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Lipschitz pairs of metric subspaces
by
J. B. Wilker (Shiraz, Iran)

1. Introduction. Let 4 and B be two subspaces of the metric space X.
Then A and B are called a Lipschitz pair if every function Lipschitz on
each is necessarily Lipschitz on their union.

Before characterizing Lipschitz pairs let us examine two examples
which illustrate how the property can fail. The real-valued function

z i y=o0,
Flw,y) ={_w it y<o
defined on the Euclidean plane shows that the pairs of subspaces 4,
={(@,9): y=1} and B, = {(z,9): y= —1} and A,={(z,9): y = %}
and B, = {(#,y): y = —*} Dboth fail to be Lipschitz pairs. The charac-
terization will reveal that both these pairs of subspaces are “too tan-
gential” to be Lipschitz pairs. :

To simplify notation, the distance between two points @, and =,
in the domain space X is denoted by »,2,. Thus a function f: X -7 is
Lipschitz if there exists a constant K > 0 such that, for any two points z,
and @, in X, d(f(@,), (@) < Kay,.

2. Characterization. )

TurorEM. Let X be a metric space and A, B be non-empty subspaces
of X. Then the following conditions are equivalent to each other.

(@) If Y is any metric space and f any Y-valued function on X, then,
if flA and f|B are Lipschitz, so also is fl4A v B.

(b) If f is any real-valued function on X and if flA and f|B are Lip-
schitz, so also is flA v B.

(¢) Case (i): 4 ~ B = @. To every pair of points, a, in A and b, in B,

 there corresponds a real number K = K (ay, b)) > 0 such that for any a in A

and b in B,
aty+bby < Kab .
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Case (ii): A ~B 0. There is a real number K >0 such that for
any @ in A ond b in B,
a(d " B)+b(4d~B)<Kab.
(d) Case (i): A A B= 0. There are poinis a, in A and by in B and
a real number D > 0 such that for any a in A and b in B
adty+bby << Dab .
Casge (l): A~ B £@. There is a real number D > 0 such that for
any o in A and b in B there is a point ¢ = cla,b) in A ~ B such that
ac-be L Dab .
Proof. Condition (b) is a special case of condition (a). The proot
will be completed by showing that (b)=>(e)=(d)=(a).

The proof that (b)= (¢} is divided into two cases. In. cage (i) 4 ~ B= 0,
Let a, be any point in 4, b, any point in B and define

way, if 2ed,
fl@y=1{ —aby, if weB,
0 otherwise .

The functions f|4 and f|B are Lipschitz since ([1], p. 120, Theorem 8), if
@ # ¢ CX, the real-valued function h(#) = 20 is Lipschitz. It follows
from econdition (b) that f ig Lipschitz on 4 v B with some constant
K. Hence, for arbitrary a in 4 and b in B,

If(@)—f(0)] < Kab.
That is,
aay+-bby < Kab .
In case (ii) 4 ~ B |=@. After defining
z(A ~ B) if wed,
f@)={—a(4~B) if rveB,
0 otherwise
the proof continues exactly as in case (i).
. The fact that (¢)=(d) is obvious in cage (i). To show that it also holds
in case (i), let a in 4 and b in B bhe arbitrary points. If & = b, the choice
¢=a=">b gives the condition for arbitrary D. Otherwise ab + 0 and
there exist points ¢ and d in 4 ~ B satisfying
ac << a(Ad A B)+4ab  and  bd <b(d ~ B)+}ab.
Adding these inequalities and Imposing condition (c), we obtain

ae+bd = a(4 ~ B)+b(4 ~ B)+ab < (E+1)ab.
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With the help of the triangle inequality, we obtain successively

¢d < cat-ab+bd < (K+42)ab
and ac+cb < ac+ed-+db < (2K +3)ab .
The last inequality is condition (d) with D = 2K +3.

Finally let us show that (d)=(a). Suppose f: XY is Lipschitz
on A with constant K4 and Lipschitz on B with constant Kg. Tt is suf-
ficient to produce a constant K such that for arbitrary ¢ in 4 and b in B,
d(f(a),f(b)) < Kab. For then max(K4, K5, K) will serve as a Lipschitz
congtant for f on all of 4 v B.

In case (i) with A ~ B =@ the first step is to show that 4 and B
are bounded apart. To this end, let agby = Dy(D-1). Then

0 < Dy(D+1) = ayhy < aga+ ab—+bby < (D-+1)ab
and the distance between A and B is not less than D,. Now, using the

triangle inequality in ¥, the Lipschitz properties of f and the metric
property of A and B, we estimate

a(f(a), £(8)) < alf(a), F(an) -+ alf (o), F(Bo))+a(f (o), F(B))
< K qaay-+Dy+Kgbyb -
< max (K 4, K p)[aa,+ bbo]+Dyab/D,
< [Dmax (K 4, Kg)+D;/Dy]ab .

The proof for case (ii) is even easier. The point ¢ of the hypothesis
and the triangle inequality in ¥ give
alf(a), f0) < dlf(a), F@)+alf(e), £(5).
Then the Lipschitz properties of f together with the metric property of A
and B yield
a(f(a), f(b)) < Kaac +Kped
< max (K4, Ks)[ac+ be]
< Dmax (K4, Kg)ab.

This completes the proof of the theorem, -

If one of the sets, say A, has a finite diameter D4, then condition {c)
case (i) is equivalent to the simpler condition that the sets be bounded
apart by some distance D,. Indeed then

aty Dby < aay+ba-+ asy+ ayby < ba+ 2D+ agh, .

Since ab > D,, the constant K = 1+ (2Da~+ aody)/Dy makes aa,+bb,
S Kab. The pair 4, and B, of the introduction show that “bounded
apart” is not sufficient for arbitrary pairs of metric subspaces to form
Lipschitz pairs.
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3. Lipschitz pairs and continuous pairs. In [2] two subspaces 4 and B
of a topological space X are defined to form a continuous patr if every
function continuous on each iy necessarily continuous on thejr union,
A characterization of such pairs is given in [2]. This characterization
reduces t0 AnB=A"B=0 if AnB=0@ and shows that it i
sufficient for 4 and B to be closed. With these remarks We can compare
Lipschitz pairs and continuouns pairs of metric subspaces.

The sets 4, and B, of the introduction are closed. Hence disjoint
continuous pairs need not be Lipschitz pairs,

The sets 4, and B, of the introduction are clossd. Tlonce Intersecting
continuous pairs need not be Lipschitz pairs.

If {_1 and B form a disjoint Lipschitz pair then they are Lounded
apart, 4~ B=A ~ B =@ and they therefore Torm 2 conbinuous padr,

However, an intersecting Lipsehitz pair need not be a continuous pair,
For example, let 4 be a closed squave in the plane less one corner and
let B be a side of the square including the missing corner. Then condi-
tion (d) (ii) shows that 4 and B form a Lipschitz pair, But if the square
is set in the positive quadrant of the (%, ¥) plane with the missing corner
at the origin, the function tan=*(y/z) shows that 4 and B do not form
a continuons pair.

The anthor wishes to express warm thanks o C. Davis and W. Kahan
for several stimulating conversations.
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On restrictive semigroups of continuous functions

by
Kenneth D. Magill, Jr. (Amherst, N. Y.)

1. Introduction and statement of main theorem. Let X be a topological
space and let ¥ Dbe a nonempty subspace of X. The semigroup, under
composition, of all continuous selfmaps of X which also carry ¥ into ¥
will be referred to as a restrictive semigroup of comtinuous fumctions and
will be denoted by S(X,Y). In case ¥ = X, we use the simpler notation
8(X) in place so S(X, X). Such semigroups have been investigated
in [4], [7] and [8] and restrictive semigroups of closed functions have
been studied in [6]. A function is regarded.in [6] as closed if it takes closed
subsets into closed subsets. In particular, continuity is not assumed.
Other related semigroups have been studied in [9]. Our main purpose
here is to prove a result about restrictive semigroups of continuous
functions which is somewhat analogous to Theorem .(2.17) of [6, p. 1222]
and Theorem (3.8) of [9]. Before stating this result, we need to reeall the
definition of an §*-space [5]. An §*-space is any T, space X with the
property that for each closed subset H of X and each point p e X —H,
there exists a continuous selfmap f of X and & point ¢ in X such that
flz) = q for each z ¢ H and f(p) # ¢

One readily shows that a space X is an §*-space if and only if it
is Ty, and the point-inverses of X (sets of the form f~%(x) where z¢ X
and f is a continuous selfmap) form a basis for the closed subsets of X.
The class of 8*-spaces is rather extensive. For example, Theorems 2 and 3
of [5, p. 296] taken together yield the fact that every 0-dimensional
Hausdortf space as well as every completely regular Hausdorf space
which containg an arc is an S*-space. In this paper a 0-dimensional
space is one which has a basis of sets which are both closed and open.
Also, let us recall that a space is Lindelsf if every open cover has & count-
able subcover and it is hereditarily Lindelof if each subspace is Lindelof.

It is immediate from the previous discussion that if X is an 8*-space
and one takes ¥ = X, then there exist S*-spaces Z such that §(X, ¥)
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