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Cardinal algebras of functions and integration

by
Rolando Chuaqui (Santiago)

Introduction. The purpose of this work is to apply the methods of [1]
to cardinal algebras of functions instead of algebras of sets. I believe that
the results become more elegant in this way and somewhat stronger,
because it is possible to obtain the integral directly.

In the first part it is proved that the non-negative Baire functions
are a cardinal algebra, which is an interesting result in its own right.
Finally, a complete characterization of the Lebesgue integral (and Lebesgue
measure) is obtained in terms of translations.

As in the previous paper, [1], I shall quote the theorems in Targki’s
book [2] by their number and a T.

1. Cardinal algebras of fanctions. I am first going to prove that the
class of non-negative Baire functions is a cardinal algebra. I will adopt
the following notation: Rt is the set of mon-negative real numbers;
A, Vv the lattice operations on the class of functions; BA the class of
functions from B into A.

TrroreM 1.1. Let ¥ CPRY such that

(i) If f, g €I then f+g9, (f—9)vo, fage®,

(i) If for every n < oo, fn ¢ Fy fu < fays and limf, = f< co, then f e F,

(iii) If for every m < co, foeF and fars <fu, then Hmf, e,

Then {F, +, 3> is a finitely closed generalized cardinal algebra where
> fi is defined only if D) fi<< oo
<o <00

Proof. We note that

(1) I 3 fi< oo with fieP, 3 fieF.

i<eo 1<o0
So

2 It 3 fieF, D fineF for all n < oo

i<oco i<oo

(3) ¥ D fieF, gi<fiand gi e F for all 4 < oo, then <2 gied.
i<00 <00
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(4) FCPR* and ("R, 4+, is a generalized cardinal algebra
(6.127T). -
a) From (2) and (4) we get 5.1. I T.
b) From (3) and (4) we get 5.1. ITT.
¢) 5.1.III T we get from (1).
d) Proof of 5.1.IVT. Suppose

fHg= D b with f,g,hi,f+geF.

i<co

fa= (hn"‘((!]—" > m)vo))vo ,

i<n

gn = hn/\((g— Z h,) vo).

i<n

(
(
(
(

Define

Then we have: fu, gn € F' for every n

hn=fatgn for every m,
f= Dk, 9= D tn-
n<oo n<oo

(e) Proof of Axiom 5.1.VT. Suppose

(%) fo=9n+Fat1, [u,gn e F for every n< oo.

We have fri1 < fn for every z.
Let b= lim f, ¢ F. From (%) we also get
n—00

fa= 2 Onti+fmin fOr every n,m < oco.
i<m
Hence,

fo=1lim f, = ngw-»}—h for every n < co.
m—c0

i<oo

NQW_Z On+i <f'n < co. So
I<co

2 Inti eF.

100

TeroreM 1.2. Let §=<F, +,3) be as in Theorem 1.1. Let
F=<F, +, 2> be the cardinal algebra which is the closure of § (cf. 71T,
7.8T).

Then F is the smallest set B such that

(i) FCB.

({) If fo < fat1,fn € B for every m < oo, then lim fn ¢ B.
n—+00

Cardinal algebras of functions and integrati 79

Furthermore we. have

(@) FC PR © {o}),

(0) If feT and f< oo, then feP.

Proof. A. (i) It is clear that FCF.

(i) Suppose fu < fat1, fn € F for every n < oco. That is

Ja1=fot fnri= 2 ¢ where gy=1, and g.eF.
i<n+2
Then
f= an= 2g1=an.
Nn<oo t<oo n—>o0
So lim f € F.
N=~>00

Suppose Now fn < fars With fr e F—F for n < co. Then
Ja= me, faseF for i,m < oo.
i<oo .
Define

Inti = Z Fn+1

i<mni1

9o=Juo s

such that Mmpqq is the least p with D fat1i = Gny P > M.
i<p

Then g, € F for every n < co and g < fns1.
Then g= lim g, e F.

But g = lim fy.
n—>0Q

B. Suppose that B is such that
i) FCB,
(ii) I fr < fus1,y fo € B, then limf, ¢ B.
Let feF. Then f= X fi with fieF (7.1T). Then Y fi ¢ FCB
1< i<n
for n < co. 8o f= Y fie B and FCB.

<00
C. Let feF, f= > fi with ficF. Then f(z) e &7 w {oo} for every
i<co

z e H. >
Suppose f < oo. S0 X fi< oo with f; e F. That is feF.
i<oo

From these two theorems it is clear that the non-negative Baire
functions ($%) on any space form a cardinal algebra. Thus, there are
many interesting results about the Baire functions that we can obtain
immediately, applying the theory of ecardinal algebras. TFor instance:
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(From 2.1T) If n < oo and p < co and ;fi = _<Z;gy where fi, g: € B*,
<N K
then there is a double sequence hy; e BF for i< m,j<p such tha
fz——:—Zhﬁ fori<n and g;= Zh“ forj<p.
i<p i<n

(From 2.28 T) If n < o0, p < o0 and fi< gy for every i <m, j<p,

Fiy g5 € B, then there is an he $* such that .
fi<h<gs . for wery i<m, j<p.

(From 2.37T) If m < oo and n < oo are relatively prime and m-f
= n-g with f, g e B, then there is an he B" such that

f=nh ond g=m-h.

II. Equivalencerelations determined by a group of functions. Theorem 6.10T
asserts that if 9 is a C.A. or G.O.A, and R is a countably additive and
finitely refining equivalence relation, then /R is alsoa C.A. or a G.C.A.
So it is important to see under what conditions this type of relations
arise. The next theorem gives some sufficient conditions.

THEOREM 2.1. Suppose:
(W) {4, +,2> is a G.O.A.

() FCP4, {F, +,> o finitely closed G.C.A, such that fAgeF
for f, g el

(ili) & a group of functions, G C K.
Define
(&) if ce@, feF
‘of(w) = flox) for all xe X,
(b) if f, g e F, then f == g iff there are oy e G for ¢ < oo, f; e ' for i < oo

such that
f= th and g = 2 0‘1f¢ .

i<co F<00

Then = is a countably additive, finitely refining equivalence relation
over PB.

Proof. (i) = is clearly reflexive and symmetrie.
(ii) Let f o ¢ o h. Then

f=2fn 9=2947 Ji=oigs,

i<o0 i<oo
0= 20y h= D, gi=ih.
<00 i<eo
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d

Define
Ji=cilging), s =17 (giAg5) .
So
Ju = oivihy,
fi=oigi= Ut(gi/\ 299) a8 gi << g

j<eo

Il

di( 2 giA g}) by 3.33T

i<

D odlgingy)

F<o0

D fu.

j<o

I

Similarly hj= 2 hy. So f =& and = is transitive.
<o
(ifi) =< is clearly eountably additive.
(iv) Let f~g and f=h+h,. We have f= Y fi, g= Y g and
i<oo (]
gi = oifi. Also by+hy= X fi. As Fis a G.C.A, by 51.IVT
1<o0

fo=fatfa, W= D fa, h= D fa.

i< d<o0
Take
gu=0oifu, Ge=oife, GH= 2 Gu, Go= 29‘2 .
i<eo i<oco
‘We have -
ezh, Goth.
Also
Gtga= D (gu+ge) Dby SLIIT
i<
= Z oi(fu +Fiz)
i<oo
== g N

IIL. Applications to integration theory. In this section § — By +,20
will be a fixed cardinal algebra of functions, =~ a fixed countably additive
and finitely refining relation between elements of 7, and & a fixed
element of F. :

DeFmvrmons 3.1, (i) A= {4, +, 20 =F/=, ©(f)=fl= (=the
type of f),

Fundamenta Mathematicae, T. LXXI 6
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(iti) @ is the ideal of negligible elements of ¥,

(iv) B =P, of) = (/)P

(v) =~ g 1 o(f) = e(g).

COROLLARY 3.2. (i) f~ g iff there is an f' e F' such that ' is negligible
and f4+f" =g+,

() 7 (f) < v(g) iff there is an f' such that

(i) feF (or 7(f)) is negligible iff oot (f) <v(h),
)

fr=f, f'<yg,
(i) o(f) < o(g) ¢ff there is an f' such that
'~f, <y,

(iv) f is megligible iff there are fi for ¢ << co such that f; == f for every
i< oo and X fi < h ) .
i<co

3.2 (i) is true in this case, because § is a cardinal algebra and not
only a generalized cardinal algebra. When we are dealing with sets
instead of functions as in [1], this is not quite correct. In [1] there is
a small error in this respect, which fortunately does not effect the main
results. The only change necessary to correct this error is in Defini-
tion 2.5 (iii), which should read:

Let A,BeX. Then A~ B iff there are 4’, B, (', (" ¢ such
that ¢, C"' are negligible, A =~ 4', B ~B’', A’~(0'=0= B' ~ (" and
A" 0 =B v (.

The simplicity of 3.2 (i) compared to this shows one of the advantages
of working with functions.

In a completely similar manner as Theoreim 2.10 of [1] we get the
following:

TrroREM 3.3. Let (F, +, > be a cardinal algebra of functions,
2= a countably additive, finitely refining equivalence relation between ele-
ments of F. If:

(i) h is not negligible.

(i) For all f, g e I with f, g < h there is an f' ¢ ' such that f~ f' < g
or g~ <. ‘

(lil) For all feF there ore hyeF for i< oo such that h = hy and
< 2 hi.

i<ca

Then there is a unique countable additive numerical integral I defined
on B such that

(a) I(h) =1,
M) If)=I(g) iff f~ g. ‘ '

icm

©
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I am now going to apply this theorem to the following case.

Tet {F, -+, > be the class of non-negative Baire functions over
a Buclidean space R". Let & be the group of translations on K" and
let 2= be defined from @ as in II. Then we know that =2 is a countably
additive, finitely refining equivalence relation. Let h be the characteristic
function of the unit cube.

We know that (i) and (iii) of Theorem 3.3 are true ((i) because there
is an integral). Thus it is only necessary to prove (ii).

As 9 is a homomorphic image of ¥ and B of A, we have if fo < fata
for every m < oo

st =< (timf), | ol = oflimf)
because
lim fa=V fa.

On the other hand, we have the following lemma.
LEmmA 3.4. Let b be not negligible, foi1 <fa < h for every n < oo
Then Q o(fn) ewists and
0 elfa) = g(limfn).
n<oo N0
The proof is entirely similar to 8.1 of [1].
From this lemma in the same way as in 3.2 of [1] we get
TEMMA 3.5. Let F be the monotone class gemerated by L, h e L, k not
negligible. If for all f,geL with o(f), elg) < o(hy we have ¢(f) < e(9)
or olg) < o(f). Then for all f,geF with ¢(f), e(9) < o(h) we have o(f)
< elg) or o(g) < eolf)-
From this lemma and the fact that F is the monotone class generated
by simple functions with rational values, we get (ii) of 3.3 and hence
infer that the Lebesgue integral I is such that

iff f~g.
In the same way as in [1] we get the following corollaries.

COROLLARY 3.6. L(f)= 0 iff f is negligible, that is, there are f; e Bt
for i< oo such that f o= fi for all i< o0 and Y fi <h.

1<<o0
COROLLARY 3.7. I(f)= 0 iff for every characteristic function of an
open set g, there is an f'e Bt such that f =f' < g.
COROLIARY 3.8. Let f, g ¢ B*. Suppose that there are £’y ¢’ characteristic
functions of open sets such that 1jnf" <f and 1ng’ < g for some n < oco.
Then I(f)=I(g) iff f =g (that is: there are integrable fs and trans-
lations o for i < oo such thai f=i<2;f¢ and gziz oifi)-

<o

6*
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From this corollary we get a complete characterization of the
Lebesgue integral in terms of translations. This result was suggested to
me by Professor Godel. s

COROLLARY 3.9. Let f,g be non-negative finite integrable functions.

Then I(f)= I(g) iff there are non-negative finite integrable functions
Jusfas iy 9o such that fy oz gs for i=1,2, f=fi—f, and g=g,—g,.

Proof. Suppose I(f) = I(g),f, §< oo. We can assume that f, g e 3,
Then f~ ¢. So, there are negligible f’, ¢’ such that f+f' =~ g-+¢'.

It is easy to show, since the set of finite Baire functions is a G.C.A.,
that we can take f', g’ < oo. '

Let h be the characteristic function of a bounded open set. Then
we have

f'+h=h=g+h and f+ft+h=gtg+h.
Thus, take
h=f+f'+h, fo=["+h,
Gi=9+g'+h, gG=g+h.

In a similar way we obtain for the Lebesgue measure, in the termi-
nology of [1],

CorOLLARY 3.10. Let 4, B be bounded measurable seis.

Then A(A) = A(B) iff there are bounded measurable sets A,, Ay, By, B,
such that A~ By; for 1=1,2, 4,C 4, B,CB,, 4= A,—A, and B
= B,—B,.
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A representation theorem
: for linearly ordered cardinal algebras

by
Rolando Chuagqui (Santiago)

This paper gives a characterization of linearly ordered cardinal
algebras. This result is a consequence of theorems proved in [1]. The
idea for the theorems resulted from a conversation with Professor
K. Godel. I am also very grateful to Professor Godel for several suggestions
he made to improve the paper. .

Cardinal algebras were introduced and extensively studied in [2].
Many results from this book will be needed. In what follows, I will use
the terminology of [2]. In particu_lam, N will be the set of non-negative
real numbers including co, and I the set of non-negative integers in-
cluding co. %t and I will be the corresponding algebras. Let P be
{0, oo}, +, 3> where + and 2 are ordinary addition and infinite
addition.

From Theorem 15.12 of [2] it is clear that if A = <4, <) is a linearly
ordered system with a first element and closed under least upper bounds
(Lu.b.) of countable sets, then {4, +, > >, where a+b=avbd and

2= U a4, is a linearly ordered idemmultiple cardinal-algebra. On

- i<co i<co

the other hand, the ordering in a linearly ordered idemmultiple cardinal
algebra has a first element and is closed under Lu.b. of countable sets.
8o, I will identify linearly ordered systems with a first element and
closed under Lu.b. of countable sets with linearly ordered idemmultiple
cardinal algebras.

I will first prove an auxiliary theorem

TaroREM 1. Let % = <A, <) be a linearly ordered system with first
element 0 and closed under Lu.b. of countable sets. Let {B° = (B®, +%, 20
% € A} be a family of disjoint cardinal algebras with zero element Oz such that:

(i) B° is the one element algebra, ..

(i) If @i e A for i < co and 2= {Ejmm > @y for every j < oo, then B is

isomorphic to P. In this case, let B® = {0z, ooz}
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