

A corrected correction

by

J. R. Isbell (Buffalo, N. Y.)

The result of this note is that there exist an algebra A of real-valued functions on a set, closed under uniform convergence and all continuous finitary operations, and a homomorphism of A onto a non-archimedean ordered field which has a countable cofinal subset.

I denied this in [2] (omitting proof). In [1] we correctly deduced this from a claimed example of a completely regular space \mathfrak{X} , an increasing sequence of zero sets Z_i of $\beta\mathfrak{X}$ disjoint from \mathfrak{X} , and a point z each of whose neighborhoods meets every difference $Z_i - Z_{i-1}$. It remains to repair that example, and to thank Eleanor Aron for pointing out the error. (The algebra A consists of the continuous functions on \mathfrak{X} having continuous real-valued extensions over the complement of some Z_i ; the maximal ideal at z provides the ordered field, and the verification [1] is straightforward.)

Let $\mathfrak X$ be the product of $\mathfrak x_0$ copies of the positive integers. Let p_i be the *i*th coordinate function, $q_i=p_1+\ldots+p_i, r_i$ the reciprocal of q_i, s_i the continuous extension of r_i over $\beta \mathfrak X$. Let Z_i be the zero set of s_i . Evidently the Z_i are increasing and disjoint from $\mathfrak X$. Consider all closed subsets of $\mathfrak X$ defined by conditions of the form $p_n > \varphi(p_1, \ldots, p_{n-1})$. No finite family of such conditions is inconsistent; so the closure in $\beta \mathfrak X$ of all these sets have a common point z. For any neighborhood U of z, for any index n, there are natural numbers a_1, \ldots, a_{n-1} such that on the points of $U \cap \mathfrak X$ where $p_1 = a_1, \ldots, p_{n-1} = a_{n-1}, p_n$ is unbounded; for a bound $\varphi(a_1, \ldots, a_{n-1})$ will yield a contradiction. So $(U \cap \mathfrak X)^-$ meets $Z_n - Z_{n-1}$, and every neighborhood of z contains one of these.

References

[1] M. Henriksen, J. R. Isbell, D. G. Johnson, Residue class fields of lattice-ordered algebras, Fund. Math. 50 (1961), pp. 107-117.

[2] J. R. Isbell, Algebras of uniformly continuous functions, Ann. of Math. 68 (1958), pp. 96-125.