On the general theory of m-groups
by
J. D. Menk (Boulder, Colo.) * and F. M. Siosonf **

1. Introduction. The principal objective of this paper is to deseribe
certain properties of m -groups in terms of notions from universal algebra.
The concept of an m-group is a straight-forward generalization of the
ordinary notion of a (binary) group to one with an arbitrary m-ary
operation, where m is any natural number. This was first discovered
and studied by Wilhelm Dornte [2] in 1929. A very extensive memoir
on the subject was also published in 1940 by E. L. Post [7]. There have
been a number of other mathematicians who have dabbled in the theory.
With the increasing interest nowadays among some algebraists in dealing
with theories of algebraic systems involving m-ary operations, it is natural
to predict that the theory of m-groups should occupy an important place
in this developing field. Like their binary counterparts, m-groups possess
a very rich and complex theory.

‘We shall enumerate in this section a number of ways of characterizing
the notion of an m-group axiomatically, besides introducing a number
of notation conventions. This latter will prove extremely convenient
and useful later.

DEFINITION 1.1. An algebraic structure (4, [...]) consisting of a set 4
and an m-ary operation o: A™->4 such that o(z,, Za; ..., Tn) = (123 Tm]
is called an m-semigroup if and only if

[ oo BBt oor Bame] = (518 oo BlBr11Brs2 o Litm] oor Tam]
for all choices of i =1,2, .., m—1 and &, %, ..., Tom 1 € 4.

For simplicity of notation, it will be quite convenient although
a little awkward to abbreviate », @,... 5 as #f. In particular, if o =2,
= .= @ = o, then one may write
By @y e B = ()" = 0 = (@)t = &,
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Observe the difference between the notations 2F and (asl) On the other
hand, if & is an ordinary group, # « & ,and n is an integer, # will denote
the group-theoretic nth power of =.

We shall also adopt the following inductive definition:

250> = @,

2D = [0 ... @] = [aFgm—1]

Observe (0> =1 and <&y = k(m—1)+1.

The following inductive definition is also frequently useful. For % > 1
and elements &, .., Lxm—r+1 Of an m-semigroup,

[Ewm]mkm k+1]
PrOPOSITION 1.1. The following exponential laws hold for any col-
lection of non-negative integers ny, ..., Mm ond any element © of an m-semi-

group:
(@) (m(nl))(nﬂ —

[wimn— ket 1

gplranatm— +n+ne)
bl

(b) [‘x(nx)m(ﬂ:) m(:'tm)] — w<n1'.+nz+-n+ﬂm+1)‘

PROPOSITION L.2. If %y, eoy Bhm—ritsy Y1y -ovy Yhm—ntls 81y -oey Bimejit OTE
elements of an m-semigroup, with k,j > 0, s+t+1 = m, and h >0, then
[a;i:m—k-)-s hm—-h+lzzm—j+t]

hn

DErFINITION 1.3. An (m—1)-tuple (e, €, ..., €m-1) Of elements from
an m-semigroup 4 is called a left (right) (m—1)-adic identity if and only if

— [wicm—k+s[yibm~h+1] z:{m—i+i]

[ ] =a
([zel "] = @) for all ze 4. A lateral identity is one which is both g left
and right identity. It is simply called an (m—1}-adic identity if any cyeclic
permutation of it is a lateral identity.

Any one of the statements in the following theorem is a good de-
finition of an m-group.

TrroREM 1.4. The following conditions on an m-semigroup (A, [..])
are equivalent:
(1) For all ay, ay, ...

s tmy b e A, there emist uniquely a,, @,,
such that

vy Imed

[wlazm] = b, [ ma5"] = b, ..., [“m—lmm] =b;
(2¢) For a fized i 521, m and all al, ey Gimyy Gy oo
exists uniquely an zye 4 .s'uch that [ai™ ‘ol ] = b;
(8) For all ay, ay, ..
that [2y05] = b and [a™

.y Qm, b e A, there

) )y b e A, there ewist uniquely o, a/nd @m in A such
w,,.] = b;

icm

©
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(4) For all a,, a,, ..

<y Am_a € A, there exist URIGUELY Gy, Ay e A such
that (agy Q1 -

s Om—2) GRA (Qy; Aoy ooy @y_y) are lateral (m~—1)-adic identities;

(5) For al_ll Oyy Qay oee Oz, EA, there emists unmiquely an element
(yy Boy woe Bm—2) € A such that1 ((al, Qoy ey Umpg) Y Ay ey am_g) and
@0y @y s Bm—sy (@15 oy ooy @m—2)T) are (m—1)-adic lateral idenitities.

(6:) For all ay, ayy ..., Qs € A, there exists uniquely an element ap,_,
such.that (Asiqy, Get@)y «-vy Aatm—2) 98 an (m—1)-adic lateral identity for
a fized © 7= 0, m—1 where o= (12 ... m—1);

() For all a e A, there exists uniquely an @ e A such that (a,
and (G, @, ..., &) are lateml (m—1)-adic identities;

(8y) For o fized i =1,2,..

1

wi e A such that ( ada.

@, ., )
ym—3 and all a € A, there exists uniquely

) 18 a lateral identity.

Proof. Observe that if for each ¢ =2,3, ..., m—1, (2) <= (3) then
(1)-(3) are equivalent. The proof of the rest of the implications is outlined
as follows :

(20) ==(3) =(4) = ()
4 4
(B2) =(84) = (7)
(24) =(3). Suppose (2:). For @y, ..., am, b e A and by, .., big, byor, ...
.y bm € 4, choose x; to be the unique element of A such that

[ P ey iy | g 1 T

Therefore by (2i) [#,a5] = b. If, moreover, [zai"] = [ya3'] then

[b;w Ql'a':n i[alm 1.+lbz+l]] = [bll—l[maﬁm]b'ﬁ-l] = [
m—7

[ya" 167

[b "ya [am—«i+1bg—z{~1]]‘

Whence by (2¢), z= 9.

The unique solvability of the other equation is shown similarly. By
assuming (3) the following lemmas can be proved.

Lemva 1. If [ul'] = um([ui'] = w,), then [ul*z] = 2 ([2uf’] = x) for
all 3¢ A.

Proof. We only prove the non-parenthetical remark; the other
follows in exactly the same way.

Let ¢ ¢ A be arbitrary. By (3), there exist vy, ...,
[%mv3'] = . Hence

P2 = [u‘m@ ] - [['Mm m] [um— [umvz ]] — [um—l ]‘

LEvMA 2. If (U, oory Um—a) 98 @ left (m—1)-adic identity in 4, then
it is also a right (m—1)-adic identity and conversely.

vy €. A such that
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Proof. Suppose [u™

hence for any u,

. ~ B » ion
Tl emr 1" 1 = [wolut" Yuud ] = [wg M

- m—1
x]= o for all.weA. Then [u" '#,] = u, and

Whence by (3) [#m_1tl "

for all xe 4.
The proof of the converse is similar.

1= ty—1. By Lemma 1, this implies [zuf = 5

LEMMA 3. If (g, o) Umer) 18 an (m—1)-adic lateral identity then in
faet it is an (m—1)-adic identity, i.e., for each i (Uatqy, ...y Ugigm-y) 98
a lateral (m—1)-adic identity.

Proof. We proceed Dby induction. Suppose (e, ..., Uskpm-1) i3
a lateral (m—1)-adie identity. Then

[tarqy - “n"f(m—l)'u‘u’f(l)] = '“'_:r’“(l)
and hence by Lemma 1,
L= [‘Buﬁk(il u‘ﬁ"(m~1)ud"(1)] = [w“uk""-(l) cor Ughi(m—9) uokﬂ(m——l)]
for all e A. Whence (g, ..., Usknge—y) 18 also a right and hence
left (m—1)-adic identity, by Lemma 2. The induction is thus complete.

(3) =(24) for each i. Let (3) hold. Then there exist bi, ..., b1, Gy, ...
«ey0p € 4 such that

b7 "'ai ] = a = [aalel] .
By the preceding Lemmas 1 and 2, then
iy oy bmory @y ooy @i1)  ADNA (Gigry oony Gy oy oeny C3)
are lateral (m—1)-adic identities. By Lemma 3

(@ry ooy i1y Bey oy D) ARd (6o ooy €1y @igay ooey @)

are also lateral (m—1)-adic identities. To obtain (2;) choose u; = [bT} "beil.
Then

(a7 b6t alta] = [[ai 07 D] chali] = [bekal,] = b .

It [0 "wa¥ie] = [af Vyally), then
z = [zaf,6l] = (67 ai  w]a cé] = [bF i a1 (_5]
= [b7 ai Yyati] C';] = [ ai ) al-'ﬁrlc;g] = [yatis0] = y.
The proof of the equivalence of (1)~(3) is now complete.

(.‘?») =(4). Suppose (3) holds and hence Lemmas 1-3. If By Gy oney Gt
are given, let ¢, be the unique » such that [24] ']= ay_;. Then by
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Lemmas 1 and 2 (g, dy, ..., Gm-2) i a lateral (m—1)-adic identity. By
Lemma 3 (¢, .-, hm—2, &) is also a lateral (m—1)-adic identity thus (4)
holds with @y = Gm—1.

(4)=(5). Assuming (4), in this case it suffices to show that if
(@gy Byy -oy Bm—2) DA (a1, Gg, ..., dy_y) are lateral (m—1)-adic identities
then @ == @m-1. By hypothesis,

[0 "] = @ = [2a]"™?]

m—

[t 2] = o = [©a? "] for all ze 4.

Taking @ = @m-1 in the first and z=a, in the second, then ay_,
== [a(’,"_l = Oq.

() =(7). Suppose (5) holds. Then for a, = g, = ... = ap_o = a, there
exists uniquely an @ e.A such that
@,a,...,a) and (a,a,..,8)
are both lateral (m—1)-adic identities.

(3)=(65). Thus assuming (3) we have the validity of Lemmas 1-3.
Let @y, ¢y «ovy G-z € A. Then for any other b e 4 let a,,_, be the unique z
such that

el ®]=15b or [Gmaai"b]=0.
By Lemma 1, then [a,,_1a;" %] = s for all 2 A. Whence (Gm—zy @1y ooy Omes)
is a lateral (m—1)-adic identity and hence by Lemma 3 so is
(@otr)y o)y +eey Uottmyy)  for all i=1, .., m—2,
(6:) =(8;) for the same =1, ..., m—2 is clear.
(7) =(84). Assume (7). The following lemmas then follow:
LeMMA 4. For all k= 0,1, .., m—1 we have

[akGam=F-1] = q .
Proof by induction. Clearly from the hypothesis
[@am™] = [aGa™ %] = @ = [a™'G] = [a™%Ga] .
Suppose [a*~'Ga™~%] = a. Then
a = [ah—1gam—¥] = [a*—1a[am~1g] am—*-1]
= [[a*~"@am*] a*~'Gam—*~] = [aFaam—F-1] .

The induction is thus complete.
k

PR,

LEMMA B. For all k= 0,1, ..., m—1, w6 have (&, «.., @, T, @; .., @) 08
o lateral (m—1)-adic identity.
Fundamenta Mathematicae T. LXXII 15
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Proof.
[akaam—k—zw] = [akﬁam—k—z[am—zam]]
= [[a*@am—*1] am-sag) = [am~%aw] = & for all z 4.
Similarly,
[w&kiiam"k‘z] — [[mﬁam—Z] akdam—k—zl
= [maam-“[akﬂﬁwm'k“z]] = [g@am—2*] =0 for all wed.
To show unigueness, suppose also (a’ha™=*~%) is a Iateral identity.
Then for any ze 4,
[xam—2b] = [mam—z[bam*zd ] — [mamfz—i[uibam—t—l:l au‘-m]

= [pa™ %] = @ .

Similarly i’ﬁ is shown that (em-2b) is a left identity, and (ba™~?) is a lateral

identity. Hence by (7) @=1b.

‘Whenece (8;) holds.

(81)=>(3). Assume that (3;) holds and lef
m—1—3

m—1'—~8( m“‘f"31 ,

@ == [B () Ton W) 1) T @my) o (8) T an)

)m—-i~2( m—i-2

am—z)i_lﬁm—i(“md)

o ()T (@) ")
then .
(208" = [b () Tl am)™ ¥ .. (a3) ()™ "(3) (@) 2
= [b(am) Bm(am)™ " () Tl )™ ¥~ (0g) T t)™ 2] €. ]
[B (am) Tl am)™ ... [( @) o @)™ 2] ... €]

vre = [b(am) Tnlan)™ =10 .

' Ty = [(am—l)l_lam—l(am—-l

T g .. (]

I

Similarly,
[al < %m)
= 07 tme)  Bnea(Bmmd)™ 7 e () T ()™ () B @)™ )

i L L iy B C e AT )|

= [a
= oo =[lon(aa) @y @)™ a) T (0)™ D] = [(00) Tu(a)™ B =D .
Suppose [245"] = [yaj']. Then

(205" (@) Bonl @)™ 2. () Bl a0) ™Y

1

1. i—1—

m—i—2 ( alz(aZ)m—i~2J ,

= [?/a/;n—l(“m) Con{ @im) ap)

so that

@ = [0(a,) Ty = [y (a) T(an)™ " =y .

©
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m=1

Similarly, if [a"" @] = [a
now complete.

We will make use below of Post’s coset theorem, in the following form
(see Bruck [1]): For any m-group A there is g group G2 A such that 4
generates ¢ and [@; .. Tn] = 1- -0y for all @y, ..., Gpe 4. TE @ is the
covering group explicitly constructed in Post [7] or Bruck [1] we call @
a free covering group of A.

Mm—1

1Yl ﬁhen % =y. The proof of the theorem is

2. Algebraic theory. For information on universal al
or Chapter 0 of [5].

TeworEM 2.1. The class # of all m-groups is a variety, i.e., is closed
under homomorphisms, direct products, and subalgebras.

gebra consult [41

Proof. This is clear if one defines an M-group as an m-semigroup
(4,[...], 7) such that

[Bam=2y] = [yZa™ "] = y = [a"*Fy] = [yam-2z]

for all # and  in 4 or an m-semigroup (4, [...], (...)™") such that

~1_m—2 2

(@1 Baye -+ Fms) V1= [Y (@1 Bay ooy Tms) 2T =y

= [m;n_z(w1, Ly eeey m1n—2)"1'!/] = [ym;n..z(wl’ Loy ey -”m—z)—l] .

Observe that in the first instance we have an m-ary and a unary operation,
while in the 2nd we have an m-ary and an (m— 2)-ary operation.

Note that the uniqueness condition can be omitited in Theorem 1.4 (7).
Indeed, suppose that a™-2h, ba™~2, am—2¢, and ca™2 are all latera]
(m—1)-adic identities. Then

b=[bam %] (since a™ % iy an identity)
=0 (since ba™—2 is an identity) .
By this remark we see that the notions of homomorphism and congruence

relation are independent of whether we consider m-groups as structures
of the form (4, [...]) or (4, [..], ™). _

TeEOREM 2.2. The laitice of congruence relations in an m-group is
modular, in fact congruences are permutable.

Proof. Consider the word [ay™—%jz]. Suppose (z,%) e O oD so that
(®,9) € @ and (y,2) e ® for some y. Then

(@, [wy™-27e]) = ([ay™Fy], [zy™Fe)) « P,
(lwy™=2g2], [wme]) = ([oy™ 2], ) € O

Wwhence (z,2) e ® o @ and conversely, and @ o @ = 0 o 6 for any pair of
congruence @ and @.

15*
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TaEorEM 2.3. The dass of all elementary translations in any m-group
(4,[...]) forms a transitive group. . )

Proof. Observe that a basic translation #(s) = [ai 'wafiy] is always
invertible. Tts inverse is ¢ (%) = [b7* wez] Where (Be, .., buns, Gy, ...y a;_y)
and (@ig1y vy Gmy Cay -y 61) 8Te (m—1)-adic identities. An elementary-
translation is a composition of basic translations and hence is always
invertible. Thus they form a group. Transitivity is clear, for, if a,be 4
are arbitrary, then

b= [af ‘aals e ‘
possesses the unique solution # = an and the translation
H(z) = [ai "walhy]

gives us t(a) =b.

Recall that if G is the set of all elementary translations of an algebraic
system an equivalence relation @ is a congruence relation iff (z,y)e @
implies (t(a), t(y)) € @ for all i G.

DEFINITION 2.4. For any z ¢ A (an m-group), a z-ideal is a set of
the form 2/@ for some congruence relation @ in A.

TEEOREM 2.5. The 2-ideals of any m-group funciion properly, i.e.,
if 2|0 = 2|, then O = @.

Proof. Suppose 2/0 = 2/@ and let (z,y)e @. Then for e B such
that #(z) =2, we have

(B(@), 1) = (2, 4y) € © or  t(y) €2/ =2/D.

In other words {2, t(3)) ¢ ® and hence (£7'(z), i't(y)) = (#,¥) « P, whenee
O C @. Similarly & C @ and therefore @ = &.

The notion of z-ideal can be characterized as follows without reference
to the notion of a congruence. relation.

THEOREM 2.6. Let A be an m-group and let z ¢ A. Then the following
two conditions are equivalent: '

(i) I is8 a z-ideal;
(i) (a) z e,
(b) if @, 9 €I then [zFem—3y] eI R
(€) if 3,y ¢ A and [agym—24] eI, then [yZam—3%] < I,
(A)if @1,y 2maecd and (2] %] eI, and if wed, then
[[oe? ™ %] e 1.

Remark. If m = 3 then in (ii) the factors 2M=8, ym—3 gm=3 qym=3 gre
to be omitted. Similarly in the proof below.
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Proof. (i) = (ii). Assume that I = 2/D, ® a congruence relation on 4.
(i) (a) is obvious. A% to (ii) (b), if @,y ¢ I then 20z, ydz, so

(2222 |B[ezem—2] = ¢
hence [#Ze™~*y] e I. Now assume the hypothesis of (i) (¢). Then
@ = [0Fy™=*] = [aFym—[zzem—sy]|
= [[egy™ 12" Y| D lezem—y] — 4 .
Thus #Py. Hence
[yZam-3210[x Tom-3] = z
and [yTa™ %] e I, as desired. Next, assume the hypothesis of (ii) (d). Then
a1 ] = ot~ 5000 ]
== [w[[cd"_lz] z"‘_aiw]w"Hz] Plwl™ zmw™ %]
= [wwm3%] = ¢
hence [[wal*""1w™ 2] ¢ I, as desired.

(ii) = (i). Assume (ii). Let @ be the set of all pairs (2,9)eAx A4
such that [#Fy™ %] < I. By (ii) (a), @ is reflexive on 4; and (ii) (c) 528
that @ is symmetric. Now assume that (u, v), (v, w) € $. Thus [upym—32],

[vmw™ *¢] e I. Hence

[wmwm—32] = [[uBo™—2] Wwn—%] = [[mm"a[zézm‘sv]]rwﬁm_gz}
= [[[fu B3] Zem—3 ] Tuw"‘—ﬂz] = [[uwv™32]zem—2 v Bwm—22]] € 1

by (i) (b). Hence (u,w) ¢ ®, 50 @ is transitive. Next, @ preserves [...].

For, suppose that (2, ¥1), ..., (@m, Ym) € . Thus for each 1 =1, ..., m we

have [2:7i(ye)™3%] € L. '
LemMyMA. For ¢ =0, ..., m—1 we have

(@ iTn )™ GmesYa)™ ™" s Pl ™ € L.
Proof. By induction on 4. The case 4 = 0 is immediate. Suppose true
for ¢, ¢ <m—1. Then by (ii) (d),

L i1 oY) T s Ymet) ™

ym—‘i(ym—i)m_sﬁm—i—l(im—'i—l)m—.sz} el

Applying (i) (b) o (1) and t0 [#m—i—1Fm-i-1(ym—i-1)" #] €I We obtain

@t 1T Ym) ™ *Fmr(Ym—t)™

m—8

- _ —3
o e slmed) ™ Tt s( B im1) "B Wi P i=i(Ymmic) 2] € L
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from which the lemma for ¢-+1 easily follows, using the fact that both
27em—3% and Em_i_l(aom_iul)”"2 are identities. This ecompletes the proof of
the lemma.

At this point it is convenient to work with a covering group (4, .)
of (4, [...])- Note that % = ul~™ for any % A and hence % -ulm-31 = yl~1
The lemma for ;= m—1 then gives

-1, [ [—1
Lyt oo B Y ]~ym_]1- R l.zel.

-1,

Sinee [4i: o Um0 = g e oyt we got

By e T Ym e e Y2 = [y e @] [g e Y] T2

= [@y ... mm][m[yl ym][m—s].z
= (@1 - Zm](Y1 - Y)Y - Yl .

Hence [#; ... 2u]P[Y; ... ym]. Thus @ is a congruence relation on A. T
remains only to show that I=2/@. If eI, then o= [272™ %], so
2@z and zez/P; the converse is similar, This completes the proof of
Theorem 2.6. :

In the theory of m-groups the z-ideals serve the same purposes as
normal subgroups of groups. In fact, normal subgroups are simply
¢-ideals, e the identity of the group. However, in m-groups there appears
in general to be no natural choice for z.

TaEoREM 2.7. Let A be an m-group expressed by Post's coset theorem
“in the form A =2-N, N a normal subgroup of a group G. Let L, be the
tattice of all subgroups of N imvariant wnder all inner automorphisms
@t zow-2-w2 with w e N. Then L, is isomorphic to the lattice I,
of congruence relations on A,

Proof. By Theorem 2.5 we know that L, is isomorphic to the lattice L,
of z-ideals of A, so it suffices to show that I, = L,.

For any =z-ideal I of 4 let FI= (e N: 2.2 eI}. Clearly ¢eFI.
Suppose «, y € FI; we show that 4.y e FI. Now 2-@, 2.4 ¢ I. By 2.6 (ii) (b)
[(z-#)2z™5(z-9)] e I. Hence z-@-2l~1.z.y¢], ie, gzw-yel; 2y eFIi
Next, FI is closed under -1, For, suppose zeFI, thus z-’weI. Now
20 = [(2-2)%" 2], 50 by 2.6 (if) (c), [z a(z-2)™ %] € 1, ie., (22 Mzel
hence z-al-"el and ol-UeFI. Next, let weN 5 we sh’ow that FI i;
closed m:Eder the inner automorphism associated with z-w. Let e FI.
thus again z.2¢I. Now since N is normal in & zw-2-UeN, sm({

2:p-21-1 ¢ 4. Furthermore, 2.2 = [(2.x)5zm—3 ’
With t= .41 ' [(2w)%m%] € I. Hence, by 2.6 (ii) (1),

[t 2) 2™ "1™ %] e 1 .

©
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However,
= M3 m—3 2] —
[[t(z.m)zzm ™ z]=z[°]-’w-z[ ”-z-m-z“”oz~w["”-z[‘2l.z
=M. g0 AT,

Tt follows that z-w-z-w=1.20-11 ¢ FI, ag desired. Thus F maps L, into L,.
Clearly F preserves order. To finish the proof it suffices to construct thle
order-preserving inverse of F.

For any P el let GP = {we A: 2-U.5 ¢ P}. Oleasly all we need $o
do is to show that GP is a z-ideal. Condition 2.6 (ii) (a) is obvious. Now
suppose &,y ¢ GP; thus =g e P and 2.y e P, 50 o-U.p.2-T.y ¢ P,
Hence [#22™~%y]e GP, s0 2.6 (ii) (b) holds. Next suppose z,ye¢A and
[z7y™ %] e GP. Thus 2-1.2.y-1.2 ¢ P, and consequently #~4.y.gl~1.z
¢ P, hence [yTa™ %] e GP and 2.6 (i) (c) holds. Finally, suppose z,, ...
vy Wme1, W e A and [477'%] € GP. Thus &7 @y ... @y _1-2¢P. Nowwe A
implies that 20~%.w ¢ N; N being normal in @, 2!-2.w.2 ¢ ¥. Since P is
closed under the inner automorphism associated with 2 ".w-2, we get

z[—”.[[wm{”‘ljﬁwm—sz] =Nz Ny g el N e P,

Hence [[wai' "] Tw™ 2] € gP. Thus 2.6 (i) (d) holds. This completes the
proof of 2.7.

THEOREM 2.8. Any two m-groups A and B can be isomorphically
embedded in a third m-group C.

Proof. Let A and B have covering groups @, H respectively, and
let C be the m-group reduct of the group & X H. By symmetry we show
only that 4 can be embedded in €. For any # e A let Fz = (z, ¢), ¢ the
identity of H. Then for any @i, ..., #m € 4,

Flal'] = ([6'], €) = (@ . Tmy ) = (31, €)oo (Tmy €)
= [(#, €) ... (¥m,e€)]=[Fuy... Fom].

Clearly F is one-one, so this completes the proof,

Tt follows that free products of m-groups exist. Note that the above
theorem and proof obviously extend to the ecase of an infinite number
of m-groups.

THEOREM 2.9. Let an m-group 4 be covered by a group Q. If f: G—{[I &

is an isomorphism between G and o subdirect product of groups @i, then

flA: A-[] Ay is an isomorphism between A and o subdirect product of
iel

oertain m-groups A covered by Gi.

Proof. Let A;= prif*4, ie, the image of A under the homo-
morphism pr; o f, where pre is the projection into the ¢th coordinate.
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Thus A4 is an m-group. Since A generates G, A; generates Gy = prif*@.
Tor any iel and a,..,amcd We have

[(fa)i ... (fam)il = (flay -.- aml)s = (f(“r ‘“m))i
= (fay- oor Jam)s = (far)ic oo (fam)s -
Tt follows that for any ¢ eI and any @, ..., ¥m € A; we have
[y oo @] = By7 oo O -
Thus @ covers A;, as desired. This completes the proof.

TarorEM 2.10. Let X C A generate an m-group A freely covered by
a group G. Then A is free on X if and only if G is free on X.

Proof. First suppose that ¢ is free on X. Consider any m-group B
and any map f: X->B. Let B be covered by a group H. Then there exists
2 homomorphism g: @—H such that f C g. Clearly g|4 is a homomorphism
trom A into the m-group reduct O of H. Since g*X C B and X generates 4,
g*A C B. Thus g|4 is & homomorphism from 4 into B, as desired. [Note
that in this part of the proof we did not use the assumption that @ freely
covers A.]

Conversely, suppose A4 is free on X. Let H be any group, and suppose
that f: X—>H. Let B be the m-group reduct of H. Then there exists
a homomorphism g: A—B with fCg. Define g+: A—-~G X H by gta
= (a, ga) for all a e A. Clearly g+ is an isomorphism from A4 into the
m-group reduct of @ x H. By the well-known replacement theorem of
universal algebra there is a group K D A with an isomorphism % of K
onto @ X H such that g+ C h. Let K’ be the subgroup of K generated by 4.
It is easily verified that K’ covers A. Since @ freely covers 4, it follows
that there is & homomorphism %: G—XK' which iy the identity on A4.

Then pry o b ok is & homomorphism from & into H which extends f, as
desired.
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Nichtaxiomatisierbarkeit von Satzmengen
durch Ausdriicke spezieller Gestalt

von

Kurt Hauschild (Berlin)

In der vorliegenden Arbeit geht es n.a. um folgende Fragen: (1) Ist
die Menge der in einer Algebra % gilltigen (elementaren) Sitze durch
Aussagen universell beschrinkter Tiefe axiomatisierbar? (2) Gibt es in A
eine (elementar) definierbare Funktion, die sich von allen durch Awus-
driicke einer universell beschrinkten Tiefe (elementar) definierbaren
Funktionen fast tiberall unterscheidet? Fiir den Fall, daB in 9 eine
Woblordnung definierbar ist und fiir jedes Element ein Term zur Ver-
fiigung steht, wird gezeigt, dass (1) verneint werden muss, sobald (2) zu
bejahen ist. Dieses Resultat 148t sich noch wesentlich verschéirfen. Einer-
seits braucht in % nur ein Teil des elementaren Wohlordnungsschemas
zu gelten, andererseits kann man anstelle der Ausdriicke universell .be-
schrinkter Tiefe auch andere “hereditiire” Ausdrucksmengen betrachten.
Dabei sind hereditire Ausdrucksmengen im wesentlichen solche, die
gegeniiber der Bildung von Teilausdriicken abgeschlossen sind.

Die Terminologie ist die in der Modelltheorie allgemein iibliche, so
dass ich auf diesbeziigliche Erérterungen glaube verzichten zu diirfen.
Nur folgendes sei bemerkt: Variable werden grundsitzlich mit kleinen
normalen lateinischen Buchstaben notiert (z,y,2,..). Elemente mit
Kleinen fettgedruckten lateinischen Buchstaben (x,y,z,..), Ausdricke
mit kleinen griechischen Buchstaben (@, v, ..); A |=¢(x) soll bedeuten,
daB p(x) in der Algebra U giiltig wird bei jeder Belegung, die Variable #
mit dem Element x Delegt.

Es sei L eine elementare Sprache (mit Identitéit). ¥ C L sei eine
zunéichst beliebige Menge von Ausdriicken. Wir wollen voraussetzen,
daB L ein zweistelliges Relationszeichen < enthélt. % sei eine Inter-
pretation von I, fiir die folgendes gilt:

1) Ul=Ver < oATVaVyVelr < yry < >0 <AHAVaVy (@< yvy <a)r
AVaVy (e < yAy < o—z = Y)AVely(z <yrz #Y),
(2) UA=Vy .. y;;(C{[yqo(y, Yuy ooy Yi) TGP (Yos Y15 -+ Yr)A

ATYHp(y* Yoy -oer U6 %0 < 9] 5

fir jedes o(y, ¥y, ..., yx) € X.
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