Commutative rings
in which every proper ideal is maximal

by
Fred I. Perticani (Minneapolis, Minn.)

Introduction. Following the line of Misan [16] and Szasz [18] we shall
study here a class of rings having some strongly pathological properties.
All throughout we shall denote by A a commuiative ring with identity
1 in which every proper ideal (ie., different from (0) and 4) is mawimal.

We shall reduce the problem of characterizing all such rings to the
more concrete one of computing the second cohomology group of a field
with values in itself. More explicit definitions and statements are made
below.

We will show that A has either one or two proper ideals, but not
more. The later case is the easiest one and a full description of 4 is provided
(see Theorem 1.4); the former is shown to be naturally related to an
extension problem, (see Theorem 2.7) whence to the computation of
cohomology groups. The choice of the particular cohomology theory to
be used depends upon the generality of the approach—the complete
solution being provided by the cohomology of Mac Lane (see [13], [14]),
which is in fact a particular case of that of Shukla (see [17]). For the
“splitting” case, the Hochshild cohomology [7], [8] is also available and
the standard cohomology of abelian groups with trivial action (see Eilen-
berg-Mac Lane [3], [4], [5] and Hochshild-Serre [10]) may also be used
to obtain some information. '

1. First classification.

1.1. THEOREM. A commutative ring with identity in which every proper
ideal is mamimal cannot have more than two different proper ideals.

Proof. Assume I, J and K are three different ideals of 4. Since I+ J
properly containg I and I is maximal, 7+J must coincide with the whole
ring A. Hence

*) ='4+j, where 5¢I, jed .

Take now k € K, k # 0. Clearly (*) implies k = ki+kj. But KICK ~ I
and KJ CK ~J. These intersections, being ideals properly contained
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in K, cannot be maximal, so that they must coincide with the zero ideal.
This proves that ki=kj= 0 and a posteriori k = ki+kj = 0, a contra-
diction.

1.2. PropoSITION. If A contains two different proper ideals, then A is
isomorphic to the direct product of them.

Proof. Let I and J be the ideals. Then I%-J — A, InJ =0, and

IJ =0, so that A==21xd.
1.3. PropoSITION. I and J are fields.

Proof. Since 4 = IxJ, every ideal in the ring I (resp. J) is also an
ideal of 4. Hence I (resp. J) is a (commutative) ring with no proper ideals.
Sinee 1= 14y4-jo, eI, jyeJ and IJ = 0, we have for i ¢l (resp. jeJ)

(resp. § = Jio) -

This proves that I (resp. J) is a ring with identity. But it is known
(see Jacobson [12]) that a commutative ring with identity and no proper
ideals must be a field. Hence I and J are fields. _

1.4. TeroREM. Every commutative ring with identity in which every
proper ideal is maximal and having more than one proper ideal is isomorphic
to the direct product of two fields.

The proof follows from 1.1, 1.2

i = 1i,

and 1.3.

2. Rings with only ome proper ideal. In the last section we have
considered the ‘case of a ring with two proper ideals. As we have seen
in 1.1 the only possible case left is that of a ring A containing only one
proper ideal, which will be denoted by I.

2.1. PROPOSITION. Let A be commutative ring with identity having only
one proper ideal I. Then I is a “zero-ideal”, i.e., I® = 0.

Proof. Tet § be the annihilator of I, ie., 8= {wed; I = (0)}.
Since 8 is an ideal, either 8§ = (0) or § = I or § = A. The last possxblhty
is ruled out by the fact that 1¢ 8.

Assume then that § = (0). Take any z ¢ 4, 2 0; since 2I 0 and 2]
is an ideal contained in I, we must have 2 = I. Take now z ¢ I to be
any nonzero element. Then, since I = I, there exists ¢ eI such that
we=u; ¢ ig different from 0. Consider the set T = {y ¢ 4; ye = y}. T is
a nonzero ideal (because # ¢ T), whence I C T, and in particular e is an
identity for I. But now again, #I = I implies the existence of an 2’ ¢I such
that x4’ = ¢ and this proves that the ring I is in fact a field.

Define now a mapping ¢: 4~ by ¢(a) = ae. Since p(a+b) = (a+b)e
= ae+be = p(a)+p(b) and g(ab) = (ab)e = abe® = aebe = p(a)p(b) we see
that ¢ is a ring homomorplusm It is obviously onto since « ¢ I implies
9(#) = 2. Let B denote the kernel of . B being an ideal of 4, it must
coincide with either (0), or I or 4; but g(e) = e = 0 makes the two last
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cases impossible, so that B = (0) and ¢ is also one-to-one, i.e., an iso-
morphism. This is a contradiction, because I is a field and A thaving
a proper ideal) is not. The contradiction followed from the assumption

= (0). Thus the only possibility left is § = I, which, in other words
means that I is a “zero-ideal”: if @,y e I, then-ay = 0.

2.2. THEOREM. Let A be o commutative ring with identity having only
one proper ideal. Then A is an extension of a zero ring by a field, i.e., there
exists an exvact sequence of rings

(#%) 0>I3A3F 50
where I is a zero ring and F is a field.

Proof. Let I denote the proper ideal of 4 and take F = A/I. Since
I* = 0 (proposition 2.1), I is & zero ring and since I is maximal, ¥ is a field.
The canonical mappings I+4 and 4—F provide the other data of the
required exact sequence.

It is known (see Mac Lane [13]) that whenever a sequence like (%)
above is given, the product of 4 determines a structure of linear space
for I over the field 7, in the following way. First identity I with its image
under j; so I becomes an ideal of 4. Now for every f ¢ # and b ¢ I, define
fb as fb = ab, where a is any element of 4 mapped by = on f. Let us see
that this action is well defined: if a, o’ are mapped on f, then a— a’ belongs
to the kernel of &, namely to I, and since I* = 0, we have (a—a’) b= 0
for every b e I. This means that ab = a’b and so the element ab depends
only on b and the class of a modulo I. It is now very easy to show that
the action of F on I determines a structure of F-linear space for I. The
reader will provide the details.

2.3. DErFNITION. The action of # on I and the structure of F-linear
space of I described above will be referred to as the action and the structure
determined by the sequence (#x).

2.4. PrOPOSITION. Under the hypothesis of Theorem 2.2, I (with the
structure induced by (+x)) is a one-dimensional linear space over the field F'.

Proof. Let H C I bean F-subspace and a ¢ A. Then aH = =n(a)H C H,
and so H is an ideal of A. Therefore H coincides with (0) or with I. This.
shows that the only #-subspaces of I are the trivial ones, and hence I must
be one dimensional.

2.5. COROLLARY: Under the hypothesis of 2.2
and F = A[I are isomorphic.

A reciprocal of the sequence of statements made above is also true.

2.6. PROPOSITION. Let

*
%)

be an exact sequence of commutative rings such that

the additive groups I

0—>I—7'>A$-;F-—>0
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1) I is a zero ring, i.e., I* = 0;

2) F is o field;

3) I, with the structure determined by (x"x) is a one-dimensional linear
space over F.

Then A. is a commutative ring with identity which has only one proper
ideal, namely j(I). ‘

Proof. The fact that A must have an identity (even under more
general hypotheses) is known (see Mac Lane [13]). We shall skefch here
a proof. First, identify I (using j) to j(I). Observe now that I is a maximal
ideal of A (F is a field); therefore, any ideal of A containing properly I
must eoincide with A itself. Choose ¢ € A such that = (e) = 1 is the identity
of ¥ and consider the ideal A4e. Since ex = z for every x eI (because
2=1z=n(e)z=ezx), it is clear that AeDI. As 1= n(e) = n(e)mx(e)
= 7(e?) e w(Ae), we see that m(de) s 0.

Then Ae s I, and so Ae= A. Choose now %k ¢ A such that ke=¢
and define J = {y € 4; ky = y}. If © ¢ I, then ex = x, so that kz = k(ex)
= (ke)& = ex = x. This means that I CJ. Since ¢ e J and e ¢ I, the ideal J
containg I properly, and hence J = 4, or, in other words, & is an iden-
tity for A.

We shall see now that I is the only proper ideal of A. Assume
that JC A is an ideal. Since I i3 a one dimensional F-linear space,
if J CTI and J 5 I, then necessarily J = (0). We denote by H the inter-
section J ~ I. As we have seen, either H = I or H = (0), i.e., either ICJ
or I ndJ = (0). In the first case, I being maximal, the only two possibilities
are I =J or A=J. Assume now the second case: I ~nJ = (0). Using
again the maximaliby of I we conclude that I+J = 4, but for the trivial
case J = (0). Denoting as above by % the identity of 4, if 4 = I4-J there
is a decomposition k = iy-+jy, iq € I, j, € J. This implies that & = &* = jg,
because fyjy ¢ IJ CI ~nJ = (0) and i ¢ I° = 0. But then k= joeJ and
s0dJ = A. We thus conclude that the only ideals of 4 are (0), T and A itself.

As a final remark, let us observe that Propositions 2.4 and 2.6 and
Theorem 2.2 together yield the following characterization of A:

2.7. TEEOREM. All commutative rings with unit having only one proper
ideal may be obtained as extensions of suitable one-dimensional vector spaces
over some field {considered as zero rings) by the same field in such a way
that the linear structure coincides with the structure determined by the emact

sequence defining the ewtension. Moreover, all such extensions are rings
of that sort.

3. Cohomological considerations. The cohomology theories available
ta.oda,y for algebraic structures are all intended to describe (through the
first or the second cohomology group) the sets of extensions of a given

Commutative rings in which every proper ideal is mazimal 197

object by another, also given. For the case of groups see [3], [4], [5], [10].
When extending the method to categories, other than groups, one can
choose between assuming that the additive structure is trivial (i.e., when
it “splits”, or, as one says—see [11]—the case of “inessential extensions”)
and then a new cohomology theory is looked for in order to investigate
the other operations (that is the case of associative algebras considered
in [7], [8] and of Lie algebras, [9]) or that, on the contrary, the additive
structure is described by a non trivial cohomology class. The reader will
find references and descriptions of some examples in [15]. In particular
one can consider the case of rings. The problem of finding all the extensions
of a ring by another has been considered for long under various special
conditions and for many different purposes. For example the one that
appears under the name of “crossed products” ([11], {1]) whose appli-
cations to the study of simple algebras is done in [1]. A generalization
of such “crossed products” has been given by Bovdi, [2]. The extension
problem with any kernel I has been first discussed by Everett [6] and
a generalization is the object of an article by Szendrei [19] (see also [20]
for similar treatments). The final form of some of these investigations
has been given by the theory of cohomology of Mac Lane—Shukla [13], [17].

Let us denote by H"(F, I) the n-th cohomology group, in the sense
of Mac Lane-Shukla, of the ring F with values in the bimodule 7.

3.1. THEOREM (MAC LANE [13]). There exists one-to-one correspondence -
between the set of classes of equivalent extensions of the zero ring I by F which
determine the given structure of F -bimodule for I and the second cohomology
group HX(F,I). (One such extension is called “special”, in [17]).

A natural definition of symmetric cochain may be given in this theory,
and thence the notion of symmetric cohomology growps Hg(F, I) is obtained.

We shall say that F' is a homomorphic image of A if there exist a ring
homomorphism A4 -—F which is onto.

3.2. CoroLLARY. Let F be any commutative field. The set of classes
of isomorphic commutative rings with identity having only one proper ideal
and having F' as a homomorphic image is in one-to-one and onto correspondence
with Hy(T, 1), where T is any one-dimensional vector space over F.
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"On the lattice of left annihilators of certain rings

by
M. F. Janowitz (Amherst, Mass.)

§ 1. Introduction. In this note we shall explore the connection
between algebraic equivalence in a Rickart ring and certain lattice
theoretic properties of its lattice of left annihilators—our goal being to
place the whole theory in a lattice theoretic rather than a ring theoretic
sefting. In the case of the projection lattice of a von Neumann algebra,
it is- shown that the usual dimension relation of %-equivalence may be
realized as perspectivity in a certain associated lattice. The parallel
between von Neumann’s dimension theory for a continuous geometry
and the one for von Neumann algebras thus becomes apparent in that
both are seen to be intrinsic—based on perspectivity.

§ 2. Rickart rings. Following terminology introduced by S. Maeda [8],
we.agree to call a ring N a Rickart ring in case it satisfies the following
two conditions:

(By) The right annihilator of every element is the principal right ideal
generated by an idempotent.

(B1) The left annihilator of every element is the principal left ideal
generated by an idempotent.

For examples we refer the reader to Kaplansky [5] as well as
8. Maeda [8]. Given the Rickart ring 9, let L(z) denote the left annihilator
of z, R(r) its right annihilator, £(%) = {L(z): z e A} and R(A) = {R(x)
2 e L If £(A) and K(A) are each partially ordered by set inclusion, by [8],
Theorem 1.1, p. 512, they form dual isomorphic relatively complemented
lattices with 0 and 1. Our goal in this section is to extend [8], Lemma 4.3,
p. 517.

First we need some additional terminology. Two elements e, f of
a lattice I are said to form a modular pair, denoted M (e, f), in case
a < f=av(erf) = (ave)Af; they form a dual modular pair, in symbols
DM (e,f), if a=f=anr(evf) = (ane)vf. In a lattice L with 0, two ele-
ments ¢ and f are called perspective and written e~f in case there is an
element # such that eve = fvz with eAz = faz = 0; they are called
strongly perspective and denoted e~sf when they are perspective in
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