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Proof. It follows from (2], Corollary 12) that M ig contradictible,

According to [7], C(M) has f.p.p. iff M xI has £p.p. Since M x7I ig
& product of smooth dendroids, we apply Theorem 3 and conclude that
C(M) has fp.p.
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Some relations between k-analytic sets
and generalized Borel sets

by
R. C. Willmott* (Kingston, Ont.)

§ 1. Introduction. A. H. Stone introduced the family of %-analytic
sets, where & is an arbitrary cardinal, and established some of their prop-
erties ([7], hereafter referred to simply as Stone). He conjectured that
the relationships between classical analytic and Borel sets, such as
Souslin’s theorem, that if a set and its complement are both analytie,
they are both Borel, would generalize to relationships between %-analytic
sets and k-hyperborel sets, defined as the smallest family of sets con-
taining all closed sets and closed under intersections of 8, and unions
of k& of them. While this seems to be the correct Borel family there are
difficulties in working with different cardinal numbers.

In this paper we establish some relations between Souslin (a)§ sets
(k-analytic sets if k= ;) and generalized Borel families of sets which
eontain the k-hyperborel sets, but admit intersections of % elements.
We remark that Maximoff [2] was led to a similar Borel family while
studying a relation between Borel sets and sets analogous: to k-analytic
sets. The method used is a generalization of Lusin’s theory of sieves.
Most of the proofs in this paper are direct generalizations of proofs of
Lusin [1]. :

Specifically, in § 3 is developed the basic sieve theory; in corollary 4,
Souslin (a)§ sets are characterized as the sifted sets of a certain class of
sieves. In § 4 we establish the decomposition of sifted sets and their
complements into - disjoint Borel{a)F sets (see § 2 for definitions) and
apply this result to express a Souslin(a)F set as a union and intersection
of %4, Borel(a)F sets (theorem 6). Finally in § 5 we show (theorem &)
that disjoint Souslin(a)F sets can be separated by disjoint Borel(a)¥
sets and use this result to prove (corollary 9) that if a set and its comple-
ment are Souslin(a)§, then they are Borel(e)®, and that (theorem 11)
a continuous, one-to-one image of 7(a) (a generalization of the irrationals,
see § 2) is a Borel(a)F¥ set. ’

m was written while the author was a fellow of the 1969 Summer
Research Institute of the Canadian Mathematical Congress.


GUEST


icm°

264 _R.C. Willmott

As is true of most of Stone’s results most theorems in  this paper
are significant only if x;°> s,. Stone points out ([7], p. 4) that this is
true for arbitrarily large cardinals. The results reduce to the classical
ones if K, = x. -

§ 2. Preliminaries. In this section are collected definitions, notations,
and some discussion of concepts and known results that will be needed
later. A~B will denote set difference; Cl4, the closure of A4; T, the
family of closed sets of the topolegical space in question; if ACXx Y,
nx A is the projection of A on X. A topological space is of weight &, if &,
is the least cardinal of a base for the topology. ‘An ordinal number is
considered to be the set of all ordinals less than itself. Thus w is the set
of all non-negative integers. w, denotes, as usual, the least ordinal of
cardinal x,. i

I(o) = w3, the set of all sequences of ordinals in wa. On I(a) we
define the metric ¢ given by o(4,j) = 1/(n+1) if 4, = Joy oy Tne1 = Jn—1;
in #ju. If k=%, I(a) is isometric to the space B(k) of Stone. It is
complete and of weight .. I(0) is homeomorphic to the irrationals. For
ieI(a), new, we define

iln = (7y, 1y, ..., %), an ordered (n—}-l)-;auple of ordinals in w,, and
I(i[n) = {j e I{a); jln = in}, ‘
called a Baire interval of order n+1. The Baire intervals form a base
for the metrie topology on I(a). They are open and closed and homeo-
morphic to I(a). Two Baire intervals are either disjoint or ome is con-
tained in the other.

Suppose $ is a family of sets. ,, as usual, will denote the set of
countable unions of elements of §; %y, the set of unions of 8 elements
of %, where the cardinal s, will be clear from the context.

Borelian(a) § is the smallest family which contains $ and is closed
under unions and intersections of %, elements.

Borel(a)$ is the smallest family which contains § and is closed
under unions of %, elements and under complementation with respect
to | 4.

Ae§ .

Evidently $5C $z C Borelian(a) CBorel(a) $. In a metric Space

(among others) Borelian (a)§ = Borel(a)F.

Souslin(e)$ is the family of all sets 4 such that

B

A= U M B(in)
1€l(a) new
for some function E on {ijn: tel(a),new} to §. If k= »x,, then

Souslin(a)§ is just the family of k-analytic sets of Stone. We have (see
Stone, p. 34)
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(1) $ C Souslin(a)$;

(2) Souslin(a) Souslin(a)$ = Souslin(a)H;

(3) The intersection of every countable family of Souslin(a)$ sets,
and the union of every family of at most %, Souslin(a)$ sets, are again
in Souslin(a)$. .

We remark that if & =&,, then the union in the definition of
Souslin (e)$ is over 5, sets and consequently Souslin(a)$ C Borelian(a)$.
Tt is not true in general that Borelian(e)$ C Souslin(e)$ (It is, of course,
true in the classical case, a= 0.)

3. Sieves and a characterization of Souslin(a)$ sets. We first establish
a result on the projection of Souslin(a){ sets which is analogous to that
in [3], from which the proof is taken. By theorem 19 of Stone, every
complete metric space of weight < x. is a continuous image of I(a).

THEOREM 1. Suppose Y is a continuous image of I(a), X is a topological
space, and A is a Souslin(a)F set in X x¥. Then nxA is a Souslin(e)F
set in X.

Proof. Let Y = f[I(a)], f a continuous function, and

A= U N A(im).

i€l{a) new

where, for each ieI(a), A(4/0)D A(i]1)D A(¢]2) D ... We have

A=Aﬁ7_€%)(x><{f(j)})= U U N X x{F5)) ~ Adilm)]

jel(a) t€lfe) new
and

axAC U U N Clax|(X xfII(jIm)]) ~ AGm)] =B.

jel(a) t€l{o) neeo

Clearly B is a Souslin(a)§ set in X. We show B CnxA. Let 2z e B. Then
for some ', j' € I{a),

z e[ Clux|(X xfTI('m)]) ~ A(&'[w)] .
Suppose

¢ nx{ (X < f{j"}) n () A{I'n)]Cnxd.
Then

(2,J) e XXX~ A([n) = U[X x T ~A(#[0)],
new

nea
and, for some m ¢ w,

(2, ) € X x ¥ msd (i']m) ,
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an open set in X x Y. Since the sequence A4 (i'|n), new is decreasing,
and f iy continuous, we may choose p >m and U open in X so that
z¢U and : )
(UL p)]) ~ Al1p) = O
But then

# ¢ Clax((X x fII(§'1p)]) ~ 4(i'1p)] ,

a contradiction. We conclude that zemxA and so that B C nx A.

We now introduce the concept of a sieve in X xI(a) and several
allied ideas (see [4], § 7, for a discussion and some results concerning
sieves). Let > be the lexicographical order on fhe elements of I(a),
Le.for i,j e I(a), 7> jif and only if in > j, Where # is the first component
where i and j differ, and > is the usual order on the ordinals. A sieve is
any set ' in X x I(a); the set sifted by C is the set B of points # in X
for which (¢ = {47 (,9) €0} contains a strictly decreasing sequence
Yo> Y1> ¥ > ... The complement X ~F of the sifted set is thus the
set of points for which € is well-ordered by >.

Q(a) is the subset of I(a) consisting of sequences which take only
the value 0 from some point on. The cardinality of Q(a) is %, and so it
is an Fr in I(a). If 4 is Souslin(e)F in X x Q(a), then A is Souslin (a) §F
in XxI(a).

If § is a family of subsets of X, a standard $-sieve in X x Qa) is
a set C of the form

C= | Hix{i}
1€Q(a)
where for each ieQ(a), H; eH or Hi=@.
THEOREM 2. Suppose § is closed under finite intersections. If A is

a Souslin(a)$ set in X, then there is a standard 9H-sieve € in X xQ(a)
whose sified set is A.

Proof. We have
A= 1 N A(n),

iel(a) new

where each set A(iln) e $. As § is closed under finite intersections we
may suppose that for each {e (), A(il0)D A(4]1) D A(4]2)D ... For
iel{a), new, define
r(iln) = (4o, 11y 'i27 ey 7.71-—1’ iﬂ'!"l’ 0, 0, 0,..) € (a) ’
and set .
C= U N A(il) x fr(im)}

ie€l(a) new

a standard $-sieve in X XQ(a). It is easy to check that A4 is the set
sifted by C.
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TEEOREM 3. If C is a Souslin(a)F set in X x I(a), then the set sifted
by O is Souslin(a)F in X.
Proof. (See proof of theorem 10 in [4].) Enumerate the points of
QUa): Toy Ty Tay ey Tary wvey Ty von |0g
Let 6 be a sequence such that
7% =1(1,0,0,0,..),
Ts, = (07 1, 0,0, 0,..),
Toy = (Oa 0: 1,0, 0, 07 ) 1

We have 753> 75, > 75, > ... For 5, y € w,, define

ry i <,
7. == .
YT \max {ry,: 75, <7} otherwise .

For a finite number rs, 7s,, ..., 74,,"

V0378 s Top = (...((r,glrﬁz)r,gs)...)rﬁ,,.
Now for iel(a), ne w, define

{y e I{a): 7; Ly i n=0,
{y € I(a): TigTiy ooe Tig 5 Y £ L ’V{n_l} if n>0

R(in) = {

an F.-set and hence a Souslin(a)F set in I(a).
Now for each ieI(a), new, sot

A (in) = mx[ 0 ~ {X X R(in)}] .
By theorem 1, A(iln) is Souslin(a)§F in X, so
A= U M A(ijn)

iel{a) new

is ‘Bouslin (o) Souslin(a)§F and so Souslin(e)§ in X. It is easy to check
that 4 = B, the set sifted by C.

Combining theorems 2 and 3 we have the following characterization.
A standard §-sieve in X xQ(a) is an Fs-seb in X xQ(a) and hence
Souslin(a)¥ in X x Q(a).

COROLLARY 4. A is a Souslin(a)F set in X if and only if it is the set
sifted by a standard §-sieve in X x Q(a). '

4. Constituents of sifted sets and their complements. We turn now to the
notion of the constituents of a sifted set and its complement which is
needed for the proof of our main theorem. Suppose C is a sieve in X xQ(a),
B is the sifted set, and B= X~ F the complement of the sifted set.

' “Fundamenta Mathematicae, T. LXXI 19


GUEST


icm

268 R. C. Willmott

For =€ B, 0@ is well-ordered. Let y(x) be the corresponding ordinal

number. We have y() < way1- . 7
For z ¢ B, (* is not well-ordered, but we may define a well-ordered

“lower part”. Let S(i)={keI(a): % &£ i} and set, for 2 < B
j(@)= sup{i e I(a): €™ ~ §(i) is well-ordered} .
Then j(z) is unique, and 0% ~ §(j(x)) is well-ordered. Let y(z) be the
corresponding ordinal number. Again (%) < weti. FOr B € woyy seb
‘ B;={zeB: y(x)=pf}, the p-constituent of B,
E;={xeH: y(x)= f}, the pB-constituent of F .

Then
B= U By, F= U E,
Bewgyy Bewgyy
where these unions gre disjoint.

TrrorEM 5. Suppose O is a standard Borelian(a)$-sieve in X xQ( a).
Then the constituents Ep and Bp, f € wary of the sifted set and its comple-
ment are Borel(a)$ sets.

Proof. (See Lusin [1], p. 188.) Enumerating the segments com-
posing €, we have

C= U Fly)x{r(y},

V€wq
where F(y) is Borelian(a)$, r(y) € Q(a). Clearly the 0-constituent of B,
By=X~mxl=X~ ] F(y)
V€wa

is a Borel(a)$ set. For y € w,, let
C= U Fyxfrn},

f(ﬂ,;;mﬁr)
the part of ¢ strictly “below” X x {r(»)}. Then
0() =F(y)~axCy)=F(y)~ U PF(y)
7(n) < r(y)
is a Borel(a)$ set, as is
8= | o(y).

VE€wq

The points of § are just those points x with the property that ¢ has
& least point. Now the 0-constituent of & y By=X~(B,u 8), is
a Borel(a)$ set.

We now define the derived sieve ¢’ of (.

= y&m{ﬁl’“(?’w"(ﬂ] x{r(y)}= MU F) nax G x{r(»)},
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again a standard Borelian(a)$-sieve in X x Q(a). 0" may be considered
as being constructed from € by removing from each set {#} x € the
point with the least ordinate, if such a point exists. Clearly the sifted
set of ¢” is still #. The 0-constituents of B and B with respect to €’ are
equal respectively to B, v B, and B, v B, and are again Borel(a)$ sets.
As E, and B, are Borel(a)$ sets, the same is true of E, and B,.

‘We now form a transfinite sequence of derived sieves

0= Cyy Oy Cay ey Cay orry Oy, oo | ara

by setting, for # a non-limit ordinal,

Cp = (Cp)’
and for g a limit ordinal
Cp=)0,. .
<8

Then each sieve Cp is a standard Borelian(a) §-sieve having F ag the

sifted set, and the 0-constituents of B and B with respect to Oz, which

are Borel(a)$ sets, are equal respectively to U B, and |JB,. It follows
n<B n<p

that all the constituents E,, B,, v € way, are Borel(a) $. .
The following result is similar to that of Maximoff ([2], theorem 4,
D. 547).
THEOREM 6. Suppose $ is closed under finite intersections. If A is
a Souslin (a) Borelian (a)$ set in X, then there emist Borel(a)$ seis B,,
Y € Way1, and Borelian(a)$ sets D,, y € waya, such that

A= U B,= N D,.

Y€y YE€@ayy

Proof. By theorem 2, there is a staﬁdard Borelian (a) $-sieve € in
X x Q(a) whose sifted set is A. It suffices to take the sets By, y € 0ay1,
of theorem 5, and the sets

D, =nxC,, y€wu,
the sets C, also from theorem 5.

S. The separation theorem. The sieve (in X x I(a) is said to be bounded
on a set D disjoint from the sifted set of ¢ if the set of ordinals y(®), x € D
(used in defining the constituents) does not have g1 A8 It8 supremum.

THEOREM 7. Suppose X is a complete metric space of weight < &,
C is a standard Souslin(a)F-sieve in X x I (a), and A is a Souslin(a)F set
in X disjoint from the set B sifted by C. Then C is bounded on A.

19*
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Proof. (See Lusin [1], p. 183.) As in the proof of theorem 5 we may

express
0 =y€U Fy) x{r(y)},

F(y) Souslin(a)F in X. For each yew,, let H(y)=A ~nF(y). As

a Souslin (a)F set in X is a continnous image of I(a) (Stone, theorem 19),

let f and f,, y € w, be continuous functions on I(a) such that 4 — flI(a)]

and H(y) = f,[1(a)].

Suppose that ¢ is not bounded on 4. For y e w, let ¢ (¥) be the part
of ¢ “below” X x {r(y)} a8 in the proof of theorem 5. Choose ¥, € w, such
that C(k,) is not bounded on H(k,). (If a bound existed for each C(y)
on H(y), then we could choose an ordinal greater than all these bounds,
but still less than w,41, which would be a bound for ¢ on A.) Now choose
G0y 16° € g such that ¢ (k) iz unbounded on

JIL(io)] ~ frI(i5°)] = D, C 4,

where I(i,) and I(if*) are Baire intervals of order 1. Such a choice is
possible since 4 ~ H(k,) is a union of s, such intersections. Now choose
ke wa s0 that r(k) < r(k,) and C (k) is not bounded on Dy ~ H(L,).
Again choose 4, i, and 18, i € w, so that C (%,) is unbounded on

Dy = fLL o, 2]~ Fu 1038, 41901 A fiulT (08", 2] C 4 ~ H (ko) ~ H (i) .

We thus construct by recursion the sequences 4, i™, * eI (a), and
D of non-empty sets such that for each n e w, 7 (kyyq) < 7(ks), and
C(k,) is unbounded on

Do = FITGE A o A fi TE* )] C A A H (le) A .. ~ H (By) .

Let @ =f(4), y»= fi,(4"). Then by continuity of f and Truy We
have = v,, and thus that z ¢ A and @ € H(ky) C F(kj,) for every n. But
the r(k,) form a decreasing Sequence, contradicting the fact that A ig
disjoint from the sieved set. We conclude that ¢ is bounded on A.

Using theorems 2, 7, and 5 we have immediately

THEOREM 8. Suppose A and B are disjoint Souslin(a)F sets in a com-
Dplete metric space of weight < 8, Then there exist disjoint Borel(a)§F sets q,
D such that A CC and BC D,

COROLLARY 9. Suppose X is a complete metric space of weight < 8,.
If both A and X~A gre Souslin{a)F sets in X, then A and X~A are
Borel(a)§ sets.

We remark that these results are trivial if s — 8, in which case
2 Souslin(a)F set is a Borel(a)§ set. Unfortunately, the converse of

corollary 9 is not necessarily true as a Borel(a)§ set need not . be
Souslin (a) . ‘
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A standard proof (e.g. [5], theorem 123, p. 230) gives

CoROLLARY 10. If {4,: y € w,} is a Jfamily of disjoint Souslin(a)§ sets
in a complete meiric space of weight <w., then there emists a Sfamily
{By: y € wa} of disjoint Borel(a)§ sets such that for each y e w,, A,CB,.

Using corollary 10, and the facts that a Souslin(a)§F set is a continu-
ous image of I(a) and a closed subset of I{a) is a retract of I (a) (Stone,
theorems 19, p. 35 and 3, p. 8), the proof of theorem 124, p. 232 of Sier-
pinski [5] gives

TEeOREM 11. If X is a complete metric space of weight <w., and
fiJ—=X is a continuous, one-to-one function on a closed subset J of
I(a) into X, then f[J] is a Borel(a)§ set in X.
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