...Ve, under Propo-
sition. T, (Ba), (A,), and the distributive law.

proposITIoN IIL. Let 8 be any base of interiors of compact subsets
of a locally compact, Hausdorff space X such that 8 is a distributive lattice
under the partial ordering of set inclusion. Then AAB=A ~nB and
AvB=A U B where AUB=ACB.

Proof. Clearly AABC A ~ B. If equality failed to hold then since
AANB and A ~ B are regular open sets [3] and 8 is 2 base there would
exist a nonempty member ¢ of 8§ such that CCAnBandCn (AAB)=@.
Since AAB is the largest member of § contained in both A and B, the
former relation implies ¢ € .AAB. Hence the latter relation implies ¢ = G,
o contradiction. So AAB=A ~ B which we can denote hereafter
by AB.

Tet D = AVB, the smallest member of § containing both A and B.
Olearly A v B C D. Hence, since D is regular and 4 U B is the smallest
regular open set contain_iﬁljoth A and B, A U BC D. If equality failed
to hold here then D ¢ A v ‘B from which we will derive a contradiction.
Tndeed, since X is a regular space and § is a bage, we could choose P
and @ in § such that @ # PCQC D~A T B. Then P and D~@ would
Dbe disjoint compact sets. So we could choose Ry, ..., R, in the base § to
form a covering of D~@ that is disjoint from P. Then, since 4w B
CD~Q, AwBCE V...V R, C R,V...vVRy. Therefore DCR,V...VE, by
the definition of D. Hence, since our lattice is digtributive and PRi= @
for, all i, P=PD=0 contradicting P # @.

TamoREM 4. Let § be a topological base in a locally compact, Hausdorff
space X such that

(i) Every member of 8 is the interior of a compact subset of X.

(i) A,BeS§ implies AnBeS and AT B es.

(ili) @ eS.

Then (8, ~, U, E€) is a requlated lattice.

Proof. (8, n, U) is a distributive lattice since it is a sublattice of
the Boolean algebra [3] of all regular open subsets of X. (By)—(B,) are
trivial. _

To verify (B,) we are given P C @ with @ nonempty. Since P is com-
pact and § is a base in a regular space We can find nonempty By, ey Ba
in § to cover P with B C @ for all 4. Let B = R, U ... U Ry, a nonempty
member of §. Then PCR and BCQ which is the conclugion of (Bg).

To verify (B,) let 4,B,C €8 with ZCB. Then the compact set
O~B is contained in the open set X~A. So we can choose Dy ..; Dn
and T, ..., By in § such that O~BC Dy v ... v D and D,CECX~A
for all 4. Take D=D, U ..U Dy and B= E, U ... U B, to get (Be)-
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THEROREM 5. Given a regulated lattios (8, A,v, <) there emists g unique
locally compact, Housdorff space X with a base $ of interiors of mmquc‘,
sets such that (8, ~, U, €) is isomorphic to (S, AV, <€) X is (/;(mpact
if and only if (8, A) has an identity. o

. Progf. Theorem 2 under Proposition 1T gives X and 8 with (8,n, g
isomorphic to (8, A, <). Since 8 is a distributive lattice < i

i ic o (8, A, . under <
isomorphism implies that § is a distributive lattice under set incl\t;siz}xlle

Hence v corresponds to U by Proposition ITT. Finally, + )

ence P .. ¥, the compact

criterion follows from that of Theorem 2 by I’ropogiti,on I. Taches
A study of lattices along the lines of section 5 would lead u

more than Stone’s theory [6]. For we have the following »
trivial proof we omit.

Prorostrion IV. Let (8, A,V) be a lattice with partial ordering <

Then (8, AV, <) 1 o A X '
iy (8, A,V <) is @ regulated lattice if and only if (8, A,V) is a Booloan

§ t0 nothing
esult whoge
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Cardinal multiplication of structures
with a reflexive relation

by
Ralph McKenzie * (Berkeley, Calif.)

Intrﬁduction. This paper is a sequel to investigations of Chang,
Jénsson and Tarski (reported in [1, 2, 3]) dealing with refinement prop-
erties for the operation of cardinal multiplication (direct product,
cartesian product) of relational structures. The results presented here
extend, and almost complete that theory, insofar as it applies to structures
having a reflexive binary relation.

Our main result is a Lemma (3.1) whose formulation is rather
technical, but roughly states that a structure has the “strict refinement
property” defined in [3], provided that indistinguishable elements of the
structure are identified. The lemma is proved for strictures of the form
9 = (4, 8 in which § is a binary relation over A and the relations 8|8
and 5[;5’ are connected over A; in particular it applies if § is reflexive
and connected over A. The lemmsa yields for structures in this class
a reduction of the ordinary refinement property to a purely set theoretic
question, which is easily answered in every gpecific case if the general
continuum hypothesis is assumed (Theorem 4.4). Independently of
the GOH, it follows that every finite structure of this class has the re-
finement property.(*) Thus we obtain: a useful deseription of the algebra
of all finite reflexive isomorphism types—under operations of binary
cardinal addition and multiplication—which has been suspected for s:)Lme
time: viz. this algebra ig isomorphic to 2 “gemi-ring” of polynomials, Z™ (]
{Theorem 5.1). i )

Departing briefly from the main line of development, we prove.in §7
an interesting and unexpected form of the Cantor Bernstein theorem:
(Corollary 7.2) Let A, B, € and C;.be similar relational siructures of am
arbitrary similarity type and assume that €, xA=B and € xB=A. If,
in addition, N is denumerable and @, is finite then A ~ B.

* The work reported here was‘supported by the National Science Foundation

through grants GP-7578 and GP-6232X3. .
(%) This solves the central problem studied in [21.

.
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