Some examples in the theory of Borel sets
by
Stephen Willard (Edmonton)

All spaces are normal, unless the contrary is explicitly stated, and
“normal” implies. “Hausdorff”. Our notation and terminology about
Borel sets follow [2]. In particular, o, § and y are always ordinals less
than the first uncountable ordinal. The real line with its usual topology
is denoted R and the subspace of R consisting of the irrationals is de-
noted P.

In perfectly normal spaces, Borel sets are particularly easy to handle
because they can be resolved into an inereasing transfinite sequence of
classes: Gy, G4, ..., G, ... The important property of perfectly normal
spaces here is that every closed set in such a space is a @;. Less is needed:
it i3 enough that every closed set be a @, for some a. In Section 1, for
each fixed a, we construct a space such that a is the smallest ordinal
for which every closed set in the space is a G,, answering a correspondence
question of A. H. Stone. As an easy corollary, the digjoint union of the
Spaces thus constructed has the property that every open set is Souslin
(generated from the closed sets by operation A), but in which there is
an open set which is not an ¥, for any e.

The problem of producing a space in which each closed set is a G.
for some o (depending on the closed set), but in which.no a works for
all closed sets, is' badgered in Section 2. The resulting counterexample is
Hausdorff, but fails to be normal and depends on the continuum hypoth-
esis for its existence. It would be interesting to have a normal example.

In perfectly normal spaces (see [2], pp. 347-348), the family of Borel
sets coincides with the smallest family containing the open sets and
closed under countable intersection and countable disjoint union, and
the same is true if the closed sets are. used in place of the open sets. In
Section 3 an example (one of thosé used in Section 1) is given to show
that perfect normality is not needed for. either of these assertions. Pre-
vious examples of a similar nature have been given by Frolik ([1], p. 166).

1. For each o, 1 < a < w,, we will provide a (normal) space X, in
which o is the smallest ordinal such that every cloged set is a G,. As a set,
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X, will be the real line. Tet A, be a subset of the line which, in the usual
topology, is a non-trivial @, set (i. e., a G, set but not a G5 se§ for any
8 < a—such sets exist in the line, see [2], p. 371). The open. sets in Xu are
now defined to be the sets of the form U vV, where U is open in the
usual line topology and V is any subset of X.—A.. [For a = 2, Aq could
be the rationals. The resulting space X, was first used by M.w?xael [311(4).
As Michael has pointed out, any space constructed in 1.3h1s way (F)y
“discretizing” a set, in our case X,—4.) from a metric space is hereditarily
paracompact and thus normal. ) . _

Now note that A, is a G, in X, and has for its relative topology in X,
its usual metrie topology. Then if F' is closed in X, F = [F n (X—4d.) v
U (F ~ A,), the former being open in X, and the latter being a G5 set
in A, (since it is a closed subset of the metric space 44) and thus a @,
in X.. It follows that every closed set F is a G, in X,.

Next, if @ is an open set in X,, it is easily seen that an open set P
in the usual line topology exists for which P~ A, =@ ~ 4, and P CQ.
Tt follows that if 4, is a G5 in X,, it is a G in the line, so this cannot
happen for f < a. »

Now if X is the disjoint union of the spaces X, just constructed;
the open set | (X.—4.) in X is not an ¥, for any a. But every open

set in X is the :mion of &, F, sets (for variable ) and thus is a Souslin set.
This fulfills the promises made for Section 1 in the introduction.

2. The program here is to provide an example showing every closed
set in a space can be represented as a @, without it being possible to
fix ¢. Some preliminary lemmas are needed; unfortunately, even with
these, the resulting example has the lack of common decency to be
non-normal.

LevmA. For each o, 1 < a < oy, a non-trivial Qo set P, can be found
in R such that

(1) Pan Ps=0, if a B,

(2) Pyv...w P, is not a G for < a,

(8) U Pa.=R [continuum hypothesis].

1<a<oy

AN

Proof. For each reP, let P(r)= {{q,7)] ¢eP}CP xP. Assign
each ordinal ¢, 1 < ¢ < w;, to some P(r), hereafter called P(r,). From [2],
a non-trivial G, subset P, of P(r,) exists, and P, will still be a non-
trivial G, in P x P. But P x P is homeomorphic to P (proof: the irrationals
are a countable product of copies of the integers), say h is a homeo-
morphism of P xP onto P. Let P¥ = h(P:). Now P¥ is a non-trivial G

() And T acknowledge a debt to J. R. Isbell and A. H. Stone, each of whom
pointed out the similarity of my (then different) example for a= 2 to Michael’s examyple.
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set in P and hence in R, and the P} are mutually disjoint. Moreover,
v Piisa Gp, then Pju ... u Plis a G5, and hence P; = (P} u
V... uPy) ~P(r) is a Gy~ Gy, hence a Gy, if f > 1. Thus this cannot
happen for g < a.

We have the properties of the theorem except for 3. To get this,
assume the continuum hypothesis and write the real numbers ag a trans-
finite sequence @, @y, ..., %a, ..., a < w,. Let P§ = P* U {z,}. Then P} is
still a non-trivial Gu and Py © .. u PT differs from Pfu ..o P* by
a countable set (... an ¥,) and hence cannot be a G;s. The P} are not
mutually disjoint, but if we now set Po= PF—{z] 8 <a}, we obtain
mutually disjoint sets P, having all the properties required (by arguments
similar to those already given).

We proceed to the construction of the counterexample of this section.
For each a, 1 <o < w,, let P, be a non-trivial @, subset of R having
properties 1 through 3 of the Lemma above. We will retopologize the
line, now called X, as follows: the neighborhoods of a point p in P, will
have the form U— (pU Pp) where U is a usual linear neighborhood of p.

<a

It is clear, then, that every set open in the usual topology is open in this
topology.

Setting B, = P, v ... u P,, it is clear that B, is closed and a G, in X.
But it is not a G5 for g < o, for if & is any open subset of X meeting B,
each point » of @ ~ B, has a neighborhood U,,——(p U Ps), where U is

<y
a linear neighborhood of p and y < «, contained in G. Let H — GUB Uyp.
PEGN By

Then, easily, if B. is generated as a G5 in X by 64, G,, ..., it will be gener-
ated as a Gg in R by H,, H,, ..., and this is not possible, by Part 2 of the
lemma, for 8 < a.

Thus closed non-trivial @, sets exist in X for arbitrarily high eclass
a < w;. It remains to show that each closed set in X is a G, for some a.
We attack the open sets, showing each to be an F, for large enough a.

Let W be open in X. For pe W Pa, let Vo= Up—|J P; be
p<a
a neighborhood of p contained in W. For each a, 1 < a< w, let U,

= |J Up. Then Uy, U,,... is an increasing, transfinite sequence of

DEW O\ By
open subsets of R—since |J U, is Lindelof, the sequence must, in
i<a<ay
reality, be countable. If we let Vo= | ] V,, it follows that, for

peEW N By
some gy < w;, W=V, u..uV,. But V,= Uu—(ﬂU Pp) is easily an F,
) <a
in R and thus in X, so that W=V, v .. uV, is an F,, in X.
Thus X has the Borel properties we asked for: every closed set is a @,
for some a, but closed sets exist for arbitrarily high « which are non-
trivial G, sets.
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Tt is clear that X is Hausdorff, since X consists of the real line with
a topology finer than usnal. However, X cannot be regular, as the following
argument shows.

Since P, is not closed in the usual line topology we can find a limit
point p of P; such that p « P for some a > 1. Let U be any open set in
the X-topology containing P;. Then for some open set U, in the usual
line topology, P, C U, C U. Let ¥V, be an open set in the usual line topology
with p € V. Then U, n ¥, # @, and we are done if we show U, n (V, ~ﬂL<jaP,,)

# @. But otherwise U, n ¥V, is a non-empty (usual) open set contained
in {J Py, while by construction each P, is nowhere dense in the line.
Thﬁ;na {J Pp would be a set of first category with interior in the line. This

B<a
eontra?iiction establishes that X cannot be regular.

3. In any space X, let $(X) and J(X) (or, just $ and K, if X is fixed)
denote, respectively, the family of Borel sets and the smallest family
of sets:

(1) containing the closed sets,

(2) closed under countable intersection,

(3) closed under countable disjoint union.

Our purpose in this section is to show the existence of non-perfectly
normal spaces in which % and % coincide. It is convenient to denote
countable disjoint union by &, so that the sets of J occur in a transfinite
sequence: F, Fy, Fzy, Fas, ...

THEOREM. B = I for the space X, of Section 1 (with A, taken to be
the set of rationals Q).

Proof. For convenience, denote X, by X, 4, by @ and X —A4, (the
irrationals) by P.

First, it is a simple matter to show that, for ¢ ¢ @, X —{q} is an Fs.
Next, if 4 and B are closed subsets of X, with 4 C B, then B—A4 is
an Fgs;. For

B—A=[Br(~AnP)]u[Bn(-4nQ],
where the union is disjoint. The second term is countable and thus an ¥;.
The first term can be handled by showing that, whenever D C P, D is
an Fg;. Now D~—D is countable (consisting only of rationals) and

D= ﬂ B‘{Q}7

geD-D

50 it suffices to note that, since D—g=[X—{g}]~ D, D—{g} is an F;.
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o0
Now if L_JlAi is an ¥, in X, we may assume 4;C 4,C... Then, from
the above,

s

v

A= LJI [4s—A4; 4]

1

]

is an Fss.
Since every subset of X is an F,; (each A C X, can be represented
a8 (An@)w(4d~P) where A~ Q isan F, and 4 ~ P is open. Since

-open subsets of X, are F,, by Section 1, 4 is an F,, every subset of X is

an Fggs. This proves the theorem.

It is much easier to prove that, in the same space X = X,, the family
of Borel sets coincides with the smallest family

(1) containing the open sets,
(2) closed under countable intersection,
(3) closed under countable disjoint union.
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