262

## J. B. Fugate



Proof. It follows from ([2], Corollary 12) that M is contradictible. According to [7], C(M) has f.p.p. iff  $M \times I$  has f.p.p. Since  $M \times I$  is a product of smooth dendroids, we apply Theorem 3 and conclude that C(M) has f.p.p.

## References

- [1] K. Borsuk, A Theorem on fixed points, Bull. Acad. Polon. Sci. 2 (1954), pp. 17-20
- [2] J. J. Charatonik and C. Eberhart, On smooth dendroids, Fund. Math. 67 (1970), pp. 297-322.
- [3] H. Cook, Tree-likeness of dendroids and λ-dendroids, Fund. Math. 68 (1970), pp. 19-22.
- [4] C. A. Eberhart and J. B. Fugate, Approximating Continua from within, to appear in Fund. Math.
- [5] J. B. Fugate, Retracting fans onto finite fans, Fund. Math. 71 (1971), pp. 113-125.
- [6] W. Hurewicz and H. Wallman, Dimension theory, Princeton 1948.
- [7] R. J. Knill, Cones, products and fixed points, Fund. Math. 60 (1967), pp. 35-46.

UNIVERSITY OF KENTUCKY Lexington, Kentucky

Reçu par la Rédaction le 14. 10. 1969

## Some relations between k-analytic sets and generalized Borel sets

by

R. C. Willmott \* (Kingston, Ont.)

§ 1. Introduction. A. H. Stone introduced the family of k-analytic sets, where k is an arbitrary cardinal, and established some of their properties ([7], hereafter referred to simply as Stone). He conjectured that the relationships between classical analytic and Borel sets, such as Souslin's theorem, that if a set and its complement are both analytic, they are both Borel, would generalize to relationships between k-analytic sets and k-hyperborel sets, defined as the smallest family of sets containing all closed sets and closed under intersections of  $\kappa_0$  and unions of k of them. While this seems to be the correct Borel family there are difficulties in working with different cardinal numbers.

In this paper we establish some relations between  $\operatorname{Souslin}(a)\mathfrak{F}$  sets (k-analytic sets if  $k=\aleph_a)$  and generalized Borel families of sets which contain the k-hyperborel sets, but admit intersections of k elements. We remark that Maximoff [2] was led to a similar Borel family while studying a relation between Borel sets and sets analogous to k-analytic sets. The method used is a generalization of Lusin's theory of sieves. Most of the proofs in this paper are direct generalizations of proofs of Lusin [1].

Specifically, in § 3 is developed the basic sieve theory; in corollary 4, Souslin(a)  $\mathfrak{F}$  sets are characterized as the sifted sets of a certain class of sieves. In § 4 we establish the decomposition of sifted sets and their complements into disjoint Borel(a)  $\mathfrak{F}$  sets (see § 2 for definitions) and apply this result to express a Souslin(a)  $\mathfrak{F}$  set as a union and intersection of  $\kappa_{a+1}$  Borel(a)  $\mathfrak{F}$  sets (theorem 6). Finally in § 5 we show (theorem 8) that disjoint Souslin(a)  $\mathfrak{F}$  sets can be separated by disjoint Borel(a)  $\mathfrak{F}$  sets and use this result to prove (corollary 9) that if a set and its complement are Souslin(a)  $\mathfrak{F}$ , then they are Borel(a)  $\mathfrak{F}$ , and that (theorem 11) a continuous, one-to-one image of I(a) (a generalization of the irrationals, see § 2) is a Borel(a)  $\mathfrak{F}$  set.

<sup>\*</sup> This paper was written while the author was a fellow of the 1969 Summer Research Institute of the Canadian Mathematical Congress.



As is true of most of Stone's results most theorems in this paper are significant only if  $\kappa_n^{\kappa_0} > \kappa_\alpha$ . Stone points out ([7], p. 4) that this is true for arbitrarily large cardinals. The results reduce to the classical ones if  $\kappa_\alpha = \kappa_0$ .

§ 2. Preliminaries. In this section are collected definitions, notations, and some discussion of concepts and known results that will be needed later.  $A \sim B$  will denote set difference; ClA, the closure of A;  $\mathfrak{F}$ , the family of closed sets of the topological space in question; if  $A \subset X \times Y$ ,  $\pi_X A$  is the projection of A on X. A topological space is of weight  $\kappa_\alpha$  if  $\kappa_\alpha$  is the least cardinal of a base for the topology. An ordinal number is considered to be the set of all ordinals less than itself. Thus  $\omega$  is the set of all non-negative integers.  $\omega_\alpha$  denotes, as usual, the least ordinal of cardinal  $\kappa_\alpha$ .

 $I(a)=\omega_a^\omega$ , the set of all sequences of ordinals in  $\omega_a$ . On I(a) we define the metric  $\varrho$  given by  $\varrho(i,j)=1/(n+1)$  if  $i_0=j_0,\ldots,i_{n-1}=j_{n-1};$   $i_n\neq j_n$ . If  $k=\kappa_a$ , I(a) is isometric to the space B(k) of Stone. It is complete and of weight  $\kappa_a$ . I(0) is homeomorphic to the irrationals. For  $i\in I(a)$ ,  $n\in\omega$ , we define

 $i|n=(i_0,i_1,\ldots,i_n),$  an ordered (n+1)-tuple of ordinals in  $\omega_{\alpha}$ , and  $I(i|n)=\{j\in I(\alpha);\ j|n=i|n\},$ 

called a *Baire interval of order* n+1. The Baire intervals form a base for the metric topology on I(a). They are open and closed and homeomorphic to I(a). Two Baire intervals are either disjoint or one is contained in the other.

Suppose  $\mathfrak H$  is a family of sets.  $\mathfrak H_{\sigma}$ , as usual, will denote the set of countable unions of elements of  $\mathfrak H$ ;  $\mathfrak H_{\mathcal E}$ , the set of unions of  $\kappa_{\alpha}$  elements of  $\mathfrak H$ , where the cardinal  $\kappa_{\alpha}$  will be clear from the context.

Borelian(a)  $\mathfrak H$  is the smallest family which contains  $\mathfrak H$  and is closed under unions and intersections of  $\kappa_a$  elements.

Borel(a)  $\mathfrak H$  is the smallest family which contains  $\mathfrak H$  and is closed under unions of  $\mathfrak K_a$  elements and under complementation with respect to  $\bigcup_{A\in \mathfrak H} A$ .

Evidently  $\mathfrak{H}_{\sigma} \subset \mathfrak{H}_{\Sigma} \subset \operatorname{Borelian}(a) \mathfrak{H} \subset \operatorname{Borel}(a) \mathfrak{H}$ . In a metric space (among others)  $\operatorname{Borelian}(a) \mathfrak{F} = \operatorname{Borel}(a) \mathfrak{F}$ .

Souslin(a)5 is the family of all sets A such that

$$A = \bigcup_{i \in I(a)} \bigcap_{n \in \omega} E(i|n)$$

for some function E on  $\{i|n: i \in I(a), n \in \omega\}$  to  $\mathfrak{H}$ . If  $k=\kappa_a$ , then Souslin(a) $\mathfrak{H}$  is just the family of k-analytic sets of Stone. We have (see Stone, p. 34)

- (1)  $\mathfrak{H} \subset \operatorname{Souslin}(a)\mathfrak{H}$ ;
- (2) Souslin(a) Souslin(a)  $\mathfrak{H} = \text{Souslin}(a)\mathfrak{H}$ ;
- (3) The intersection of every countable family of Souslin(a) $\mathfrak H$  sets, and the union of every family of at most  $\kappa_a$  Souslin(a) $\mathfrak H$  sets, are again in Souslin(a) $\mathfrak H$ .

We remark that if  $\kappa_{\alpha}^{\kappa_0} = \kappa_{\alpha}$ , then the union in the definition of  $\operatorname{Souslin}(\alpha)\mathfrak{H}$  is over  $\kappa_{\alpha}$  sets and  $\operatorname{consequently} \operatorname{Souslin}(\alpha)\mathfrak{H} \subset \operatorname{Borelian}(\alpha)\mathfrak{H}$ . It is not true in general that  $\operatorname{Borelian}(\alpha)\mathfrak{H} \subset \operatorname{Souslin}(\alpha)\mathfrak{H}$  (It is, of course, true in the classical case,  $\alpha = 0$ .)

3. Sieves and a characterization of Souslin( $\alpha$ )  $\mathfrak F$  sets. We first establish a result on the projection of Souslin( $\alpha$ )  $\mathfrak F$  sets which is analogous to that in [3], from which the proof is taken. By theorem 19 of Stone, every complete metric space of weight  $\leqslant \aleph_{\alpha}$  is a continuous image of  $I(\alpha)$ .

THEOREM 1. Suppose Y is a continuous image of I(a), X is a topological space, and A is a Souslin(a)  $\mathfrak F$  set in  $X \times Y$ . Then  $\pi_X A$  is a Souslin(a)  $\mathfrak F$  set in X.

Proof. Let  $Y = f[I(\alpha)]$ , f a continuous function, and

$$A = \bigcup_{i \in I(a)} \bigcap_{n \in \omega} A(i|n)$$
.

where, for each  $i \in I(a)$ ,  $A(i|0) \supset A(i|1) \supset A(i|2) \supset ...$  We have

$$A = A \cap \bigcup_{j \in I(a)} (X \times \{f(j)\}) = \bigcup_{j \in I(a)} \bigcup_{i \in I(a)} \bigcap_{n \in \omega} [(X \times \{f(j)\}) \cap A(i|n)],$$

and

$$\pi_X A \subset \bigcup_{j \in I(a)} \bigcup_{i \in I(a)} \bigcap_{n \in \omega} \mathrm{Cl}\pi_X [\big(X \times f[I(j|n)]\big) \cap A(i|n)] = B.$$

Clearly B is a Souslin(a)  $\mathfrak{F}$  set in X. We show  $B \subset \pi_X A$ . Let  $z \in B$ . Then for some  $i', j' \in I(a)$ ,

$$z \in \bigcap_{n \in \omega} \operatorname{Cl}\pi_X [(X \times f[I(j'|n)]) \cap A(i'|n)].$$

Suppose

$$z \notin \pi_X[(X \times f\{j'\}) \cap \bigcap_{n \in \mathbb{N}} A(i'|n)] \subset \pi_X A$$
.

Then

$$(z,j') \in X \times Y \sim \bigcap_{n \in \omega} A(i'|n) = \bigcup_{n \in \omega} [X \times Y \sim A(i'|n)],$$

and, for some  $m \in \omega$ ,

$$(z,j') \in X \times Y \sim A(i'|m)$$
,

an open set in  $X \times Y$ . Since the sequence A(i'|n),  $n \in \omega$  is decreasing, and f is continuous, we may choose  $p \geqslant m$  and U open in X so that  $z \in U$  and

$$(U \times f[I(j'|p)]) \cap A(i'|p) = \emptyset$$
.

But then

$$z \notin \operatorname{Cl}\pi_X[(X \times f[I(j'|p)]) \cap A(i'|p)],$$

a contradiction. We conclude that  $z \in \pi_X A$  and so that  $B \subset \pi_X A$ .

We now introduce the concept of a sieve in  $X \times I(a)$  and several allied ideas (see [4], § 7, for a discussion and some results concerning sieves). Let  $\gg$  be the lexicographical order on the elements of I(a), i.e. for  $i, j \in I(a)$ ,  $i \gg j$  if and only if  $i_n > j_n$  where n is the first component where i and j differ, and j is the usual order on the ordinals. A sieve is any set j in j in j in the set sifted by j is the set j of points j in j for which j in j in j in j is the complement j in j in

Q(a) is the subset of I(a) consisting of sequences which take only the value 0 from some point on. The cardinality of Q(a) is  $\kappa_a$ , and so it is an  $\mathfrak{F}_{\mathcal{L}}$  in I(a). If A is Souslin(a) $\mathfrak{F}$  in  $X \times Q(a)$ , then A is Souslin(a) $\mathfrak{F}$  in  $X \times I(a)$ .

If  $\mathfrak H$  is a family of subsets of X, a standard  $\mathfrak H$ -sieve in  $X\times Q(a)$  is a set C of the form

$$\mathit{C} = \bigcup_{i \in \mathit{Q}(a)} \mathit{H}_i \times \{i\}$$

where for each  $i \in Q(\alpha)$ ,  $H_i \in \mathfrak{H}$  or  $H_i = \emptyset$ .

THEOREM 2. Suppose  $\mathfrak H$  is closed under finite intersections. If A is a  $Squslin(\mathfrak a)\mathfrak H$  set in X, then there is a standard  $\mathfrak H$ -sieve C in  $X\times Q(\mathfrak a)$  whose sifted set is A.

Proof. We have

$$A = \bigcup_{i \in I(a)} \bigcap_{n \in \omega} A(i|n) ,$$

where each set  $A(i|n) \in \mathfrak{H}$ . As  $\mathfrak{H}$  is closed under finite intersections we may suppose that for each  $i \in I(\alpha), \ A(i|0) \supset A(i|1) \supset A(i|2) \supset ...$  For  $i \in I(\alpha), \ n \in \omega$ , define

$$r(i|n) = (i_0, i_1, i_2, ..., i_{n-1}, i_n+1, 0, 0, 0, ...) \in Q(a)$$

and set

$$C = \bigcup_{i \in I(a)} \bigcap_{n \in \omega} A(i|n) \times \{r(i|n)\},$$

a standard 5-sieve in  $X \times Q(a)$ . It is easy to check that A is the set sifted by C.

THEOREM 3. If C is a Souslin(a) if set in  $X \times I(a)$ , then the set sifted by C is Souslin(a) in X.

Proof. (See proof of theorem 10 in [4].) Enumerate the points of  $Q(a): r_0, r_1, r_2, ..., r_{\omega}, ..., r_{\gamma}, ... | \omega_a$ 

Let  $\delta$  be a sequence such that

$$egin{aligned} r_{ar{o}_0} &= (1,0,0,0,...) \ , \\ r_{ar{o}_1} &= (0,1,0,0,0,...) \ , \\ r_{ar{o}_2} &= (0,0,1,0,0,0,...) \ , \\ &\vdots \end{aligned}$$

We have  $r_{\delta_0} \gg r_{\delta_1} \gg r_{\delta_2} \gg \dots$  For  $\eta, \gamma \in \omega_{\alpha}$ , define

$$r_{\scriptscriptstyle \gamma} r_{\scriptscriptstyle \eta} = egin{cases} r_{\scriptscriptstyle \eta} & ext{if} & r_{\scriptscriptstyle \eta} \leqslant r_{\scriptscriptstyle \gamma} \,, \ \max\left\{r_{\scriptscriptstyle \delta_n} \colon r_{\scriptscriptstyle \delta_n} \leqslant r_{\scriptscriptstyle \gamma}
ight\} & ext{otherwise} \;. \end{cases}$$

For a finite number  $r_{\beta_1}, r_{\beta_2}, \ldots, r_{\beta_n}$ ,

$$r_{\beta_1}r_{\beta_2}...r_{\beta_n} = (...((r_{\beta_1}r_{\beta_2})r_{\beta_3})...)r_{\beta_n}.$$

Now for  $i \in I(a)$ ,  $n \in \omega$ , define

$$R(i|n) = \begin{cases} \{ y \in I(\alpha) \colon r_{i_0} \leq y \} & \text{if} & n = 0 , \\ \{ y \in I(\alpha) \colon r_{i_0}r_{i_1} \dots r_{i_n} \leq y \ll r_{i_0}r_{i_1} \dots r_{i_{n-1}} \} & \text{if} & n > 0 \end{cases}$$

an  $\mathcal{F}_{\sigma}$ -set and hence a Souslin(a)  $\mathcal{F}$  set in I(a).

Now for each  $i \in I(\alpha)$ ,  $n \in \omega$ , set

$$A(i|n) = \pi_X[C \cap \{X \times R(i|n)\}]$$
.

By theorem 1, A(i|n) is Souslin(a)  $\Re$  in X, so

$$A = \bigcup_{i \in I(a)} \bigcap_{n \in \omega} A(i|n)$$

is  $\operatorname{Souslin}(a)\operatorname{Souslin}(a)\mathfrak{F}$  and so  $\operatorname{Souslin}(a)\mathfrak{F}$  in X. It is easy to check that A=E, the set sifted by C.

Combining theorems 2 and 3 we have the following characterization. A standard  $\mathfrak{F}$ -sieve in  $X\times Q(\alpha)$  is an  $\mathfrak{F}_{\Sigma}$ -set in  $X\times Q(\alpha)$  and hence  $\operatorname{Souslin}(\alpha)\mathfrak{F}$  in  $X\times Q(\alpha)$ .

COROLLARY 4. A is a Souslin(a)  $\mathfrak F$  set in X if and only if it is the set sifted by a standard  $\mathfrak F$ -sieve in  $X \times Q(a)$ .

4. Constituents of sifted sets and their complements. We turn now to the notion of the constituents of a sifted set and its complement which is needed for the proof of our main theorem. Suppose C is a sieve in  $X \times Q(\alpha)$ , E is the sifted set, and  $B = X \sim E$  the complement of the sifted set.

For  $x \in B$ ,  $C^{(x)}$  is well-ordered. Let  $\gamma(x)$  be the corresponding ordinal number. We have  $\gamma(x) < \omega_{\alpha+1}$ .

For  $x \in E$ ,  $C^{(x)}$  is not well-ordered, but we may define a well-ordered "lower part". Let  $S(i) = \{k \in I(a): k \leq i\}$  and set, for  $x \in E$ 

$$j(x) = \sup\{i \in I(\alpha): C^{(x)} \cap S(i) \text{ is well-ordered}\}.$$

Then j(x) is unique, and  $C^{(x)} \cap S(j(x))$  is well-ordered. Let  $\gamma(x)$  be the corresponding ordinal number. Again  $\gamma(x) < \omega_{a+1}$ . For  $\beta \in \omega_{a+1}$  set

$$B_{\beta} = \{x \in B \colon \gamma(x) = \beta\}, \text{ the } \beta\text{-constituent of } B,$$
  
 $E_{\beta} = \{x \in E \colon \gamma(x) = \beta\}, \text{ the } \beta\text{-constituent of } E.$ 

Then

$$B = igcup_{eta \, \epsilon \, \omega_{m{a}+1}} B_{eta} \, , \hspace{5mm} E = igcup_{eta \, \epsilon \, \omega_{m{a}+1}} E_{eta} \, ,$$

where these unions are disjoint.

THEOREM 5. Suppose C is a standard Borelian(a)  $\mathfrak{H}$ -sieve in  $X \times Q(a)$ . Then the constituents  $E_{\beta}$  and  $B_{\beta}$ ,  $\beta \in \omega_{a+1}$  of the sifted set and its complement are Borel(a)  $\mathfrak{H}$  sets.

Proof. (See Lusin [1], p. 188.) Enumerating the segments composing C, we have

$$C = \bigcup_{\gamma \in \omega_{\alpha}} F(\gamma) \times \{r(\gamma)\},$$

where  $F(\gamma)$  is Borelian (a) 5,  $r(\gamma) \in Q(\alpha)$ . Clearly the 0-constituent of B,

$$B_0 = X \sim \pi_X C = X \sim \bigcup_{\gamma \in \omega_a} F(\gamma)$$

is a Borel(a)  $\mathfrak{H}$  set. For  $\gamma \in \omega_a$ , let

$$C(\gamma) = \bigcup_{\substack{\eta \in \omega_{lpha} \\ r(\eta) \leqslant r(\gamma)}} F(\eta) \times \{r(\eta)\},$$

the part of C strictly "below"  $X \times \{r(\gamma)\}\$ . Then

$$\theta(\gamma) = F(\gamma) \sim \pi_X C(\gamma) = F(\gamma) \sim \bigcup_{r(\eta) \leqslant r(\gamma)} F(\eta)$$

is a Borel(a) $\mathfrak{H}$  set, as is

$$S = \bigcup_{\gamma \in \omega_{\alpha}} \theta(\gamma) .$$

The points of S are just those points x with the property that  $C^{(x)}$  has a least point. Now the 0-constituent of E,  $E_0 = X \sim (B_0 \cup S)$ , is a Borel(a) S set.

We now define the derived sieve C' of C.

$$C' = \bigcup_{\gamma \in \omega_\alpha} [F(\gamma) \sim \theta(\gamma)] \times \{r(\gamma)\} = \bigcup_{\gamma \in \omega_\alpha} [F(\gamma) \cap \pi_X C(\gamma)] \times \{r(\gamma)\} ,$$

again a standard Borelian(a)  $\mathfrak{H}$ -sieve in  $X \times Q(a)$ . C' may be considered as being constructed from C by removing from each set  $\{x\} \times C^{(a)}$  the point with the least ordinate, if such a point exists. Clearly the sifted set of C' is still E. The 0-constituents of E and B with respect to C' are equal respectively to  $E_0 \cup E_1$  and  $B_0 \cup B_1$  and are again Borel(a)  $\mathfrak{H}$  sets. As  $E_0$  and  $E_0$  are Borel(a)  $\mathfrak{H}$  sets, the same is true of  $E_1$  and  $E_1$ .

We now form a transfinite sequence of derived sieves

$$C = C_0, C_1, C_2, ..., C_{\omega}, ..., C_{\gamma}, ... | \omega_{\alpha+1}$$

by setting, for  $\beta$  a non-limit ordinal,

$$C_{\beta} = (C_{\beta-1})'$$

and for  $\beta$  a limit ordinal

$$C_{eta} = \bigcap_{\eta < eta} C_{\eta}$$
 .

Then each sieve  $C_{\beta}$  is a standard Borelian(a)  $\mathfrak{H}$ -sieve having E as the sifted set, and the 0-constituents of E and B with respect to  $C_{\beta}$ , which are Borel(a)  $\mathfrak{H}$  sets, are equal respectively to  $\bigcup_{\eta<\beta\atop\eta<\beta}E_{\eta}$  and  $\bigcup_{\eta<\beta\atop\eta<\beta}B_{\eta}$ . It follows that all the constituents  $E_{\gamma},B_{\gamma},\ \gamma\in\omega_{a+1}$  are Borel(a)  $\mathfrak{H}$ .

The following result is similar to that of Maximoff ([2], theorem 4, p. 547).

THEOREM 6. Suppose  $\mathfrak H$  is closed under finite intersections. If A is a Souslin(a)Borelian(a) $\mathfrak H$  set in X, then there exist Borel(a) $\mathfrak H$  sets  $B_{\gamma}$ ,  $\gamma \in \omega_{a+1}$ , and Borelian(a) $\mathfrak H$  sets  $D_{\gamma}$ ,  $\gamma \in \omega_{a+1}$ , such that

$$A=igcup_{\gamma\,m{\epsilon}\,\omega_{lpha+1}}B_{\gamma}=igcap_{\gamma\,m{\epsilon}\,\omega_{lpha+1}}D_{\gamma}$$
 .

Proof. By theorem 2, there is a standard Borelian(a)  $\mathfrak{H}$ -sieve C in  $X \times Q(\alpha)$  whose sifted set is A. It suffices to take the sets  $B_{\gamma}$ ,  $\gamma \in \omega_{\alpha+1}$ , of theorem 5, and the sets

$$D_{\gamma} = \pi_X C_{\gamma} \,, \quad \gamma \in \omega_{\alpha+1} \,,$$

the sets  $C_{\gamma}$  also from theorem 5.

5. The separation theorem. The sieve C in  $X \times I(\alpha)$  is said to be bounded on a set D disjoint from the sifted set of C if the set of ordinals  $\gamma(x)$ ,  $x \in D$  (used in defining the constituents) does not have  $\omega_{\alpha+1}$  as its supremum.

THEOREM 7. Suppose X is a complete metric space of weight  $\leqslant \kappa_{\alpha}$ , C is a standard Souslin(a)  $\mathfrak F$ -sieve in  $X \times I(\alpha)$ , and A is a Souslin(a)  $\mathfrak F$  set in X disjoint from the set E sifted by C. Then C is bounded on A.

Proof. (See Lusin [1], p. 183.) As in the proof of theorem 5 we may express

$$C = \bigcup_{\gamma \in \omega_{\boldsymbol{a}}} F(\gamma) \times \{r(\gamma)\}$$
,

 $F(\gamma)$  Souslin(a)  $\mathfrak F$  in X. For each  $\gamma \in \omega_a$ , let  $H(\gamma) = A \cap F(\gamma)$ . As a Souslin(a)  $\mathfrak F$  set in X is a continuous image of I(a) (Stone, theorem 19), let f and  $f_{\gamma}$ ,  $\gamma \in \omega_a$  be continuous functions on I(a) such that A = f[I(a)] and  $H(\gamma) = f_{\gamma}[I(a)]$ .

Suppose that C is not bounded on A. For  $\gamma \in \omega_{\alpha}$  let  $C(\gamma)$  be the part of C "below"  $X \times \{r(\gamma)\}$  as in the proof of theorem 5. Choose  $k_0 \in \omega_{\alpha}$  such that  $C(k_0)$  is not bounded on  $H(k_0)$ . (If a bound existed for each  $C(\gamma)$  on  $H(\gamma)$ , then we could choose an ordinal greater than all these bounds, but still less than  $\omega_{\alpha+1}$ , which would be a bound for C on A.) Now choose  $i_0, i_0^{k_0} \in \omega_{\alpha}$  such that  $C(k_0)$  is unbounded on

$$f[I(i_0)] \cap f_{k_0}[I(i_0^{k_0})] = D_0 \subset A$$
,

where  $I(i_0)$  and  $I(i_0^{k_0})$  are Baire intervals of order 1. Such a choice is possible since  $A \cap H(k_0)$  is a union of  $\mathfrak{r}_a$  such intersections. Now choose  $k_1 \in \omega_a$  so that  $r(k_1) \leqslant r(k_0)$  and  $C(k_1)$  is not bounded on  $D_0 \cap H(k_1)$ . Again choose  $i_1, i_1^{k_0}$ , and  $i_0^{k_1}, i_1^{k_1} \in \omega_a$  so that  $C(k_1)$  is unbounded on

$$D_1 = f[I(i_0, i_1)] \cap f_{k_0}[I(i_0^{k_0}, i_1^{k_0})] \cap f_{k_1}[I(i_0^{k_1}, i_1^{k_1})] \subset A \cap H(k_0) \cap H(k_1).$$

We thus construct by recursion the sequences  $i, i^{k_0}, i^{k_1}, \dots \in I(\alpha)$ , and D of non-empty sets such that for each  $n \in \omega$ ,  $r(k_{n+1}) \ll r(k_n)$ , and  $C(k_n)$  is unbounded on

$$D_n = f[I(i|n)] \cap \dots \cap f_{k_n}[I(i^{k_n}|n)] \subset A \cap H(k_0) \cap \dots \cap H(k_n).$$

Let x = f(i),  $y_n = f_{k_n}(i^{k_n})$ . Then by continuity of f and  $f_{k_n}$ , we have  $x = y_n$ , and thus that  $x \in A$  and  $x \in H(k_n) \subset F(k_n)$  for every n. But the  $r(k_n)$  form a decreasing sequence, contradicting the fact that A is disjoint from the sieved set. We conclude that C is bounded on A.

Using theorems 2, 7, and 5 we have immediately

THEOREM 8. Suppose A and B are disjoint Souslin(a)  $\mathfrak F$  sets in a complete metric space of weight  $\leqslant \mathfrak k_a$ . Then there exist disjoint Borel(a)  $\mathfrak F$  sets C, D such that  $A \subset C$  and  $B \subset D$ .

COROLLARY 9. Suppose X is a complete metric space of weight  $\leq \kappa_a$ . If both A and  $X \sim A$  are Souslin(a)  $\mathfrak F$  sets in X, then A and  $X \sim A$  are Borel(a)  $\mathfrak F$  sets.

We remark that these results are trivial if  $\kappa_{\alpha}^{\kappa_0} = \kappa_{\alpha}$  in which case a  $\operatorname{Souslin}(\alpha)\mathfrak{F}$  set is a  $\operatorname{Borel}(\alpha)\mathfrak{F}$  set. Unfortunately, the converse of corollary 9 is not necessarily true as a  $\operatorname{Borel}(\alpha)\mathfrak{F}$  set need not be  $\operatorname{Souslin}(\alpha)\mathfrak{F}$ .

A standard proof (e.g. [5], theorem 123, p. 230) gives

COROLLARY 10. If  $\{A_{\gamma}: \gamma \in \omega_{a}\}$  is a family of disjoint Souslin(a)  $\mathfrak F$  sets in a complete metric space of weight  $\leqslant \kappa_{a}$ , then there exists a family  $\{B_{\gamma}: \gamma \in \omega_{a}\}$  of disjoint Borel(a)  $\mathfrak F$  sets such that for each  $\gamma \in \omega_{a}, A_{\gamma} \subset B_{\gamma}$ .

Using corollary 10, and the facts that a Souslin(a)  $\mathfrak F$  set is a continuous image of I(a) and a closed subset of I(a) is a retract of I(a) (Stone, theorems 19, p. 35 and 3, p. 8), the proof of theorem 124, p. 232 of Sierpiński [5] gives

THEOREM 11. If X is a complete metric space of weight  $\leq \aleph_a$ , and  $f \colon J \to X$  is a continuous, one-to-one function on a closed subset J of I(a) into X, then f[J] is a Borel(a)  $\mathfrak F$  set in X.

## References

- [1] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Paris 1930.
- [2] I. Maximoff, Sur le système de Souslin d'ensembles dans l'espace transfini, Bull. Amer. Math. Soc. 46 (1940), pp. 543-550.
- [3] C. A. Rogers and R. C. Willmott, On the projection of Souslin sets, Mathematika 13 (1966), pp. 147-150.
- [4] On the uniformization of sets in topological spaces, Acta. Math. 120 (1968), pp. 1-52.
- [5] W. Sierpiński, General Topology, Toronto 1952.
- [6] M. Sion and R. C. Willmott, On a definition of ordinal numbers, Amer. Math. Mon. 69 (1962), pp. 381-386.
- [7] A. H. Stone, Non-separable Borel sets, Rozprawy Matematyczne 28, Warszawa 1962.

QUEEN'S UNIVERSITY Kingston, Ontario

Recu par la Rèdaction le 14. 10. 1969