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Consistency statements in formal theories*
by .
R. G. Jeroslow (Minneapolis, Minn.)

In this paper, we establish several results regarding the behavior
of consistency statements in formal theories in the language of arithmetic;
extensions to other “larger” langnages are usually straightforward. The
paper continues work begun by S. Feferman in [1], employing as its
chief device self-referential statements or processes, as in [1], [4], [5], [6].

In particular, we will find that a very weak theory may be able
to prove its own (RE) consistency (see Theorem 1.5); that any reflexive
theory containing Peano arithmetic arises from adding to some theory
the (RE) statement of its own consistency (see Theorem 1.4); that the
addition of a consistency statement to a theory can substantially alter
the Lindenbaum algebras of the theory, and in fact render impossible
homomorphisms of these algebras which commute with a finite (and
specified) number of gquantifiers (see Theorem 4.1). We also explore the
degrees of relative interpretability between that of a theory and the
theory plus its consistency (Theorems 3.1, 3.2).

We assume that the reader is familiar with the paper of Feferman [1];
when we do not specify a convention that we use, it is to be found in that
reference, which we shall call “Feferman’s paper”.

1. Let a theory £ be given possessing 4 as an axiomatization (i.e.,
A is a set of Gddel numbers of formnlas which axiomatize A); let a(w)
be a formula in the language of arithmetic which designates 4 in the
following sense:

a(m) if and only if med.

Then the construction of Feferman ([1], Def. 4.1) assigns to this
designator a(w) the formula Prf,(y,x) in the two, free variables x,7,
and this formula intuitively “says” that x is a (Godel number of a) proof

* Theorems 1.4, 1.5, 2.1, 2.2 (with Lemma 2.1) and 4.1 are results from the
author'’s doctoral dissertation at Cormell (September 1969), which was written nnder
the guidance of Professor Anil Nerode and was supported by a National Science Foun-
dation Fellowship. All other resultw obtained at the University of Minnesota.
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of (the formula with Godel number) y in the system axiomatized by the
designator a(w). By Prig(y, x) we shall abbreviate the result of ingerting
the formula w = z for a(w) in the usual construction; by Cony,; we ab-
breviate the consistency statement of Feferman deriving from the de-
signator w =z (see [1], Definition 4.9 (ii)).

Let g, be the number of the only axiom of Robinson’s theory Q.

We now introduce a theory U in an extended language for arithmetic
containing, among other function symbols, the function symbols *,
1h, <>, { )i, and sub, with the intuitive meanings as follows: x*y is the
result of concatenating the sequence with number y after the sequence
with number x; 1h(x) is the length of the sequence with number x;
x<y is the number of the formula obtained when the bi-conditional
is placed between the formula with number x and the formula with
number y; sub(x, y)z is the result of substituting the numeral for x at

all free occurrences in formula number z of the y-th variable (this would ‘

be vy); (x); is the exponent of the ith prime in the number. x. In the
following, Pry(y) abbreviates (dx) Priy(y, x). Among the axioms of W
are the following sentences:
1. (Vy)(V2) (Pra(y) >Pregy(sub(z, 2)sub(y, 1) Pria(y))) -
2. (V2) [Proa(To) ~(V7) (Pran(y) ~Praa(y))) -
3. (V) (Vx) (Vy) (Proa(x ©>y) = (Prea(x) o« Prea(y))) -
4. (VX)(Vy)(Vz)(Vu)(Vv)(VW) 1h(x) =uAlh(y) =vAlh(z) =w->
(1n{(x*y)*2) = u+v+w)/\
(Vi (1 i u—(=ry)e) = Xi)/\
Wi@+1<i '
< utv = ((x*y)*2)i = Fiu)A
(VilodvHl<i<udviw
%((X*Y)*Z)t = Zf—u-l-v)

)
)

5. (Vi){Vu)(Vv)(Vw) <I<utvtw)e

<i<u)v

utl<i<utv)v
(ut+v+Hl <i < utv+tw)

In addition to these axioms, A contains a statement for every
function symbol which appears in it to the effect that this function is
equivalent to the usual encoding in Robinson’s system @ of its primitive
recursive graph; e.g., if sub(x,y, z,w) is the usual Godel encoding of
the (real world) function for which sub is a symbol, U will contain
_the axiom

(1) (Vx) (Vy)(Vz)(Vw) (Sllb (=7, Z, W) > sub (x,¥)z= W) .

@
(1
(
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In U we also place names for functions needed to define the functions
mentioned above, along with the primitive recursive schema which define
each such function from those previous. In addition, U is o contain
the equality axioms for all of its funetion symbols, as well as all the
axioms of Robinson’s Q. ‘

As we shall see below in Theorem 1.1, the purpose of constructing
U is to provide a finite theory in which Godel’s Second Underivability
Theorem can be arithmetized. Feferman in his paper gives a way of
assigning to each formula in the extended language a formula in the
ordinary language of arithmetic, so that, taking the axioms of U one
by one, we obtain axioms for some finite theory AU’ in the ordinary
language, and 9 is a conservative extension of U'. We shall not differ-
entiate between the theories U and U/, and we shall call them both U.

Before proceeding, we wish to note the following result. If a(w) is
any arithmetie formula and $ any theory containing U (}), then we have

2) Fa(Vt) [Pra(t) =(V¥) (Prio(y) +Pro(y))) -

The reasoning behind (2) is based upon a study of the construction of
the formula Pr.. In the system 3 one can argue that, if one had a proof
of t in the system designated by a and a proof of y in the system with
only axiom t, then, by concatenating the proof in the a-system of t with
the number of the statement t--t and then concatenating this with the
proof of ¥ from axiom t, we would have a proof of y in the a-system.
The reasoning of $ is the following: up to the proof of t in the a-system
there is nothing to check; the statement t--t is an axiom of the Predicate
Calculus; after the statement t -t we can use the same justification for
a step in the proof as was used in the system with axiom t, except in the
case that the justification is that the formula is an axiom; in this latter
case, it must be t, and then the justification comes from modus ponens
with the previous occurrences of t and t--t. To reason thus, $ uses the
axioms 4, 5 above.

Once we have (2), an investigation of the construction of Con, will
reveal that, if $ contains U,

(3) Fa(Vt) (Pro(t) ~(Con,—Conry)) ,

for a(w) any arithmetic formula. We need (3) in Theorem 1.1. In the
following, ¥ is Peano arithmetic.

THEOREM 1.1. W is a finite subtheory of § which contains Q. If I is
any - consistent, r.e. theory extending U and t(w) any RE designator for
some azxiomatization of 3, then Cong cannot be provem in 3.

(®) Le., all the theorems of U are theorems of $. We also write this B 2U or
WU cPB.
9%
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Proof. The fact that U is a finite theory extending 9 derives from
its construction, and the fact that U is a subtheory of ¥ derives from
the fact that all the axioms (1) and other axioms used in WU can be proven
in § using some mathematical induetions.

We next note that, if by is the number of a consistent statement
with at least the strength of U, then by referring to the proof of Theo-
rem 5.6 of Feferman, we can adapt it to show that Conp, is not provable
in the system % axiomatized by Do, using axioms 1, 5, 3 above.

Now, let 3 be any r.e. consistent theory extending W and t(w) an R
~ designator for 3. If Cons were provable in J, then it would be provable

in a finite subtheory % of J which is axiomatized by a single axiom by.
Further, we can assume that $ contains W. Since $ contains Q, we have
toPri(b,) and hence, by (3), tgCong —Congg. Since we have kg Cong,
we have also FgConpg. We saw that this was impossible in the last
paragraph, and hence Cong cannot be provable in 3. Q.E.D.

Let 1, be the number of the sole axiom of U (obtained by conjoining
the axioms given above for ).

CoROLIARY 1.1. For any RE formula t(w), -
bg Prau) - (Congy - T1Pre(Cony)) .

Sketch of Proof. The entire proof of Theorem 1.1 can be arithme-
tized. One point that requires comment is the arithmetization of the
statement that an RE designator t(w) numerates in J the theory which
it describes, but Feferman’s Corollary 5.5 shows that

Fet(w) “’Pr[qn](ﬁmb (w, 3)WW_)) )

where (say) w is the third variable of logical systems. Q.E.D.

THEoREM 1.2. Let t(w), s(w) be formulas in one free mriablé W, Iy
a number, and suppose the formula v(w) is given by

(W) v(Tu) (W = n>ujas(u) .
Then we have
kg CongA 1 Prg(ny) -Cony .
) Proof. If the argument which follows in the next paragraphs is
arithmetized in ¥, which can easily be done, we obtain Theorem 1.2.
If the theory U described by v(w) were inconsistent, by the De-

fluction Theorem we would have, for some finite set of axioms oy, ..., 0
in the theory 8§ described by s(w),

Fd o)A A(lso) >0=1AT70=1,
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‘where A is the formula with number #, and J is the theory designated

by t(w). Rearranging, we obtain,
b (A»o) V.V T A—01) ,

and then, using the fact that A-—g; is co-provable with Tlive;, and
Boolean distributivity, we obtain,

T
baaa(Y o -
=
In particular, we have
k54,

which is contrary to our hypothesis. Q.E.D.

A theory, such as U, with the property that, for any supertheory J
and RE t(x) numerating an axiomatization of J in J, we cannot have Cony
provable in J, we shall call an essentially-G theory. Our object in
Theorem 1.1 was simply to explicitly construct one such theory; we do
not known if there is an elegant form of an essentially-& theory, in the
way that Robinson’s @ is an elegant theory which numerates all recursive
relations and defines all recursive functions.

The existence of finitely axiomatizable essentially -@ theories has been
known among researchers for some time, as G. Sacks remarked when the
author mentioned Theorem 1.1 to him. We need the stronger fact that the
existence of such theories can be verified in Peano, which is Corollary 1.1,
in the proof of the next result.

THEOREM 1.3. Let S be an r.e. supertheory of §. Then the following are
equivalent for any subtheory I of § which contains Us:

(1) There ewists an RE formula t(w) which designaies 3 for which
we have )

FsConsg .

(2) There emists a supertheory U of 3, an RE formula v(w) which

designates U, and an RE formula t(w) which designates 3, the two formulas
related by the condition ' :

(4) Fa(Vw) ((w) —v(w))

gnd such that 0 v {Con,} awiomatizes precisely 8.

Proof. Using equation (4) the proof that (2) implies (1) is trivial,
sinee (2) gives FsCon, and 8§D 7.

To see that (1) implies (2), we use the fact that J contains U,
Corollary 1.1, and the fact. that § contains §, to note that

FsCont — "1Prs(Cony) -


GUEST


22 R. G. Jeroslow

Then, since FsCont by hypothesis, we evidently have ks T1Pry(Cong).
Tf n, is the number of Cong, s(w) any RE designator for 8, we may create
the formula v(w) as indicated in Theorem 1.2. By putting existential
quantifiers to the front of v(w) and using properties of the PR éon-
junction and disjunction formulas which are provable in @, we find v(w)
equivalent in @ to an RE formula, which we designate also by v(w).
By Theorem 1.2, since we have ks Cong and Fs T1Pry(n), we have FsCony.

The fact that ka(Vw)(b(w)—>v(w)) is immediate. Let U be the
system designated by v(w). By examining those axioms described by v(w),
we see that every axiom of ¥ is a theorem of 8, and since ksCony,
evidently S is a supertheory of U'w {Cony}. However, in Vw {Cony} we
ean evidently prove Cong, since U contains Q and Fo(Vw) (t(w)—->v(w)),
Once Cony is proven in U w {Cony}, by the very form of the axioms for U.
we can obtain any axiom of § by a single modus ponens. Q.E.D.

No doubt various versions of Theorem 1.3, with hypotheses altered
to. discuss numeration properties, as well as various strengthenings of
Theorem 1.3, are possible. The reader may wish to compare our theorem
with Feferman’s Theorem 6.7 in [1]. Our version is designed primarily
to obtain the following corollary. ' '

COROLTARY 1.2. If § is an r.e., veflexive theory extending T, then, given
any finite subtheory ¥ of 8, there exists & supertheory U of § and an RE
designator v(w) for U such that U w {Cony} awiomatizes precisely S.

Proof. Let f, be the sole axiom of ¥ u “W. Since § is reflexive, FgCony,,
and then our result follows by Theorem 1.3. Q.E.D.

In particular, if & is the Predicate Calculus, we can find a U fulfilling
Corollary 1.3 for . However, the reader will note that, by our construction,
the theory U will contain the theory . Since W has a good deal of
proof-theoretic strength, it is of interest to ask: how weak can a theory U
be and yet have an RE designator v(w) such that U v {Cony}
axiomatizes 8? The answer to that question is surprising and derives
from a previously unnoticed feature of the Godel encodings of recursively
enumerable properties. ‘

THEOREM 1.4. Let a true, r.e. theory 8 extending T be given. There ewists
an r.e. theory U possessing an RE designator v(w), such that:

(1) U is a subtheory of 8.

(2) v(w) numerates an awiomatization of U in . s

(3) U represents all recursive functions and numerates all r.e. sets.

(4) U {Cony} amiomatizes precisely S.

(8) V' does not have the power to prove —10 = 1.

PITO‘Of. In the one-element structure for the language of arithmetic
(the trivial structure) the Godel encodings of the initial primitive recursive
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funections hold universally. If -we then understand the formula x <y to
abbreviate (Hz)(x+z = y), then the encoding of the beta-function is
also universally valid. :

Inductively, we note that, if the functions entering into a composition
schema have Godel encodings which are universally valid in the trivial
structure, the same is true of their composition; and similarly, if the
functions entering into a primitive recursion schema have universally
valid Godel encodings, so does the function resulting from their primitive
recursion. This establishes the universal validity in the trivial structure
of all encodings of graphs of primitive recursive functions.

To encode the result of applying the least number operator, we do
not use the usual encoding.- Instead, we encode the fact that a funection
is not zero by writing that it takes a value, and this value is other than
zero—the latter clause obtained from an encoding of the primitive re-
cursive function which detects inequality. By this encoding, any value
of any function is different from zero (in the trivial structure), and using
this new formula in the encoding of the least number operator at the
position where a negation of the old formula oceurs in the usual treatment,
we obtain the result that, if the function entering into a least-number
schema has an encoding which is universally valid in the trivial struc-
ture, so does the result of applying the least-number operator to this
function. -

In this manner, all formulas encoding all recursive functions are
shown to be universally valid in the one element structure. We may
then provide ¥ with a definition of truth in the trivial model by providing
in ¢ the definition of a primitive recursive function having the proper
truth values on atomic formula, and which derives truth values on other
formula by the obvious quantifier elimination procedure for the trivial
structure. In this manner, § can “see” that it is impossible for a statement
and its negation to both be true; that truth is preserved under logical
deduetion (for, in essence, by quantifier elimination we are dealing with
the propositional logic); and that all onr encodings of recursive functions
are universally valid. .

Let A, be the set containing all numeric substitutions into encodings
of recursive functions and relations, such that the resulting statements
are actually true in the standard integers; A4, is an r.e. set. We may also
take A, to include unicity of value statements, and it is still true in the
trivial structure.

Tf one examines Feferman’s construction of Priy(y,x), it will be

-seen that this formula is universally valid in the trivial structure, re-

-gardless of a. As a consequence, TFeferman’s formula Con, is universally
false, regardless of a. Let T(e,w,y) be the usual PR Turing predicate
of Kleene, so that (Ty)T(e,w,y) holds iff w is in the e-th r.e. set We.
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By Con, we abbreviate Con, where (Hy)T'(e, w,y) is a(w) (the numeral e
having been substituted for the variable e).

By 4,(e) let us understand the set of all axioms of the form Con,—o,
where ¢ is an axiom of 8. Note that 4,(e) is also r.e., and in fact there is
a Tecursive function f(e) with a suitable definition in 8§ D ¢ such that

Wiy = Ay v Ayfe)
and
Fg(ve) COIlf(e) y

the latter since S can “see’ that Wy is true in the trivial structure.

By the Recursion Theorem, we can find a number e, such that
Wiey = We,, and with f suitably chosen (which can be done) this fact
can be verified in ¥; i.e., if d, = f(e,), then

F(Hy) T (e, w, ¥) = (Ty) T'(dy, W, y) .

Evidently, then, we have FgCon,. With this one fact established,

we set U equal to the theory with axioms in W,,, and v(w) equal to

(Hy) T'(ey, W, ¥), and we complete the proof that U w {Cony} axiomatizes
precisely § by the same devices as in the proof of Theorem 1.3. The
numeration and representation properties of U are a little more delicate:
the presence of 4, in U insures that all true statements are present, and
the faet that U is a subtheory of the true theory § insures that no false

- numerations oceur. Obviously, U cannot prove 10 =1, since VU is true

in the trivial structure and 710 = 1 ig false there. Q.E.D.

In Feferman’s paper, the fact that T possesses the axiom schemata
given in Feferman’s Corollary 5.5 is used in a crucial way to show that,
if o(w) is RF and numerates some axiomatization of a theory # in #,
then 4 cannot prove Con,—Godel’s famous Second Underivability
Theorem. Tt is of interest to investigate what can occur in extraordinarily
weak systems in which the axiom schemata in question may not be present
and it is plausible that such weak systems can prove their own consistenc;i
even with «(w) RE. R. Platek tells us that it is unknown whether or
not Congg, can be proven in Q. '

) We can contribute only a theory O which can prove its own con-
sistency using EE v(w), when, by the consistency statement, we mean
the following statement Con; (which differs from Feferman’s ’Conu):

(Vy) (Proy) >Neq(y, 0 = 1A 10 — 1),

w_h.ere Neq(u, v) is the standard encoding of the primitive recursive con-
dition w 3 v.
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THEOREM 1.5. There exists an r.e. theory 0 possessing am RE de-
signator v(w) such thal:

(1) U is a subtheory of 9.

(2) v(w) numerates an awiomatization of U in U.

(3) U fépresmts all recursive functions and numerates all r.e. sets.

(4) FayCony.

Proof. We proceed as in the proof of Theorem 1.4 up through the
creation of the set 4,. Then, instead of A,(e), we define the set Age)
having only the axiom Con:. As before, we find a reeursive funetion g(e}
such that

Weey = Ay v Agle) ,

and then find a fixed point e, such that W) = We,. This entire dis-
cussion can be arithmetized in ¥ because Cong is universally valid in the
trivial structure, regardless of e. U is then taken to be the fixed point
theory We,. The details are checked as in Theorem 1.4. Q.E.D. (%)

2. The discovery that the consistency of reflexive theories ex-
tending 7 can indeed be proven within these theories, when this con-
sistency is suitably expressed (see Theorem 5.9 of Feferman’s paper),
led Feferman to a partial characterization of the types of descriptions
of the theories which, when used in building the comnsistency statement
in the usual manner, would yield the expected Godel Second Underiv-
ability Theorem (i.e., the consistency thus expressed cannot be proven
within the system).

The issue is that a non-standard designator s(w) may so mysteriously
describe $ that 8 can prove consistent whatever s(w) may designate,
not “knowing’ that s(w) designates § itself.

Certainly, if a designator is provably equivalent in § to some standard
designator, and the consistency statement based on the latter is not
provable, then, since 8§ D7, neither is the consistency statement based
on the former. Feferman, however, succeeded in showing more, namely,
that so long as the designator is an RF formula, the consistency statement
based on it cannot be proven in the system 8, even though the non-
standard RE designator camnot be proven within § to axiomatize the
same theory as the standard one (see Feferman’s Theorem 5.6).

So far as the author knows, no broader characterization than
“RE-formula”, which insures the Godel Second Underivability Theorem,
has been forthcoming since Feferman's work. It is our aim in this section

(*) Actually, in Theorem 1.5, U can be taken to be finitely axiomatizable. In fact,
a suitable “fixed point extension” of @V (Vx) (Vy)(x = ) will do, where @ is the sole
axiom of Robinson’s @.
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to show that there cannot be a «proadest” constructive characterization
which it necessary as well as sufficient.
To begin our work, let us define

U = {a| o numerates some axiomatization of § in 8} .

TrroreM 2.1. If § is a true theory extending T, then U is ng-complete..

Proof. Let s(x) designate some EE axiomatization of 8. A Tarski-
Ruratowski éomputation shows that U is m. If we can 1-reduce a com-
plete =3 set to U, we shall be done.

Now if Ty denotes all true a9 sentences, one eagily shows that T'yy
is m3-complete.

Let B be any sentence (true of false) in ny-form; and suppose

g=(Vy)(@z)aly, 2)

where we may suppose a(y, z) is PR. (This form can be found etfectively
from a form for # in which only a recursive matrix appears.) To B, let
us assign the formula. @s(x) given by

s(x)A (Vy < x)(Hz)a(y, z) .

Then one can easily show, using the fact that § is not finitely

axiomatizable, that
BeTygeopeU.
Q.ED.

If we require minimally of a potential description of an axiomati-
zation of & that it numerate & in §, Theorem 2.1 shows the essential non-
constructivity of detecting such deseriptions. If we require further that
a description actually designate an axiomatization of &, the set V of all
such designators cam be easily proven recursively isomorphic to the seb
of all true arithmetic statements, again a highly non-constructive set.

Let R = {a| a is RE}. Feferman’s result (his Theorem 5.6) is that

1) ae U~ R->not- beCon,,

indicating a type of constructivity which might be possible—i.e., that,
given that ae U, it is a recursive property of o which determines the
behavior of Con,. However, as the next two results show, even this semi-
constructivity of the type in (1) cannot be necessary and sufficient.

In what follows, we shall need the result that, if x(u,v,w,..) i8

an arithmetic formula in free variables u,v, w,.. then there exists
a formula ¢(v,w,..) in the free variables v, w, .., with number @,
such that

Fag(v, W, ) (@, ¥, W, .0);
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this result we refer to as the Fixed Point Theorem. Feferman in his
Lemma 5.1 has a proof of the Fixed Point Theorem for only one free
variable u, but his technique easily obtains this more general result.

LeMumaA 2.1. Let 8 be a true, r.e., reflewive supertheory of §. There exists
a formula a(x,y) in arithmetic in the two free variables x,y only, which
is a Ay formula such thai:

(1) For each n, a{n, x) designates S.

(2) For each n, a(n, X) numerates an axiomatization of § in 8.

(3) 1 e K> FsConam, o).
(In the above K is, of course, the complete r.e. set.)

Proof. Tet s(w) be a PR designator for 8. Let y(u, v) be the formula
@) (Vy) 1T (u, u, v)A(Hz) Prig(sub(u, 0)v, z) ,

and, by the Tixed Point Theorem, let ¢(u) be a formula with number ¢
such that

3) Fag(u)« 7 (1, @) -
Finally, let a(u,x) be the formula
(4) (=) v[x = 0 = 1A7(u, )]

where s*(x) is the formula for § insured by Feferman’s Theorem 5.9.

Cram 1. For each n, a(ll, x) designates 8.

Proof of Claim 1. If ne X, then (Hy)T(n,n,y) is true, hence
x(B,7) is false by Eq. (2) and hence a(fl, x) does indeed designate S,
by Bq. (4). (s* surely designates §, since it bi-numerates 8, and § proves
only true statements.)

If n ¢ K, then x(n, p) cannot be true, for if it were true, then

(Hz)Priy{sub(T, 0)%, 2)
is true, ie.,
Fsep(n)
and hence, by Eq. (3),
Fs Ty (T, @);

this is an impossibility, since in 8§ only true statements are provable.
Hence, if n¢ K, x(I,p) is again false, and again (@, x) designates 8.

CrAne 2. For each n, a(h, X) numerales 8 in S.

Recalling that §* bi-numerates S in §, we see that, if m #0=1,
then’

Fga(il, M)« bgs,(m)>m is an axiom of §.
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Tt is then left only to show that
not- Fsa(n, 0 = 1)
which is evident, since, by Claim1, a(fi, x) designates §, and in 8 no false
statement can be proven.
CAM 3. n e K« FsConggm,s) -
In one direction we have
(5) FsCongg,ey > s Ta(@, 0 = 1}
s (0, @)
ks TI[(Vy) 1T (B, B, y)A (Fz) Pris(sub (T, 07, 2)] -
From the second line in Bq. (5) and by Bq. (3),
(6) Fse(T) -
Now Eq. (6) and the PR nature of s gives (using Fefer‘man’s‘ Theo-
rem 5.4, Lemma 3.9, and Theorem 4.5),
(7) Fs(Hz) Prfy(sub(T, 0)7, 2) -
Eqs. (5) and (7) together give
FsCona@,o~+s TW(Vy) T (@, 1, ¥)
- Fs(Hy)T(1, 0, y) .
Then, since § proves only true statements, we evidently must

have ne K.
In the opposite direction,

neK->ts(dy)T(n,n,y)

s Ty (8, ) (using Eq. (2))

> bg(Vx)(s"(x) o a(@, x)) (usiig Bq. (4))

- Fg Conge«> Congg, )

~FsCongg, )
since, by Theorem 5.4 of Feferman, we indeed have

FsCongs .

. By inspection, z(u,v) is 43, and the construction in Feferman [1]
§%(x) gives a =} formula; hence a(x,y) is 45. Q.E.D.

THEOREM 2.2. Let 8 be any true, r.e., reflexive supertheory of 9. Let R be
any r.e. set such that

ae R~ U-—>not- tgCon, .

Consistency statements in formal theories 29

Then, given an indew e of R, we can effectively find a formula B(x)
such that
Be U—R amd moi- FsCong.

Proof. We can effectively find an index f, for
{n| a(m, x) ¢ R}.

By Lemma 2.1, W, C K. From the productivity of B, e E—Ws,.
Then we evidently have

a(fo, x)¢ R,
a{f;, x)e U (by Lemma 2.1 (2))

and not- FsCongg, ., (using Lemma 2.1 (3) and the fact- that fye Jf).
Q.E.D.

1t is clear, by examining the proof of Theorem 2.2, that its conelusion
can be strengthened to

BeV—R and not- FsCong.
Next, we note that if we set
P = {a| not- FsCong}
then P is #; and we have
a e P n Uernot- FsCon, .

50 that the most obvious strengthening of Theorem 2.2 is not posgible.
Virtually the same results hold if we completely abandon prooi-
theoretic properties and require only the designator property, since the

~ formulas we have created are both designators as well as numerators.

3. In this section, we turn our attention to another result of Feferman
(see his Theorem 6.5) which states thaf, if $D9, and s(x) is an RE
numerator for §, then § v {Cong} is not relatively interpretable in 8. Our
aim i to further explore the degrees. of relative interpretability which
lie between § and S {Cons}.

We assume that the reader is familiar with the definition of relative
interpretability in the form we use it (see Feferman, p. 49) and the fact
that, if £ < $ is taken to denote the relative interpretability of £ in 3,
the relation < is transitive and symmetric. The equivalence classes under
the relation < we call the degrees of relative interpretability; such
a degree is called r.e. if one of its elements is an r.e. theory.

We warn the reader that, in our treatment, we cavalierly ignore
certain fine points, the main one being that arithmetic is viewed (for
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purposes of degrees of relative interpretability) as entirely a relational
language. . .

By a relativicing map We mean a choice of.one«place pI’edlcate‘(the
relativizing predicate) and & choice, for each relation syml?ol, of a pr(?dmate
in the corresponding free variables. The result of applying a relativizing
map to a formula iy as specified inductively by the rulqs of Feferman,
taking due care to avoid clash of variables. Since the language of arithme-
tic has only finitely many relation symbols, a relativizing map is a finite
series of choices, and hence can be “coded” into a natural number by
some standard choice of encoding; we shall also speak of this natural
number as & relativizing map. We note that a relativizing map provides
2 relative interpretation of # in $ exactly in the case that the result of
applying the map to any axiom of £1is 2 theorem of $; thus, in the instance
that  is finitely axiomatized and 3 is r.e., the fact that s is interpretable
in B is r.e., and the fact that a specific number is the number of a proof
in % of the result of applying gpecific relativizing map to the sole axiom
of 4 is primitive recursive, provided B is axiomatized primitive recursively.

In Lemma 3.1, which follows next, we adapt an argument of Mon-
tague in [4]. As in Theorem 2.2, the technique of proof is by invoking
the Fixed Point Theorem upon 2 suitable formula. Before we can begin
the proof of Lemma 3.1, however, we shall need a little terminology.

Fix a formula v(x) in one free variable x; by a y-disjunct 4 we mean
a disjunction of the form ‘

8= +p@)VEp@)Vd .. VEy@)

where the sign 4 indicates that either the term following appears alone
(if +) or appears prefaced by a negation sign (if —). In ¢ all the numbers
0, ..., 0; must be distinet.

We say that a number » appears positively in ¢ if p(n) is one of the
p-terms occurring in § which is not prefaced by a negation; n appears
negatively if v(W) appears in 6 prefaced by a negation.

- In what follows, we shall have occasion to treat the formulas
p(0), w(1), w(2), ... as if they were atomic letters of a propositional logic.
Let a y-disjunct & be given as well as a conjunction y of disjuncts d, ..., Ons
i, y = 6,A...A0y. Then it iy decidable whether or not y -4 holds in the
propositional logic just mentioned, and in fact, if y 6 is false a partial
truth valuation of propositional letters in which y is true and & iy false
can be found. If we order partial truth valuations by their sequence
numbers, then the least valuation which makes y true and 6 false (if any)
can be found primitive recursively in y, d.

Levwa 3.1, If 8§ D T is r.e. and w-consistent and s(x) is an RE formule

numerating some asiomatization of § in 8, a formula p(x) can be found
primitive recursively from the number of s(x) such that:
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(1) If 6 is a p-disjunct and y a conjunct of yp-disjuncts, then 8 v {4}
is relatively interpretable in 8 v {y} if and only if y—0d is provable in the
propositional logic based on the letters p(0),w(1), ...

(2) rsCong~(¥x)p(x).

Proof. Given s(x), we can construct a PR formula s'(x) by the
method of Craig which axiomatizes the same theory as s(x), and for
which this latter fact is actually provable in 8 (see Feferman Theorem 4.13).

Let Rel(r,s,t,¥,z) be a PR formula encoding the relation “6 is
a p-disjunet and y a conjunet of y-disjuncts, where § has number r, y
has number s, and y has number t; y is a relativizing map and z an
§'(x)-proof of the y-relativization of 6 in 8w {y}; and furthermore,
y—0 is not provable in the propositional logic based on the letters
p(0), (1), ... "

Let Re2(x,r,5,t) be a PR formula encoding the relation, “6 is
a yp-disjunct and y is a conjunct of y-disjunets, where 6 has number r,
y has number s, and p has number t; and either x appears (as a numeral)
in neither § or y; or else x appears in 6 and appears negatively; or else x
appears in y alone, and the y-term in which the numeral x is inserted
obtains the value “true” in the least valuation (if any) making yp true
and & false.”

We now define the formula I'(x, t) to be

(V) [ReL ((Whos (W) by (Wa, (W) A (V< w) TTRe ((w)y; (W, b, (@), (W)
—>R62(X, (W)os (W), t‘) .

By the Fixed Point Theorem, we obtain a formula w(x) in one free
variable x, with number %, such that

(1) Fal'(x, P)eyplx) .

We now prove the first assertion of the Lemma. Certainly, if y -6
if provable in propositional logic, then 8 v {8} is relatively interpretable
(by the identity map) in 8§ u {y}. The converse is established by supposing
it false and reaching a contradiction. Suppose that there exists 6,y such
that 8§ u {8} is relatively interpretable in 8 v {4}, and yet y->6 is not
provable in propositional logic. o o

Then there exists a number h such that Rel((h)y, (), %, (), (b)),
and such that h is the least number for which this is true; and both these
facts are verifiable in Robinson’s Q.

Hence, by the definition of I'(x, t),

Fal'(x, ) Re2(x, (h)o, ()1, P) 5


GUEST


32 R. G. Jeroslow

and so0, by Eq. (1),
(@) © hap(x)oRe2(x, (R, (W), P) -

Fix a number n. If n appears in é and in fact appears positively, then
by Eq. (2) above, : N
hfl_l"p(n) )

while if n appears in é and appears negatively, Y
Fay(D) .

In either case, y(f) is proven in @ with polarity (ie., positivity or nega-
tivity) opposite its appearance in 8. Thus, in @ the disjunct 4 is refutable,
and so 8 u {4} is inconsistent. Since § u {d} is relatively interpretable
in 8§ U {y}, the latter must also be inconsistent.

Furthermore, the least valuation which makes y true and & false
must value all n which occur positively in ¢ as false, and all n which
appear negative in § as true, since this is the only valuation which makes
the disjunction 8 false. In particular, the least valuation agrees with
the valuations given by Q@ for these n occurring in 4.

If n oceurs in y alone, and the least valuation making y true and §
false values n as true, then by the definition of Re2 we have ray(n);
while, if n is valued as false, we have ko 7l¢(n). Thus, the valuation given
by @ to the n occwrring in 6 or y agrees with the least valuation which
makes y true and ¢ false; hence in particular Fay.

We conclude that § u {y} and 8 are the same theory, and since § is ]

consistent, § v {y} is also consistent. This is a contradiction.

The second part of the Lemma is proven by atrithmetizing in 8 the
proof of the first part, which we just gave. The only details whose
arithmetization might present difficulties are where we discuss numer-
ation properties of Q; but in these instances, Feferman’s schemata in
his- Corollary 5.5 is invoked.

Then, reasoning in §, we conclude that the first part of the Lemma
is correct provided § iz consistent, and hence, provided § is consistent,
1o X ever appears in any 6 or-y in the situation-discussed, so that u(x)
is true for any x. Q.B.D. ’

It is perhaps of interest to note that the first part of Lemma 3.1
holds if only 82 @, and in this case (Vx)y(x) is true, whether or not
provable in 8 w {Cong}.

) Let us call a form in propositional letters positive if no.negation
sign appears in it. Then Lemma 3.1 gives the following result.

TerorEM 3.1. If 8 D T 45 r.e. and consistent and s(x) is an RE formula
numerating some awiomatization of § in 8, then a 1-1 mapping M can be
defined from the propositional logic on denumerably many letters Ly, Ly, Ly, ...
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to r.e. degrees of relative interpretability of supertheories of 8, such that M
reverses order.

Furthermore, the range of M on the positive forms is contained the
degrees of 7.e. subtheories of 8 which are also subtheories of §u{Cong}.

Proof. If two propositional forms in theletters Ly, Ly, ... are logically
equivalent in propositional logie, then the same holds true of the corre-

sponding forms in (0), »(1),... (where w(x) is the formula mentioned
in Lemma 3.1), and hence, if the two eorresponding forms in lefters
(0),%(1), ... be designated 1 and o¢',8v {1’} and S {¢'} are inter-
deducible theories and so belong to the same r.e. degree of relative
interpretability.

Let the equivalence class of a propositional form 1 be denoted by [A],
and let A’ be the corresponding form in the letters v(0), (1), ... . By the
previous paragraph, the mapping

M ([A]) = the degree of the theory 8w {1}

is well-defined.

Lemma 3.1 (1) shows that M is 1-1 by the following reasoning.
If 4, o are forms in the letters Ly, L,, ... such that M ([1]) = M ([¢]), then
we may as well take both 1, ¢ to be in conjunctive normal form. Let 1’, "
correspond to A, o respectively in the letters w(ﬁ),w(—l—), ... Suppose that
o' is the conjunction of the y-disjuncts é,, ..., 6a, 80 that o’ = 6, AdA...ASn.
Since § w {0’} < 8§ v {4} by hypothesis, then 8 v {6} <8 v {4’} holds for
each =1, ...,n, and hence by Lemma 2.1 (1) we have 1’ —d; in the
propositional logic for ¢ =1, ..., n Therefore we have A’—>o¢’; by sym-
metry we have also o -4/, and hence o<1 holds in the propositional
logie, so that [o] = [4].

Similar reasoning will show that M is order-reversing. Then an
application of Lemma 3.1 (2) will show that the value of M on a positive
form is an r.e. degree of a theory intermediate between § and 8 v {Cons}:
Q.E.D.

. The following general theorem has obvious particular application
to, the degrees between those of 8 and 8 v {Cong}; it is a type of density
result for degrees. The very fact that it, as well as our Theorem 3.1, is
justified by techniques entirely different from those used in the theory
of Turing degrees, should indicate that it is not wise to make too direct
an analogy between the two types of degrees, despite the fact that one
is occasionally lucky. None of this, of course, is to belie the use of more
sophisticated techniques adopted from the Turing degrees; the author is
not familiar enough with them to comment further.

In what follows, # < B signifies that + is not interpretable in 3.

Fundamenta Mathematicae T LXXIT 3
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THEOREM 3.2. Let $ DT be r.e. Suppose that 328 is r.e. and that we
have 3 <¢ 8. Then there exists a theory U, D 8, such that I 2D W, and furthermore

I W, and W £ §.

Proof. By a theorem of Orey (see Feferman, Theorem 6.9), 3«8
.implies that there exists a finite subtheory 3 F C3J such that &F < 8.
Let § have A as its only axiom.

Let & PR formula s(x) numerating an axiomatization of 8 in @ be
given. Let this formula be employed in the construction of a formula
Rel(w,X,z) which bi-numerates in the relation: “w is a relativizing
map and z is a proof in the system 8(x) of the w- relatlwmtlon of the
axioms of @ conjoined with vy, where x is the number of .

Let us similarly construct a formula Re2(w,x,y,z) which bi-
numerates in @ the relation: “w is a relativizing map and z is a proof
in @ conjoined with vy conjoined with y of the w-relativization of 4,
where x is the number of y and y the number of »”.

Let I'(x) be the formula

(Vt) [Rel ((£)os X, (£)s)

(@ < ) (Re2((w, , (W (w)f APeL{(w, (u»))]

where, of course, Priyyy is Feferman’s proof predicate.
By the Fixed Point Theorem, a sentence ¢ with number % can be
found so that

(3) FowoI'(D).

Cram 1. Qu {AV y} is not relatively interpretable in 8.
Suppose the contrary. Then there exists a number h so that
Rel((h)a, 1, (h)y} is true, and such that b is the least such number. These

latter facts are verifiable in Q, and hence, by the definition of I'(x),
we have

@ rel(H)e (@ < b)(Re2{(w, 7, (W), (w)g) APr((u), (w),)) -

Now, either (&u < h)(Re2((n), %, (), (W) APrs((wy(w))} is true
or it is false.

If it is true, then it is provable in @, and so FoI'(p) by (4), giving kayp
by (3). Also, since it is true, there exists a theorem y of § such that
(5) B<aviavero ).
But then roy shows that Foivy and hence @ u {Avy}w {y} has the
same strength as @ w {y}, a subtheory of §, so by (5), we have

<8

which is contrary to the choice of A.

icm

©
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Hence, it must be that (Tu < h) ‘Rei), ((m)es %, (W, (w)s) APrx((w),, (u),,))
is false, and so its negation is provable in @, and hence (4) gives ko 717'(7),
from which we have kg 7y by (3). Therefore we have Foivy«s 1, so that
Qv {Avyp}and @ w {1} have the same strength. By the hypothesis of our
proof by contradiction, we have

Qu {Avy} <8
and, by what we have just seen, this implies
Qu {2} <8
which is contrary to our choice of A.

In either case, we have a contradiction, and so the claim is proven

Cramm 2. {A} is not relatively interpretable in any theory of the form
Qv {Avy} v {y}, with y a theorem of 8.

The claim is true, because, supposing the contrary, we see that for
some number h, Re2((R), B, (0)s, (b)) APE((h)s, (h)) is true and h is
the least number such that it is true. Then these latter facts would be
verifiable in @, and hence, by the definition of I'(x), we wounld have

(6) FaT (%)« (At < h)Rel{(t)o, ¥, (t)o) -

By Claim 1, @ U {ivy} < § and so indeed (Vt < h) TRe1((t), ¥, (t)o)
is true and also provable in @, and so we would have kal'(y) by (6) and
then Fey by (3).

Then we would have Fgdvy, so that Qu {Av v} v {y} would have
the same strength as @ w {y}, whieh is a subtheory of §, and then since
<avavegl ez
is supposed to be true, we would have

m<s
contrary to our choice of 2.

CratM 3. If we set W= 8 v {Avy} then 32U, and also I <t W,
and W <£ 8.

For the fact that 3D U is immediate, while I <

A< 8w {Avy}
and hence there is a theorem y of § -such that

{2y < {y} v {Ave}
which contradicts the fact that
{} g av vy v {r}

which we have obtained from Claim 2.

Al then in particular

3%
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I U < 8, then in particular,
Qu vy} <8

which contradicts Claim 1.

Hence, indeed 3 £ W and U < 8. QE.D.

By putting together Theorems 3.2 and 3.3 we see that the theories
intermediate between S and § v {Cong} give rise to r.e. degrees of relative
interpretability which form a dense partial order and contains a sub-
ordering isomorphie to the positive propositional logie. Furthermore,
these degrees arising as values of the map M can be given a Boolean
structure with meet, join, and complement, the latiter operation not
applicable to the degrees bounded by § v {Cong}.

By examining Lemma 3.1, one finds a mapping F from the power
set of the integers #(N) into the degrees (not necessarily r.e.) between 8
and 8§ v {Cons} given by

F(T)= 8§ v {p(@)| ne T}

for T e $(N). This mapping is 1-1, so that it embeds F(N). (This result
was already obtained by Montague in [4], though he does not explicitly
say s0.)

Thus, the structure of the degrees of relative interpretability appears
complex. )

4. In this section, we study the effect that adding the consistency
statement has on the finite polyadic Lindenbaum algebras of the theory §.
From a result of Pour-El and Kripke, since we assume 8 D ¥, the algebra
of sentences will not be changed (see [2] for a statement and proof of
their result). In what follows, $,(8) will designate the polyadic algebra
obtained by forming equivalence classes of formulas in the first (n--1)
free variables, under the equivalence of logical interdeducibility, defining
the usual Boolean operations on these equivalence classes (so that Bx(8)
becomes a Boolean algebra) and defining the action of the quantifiers
A, dy, ... in the natural way, e.g.,

Hx([4)) = [(Hx)2]
(here [1] is the equivalence class of 1), thus giving a polyadic structure
10 By(8). '

) In his paper [3], Kleene showed that, for any r.e. theory § in arithme-
tic, there can be added to the relational langnage of arithmetic a finite
number .Of new predicate symbols @, ..., Q: (¢ depending on 8) for which

‘ therg gmsts a single axiom involving @, ..., @, 8, Add, Mult,Z (Z the
condition u‘mquely satisfied by 0), that has precisely the relational theory
corresponding to 8 as reduct; i.e., the formulas that are provable in this

©
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finitely-axiomatized theory and whieh contain S, Add, Mult,Z, as the
only predicate letters are precisely the relational theory corresponding to 8.

Let 4 = A(Qy; ..., @i, 8, Add, Mult, Z) be this single axiom; by the
abbreviation As(yy, ..., ¥, 0, a, u) we denote the formula obtained from A
when proper substitutions of the formulas ., ..., v, ¢, a, u, v for the
letters @y, ..., @, 8, Add, Mult, Z are performed and then all quantifiers
are relativized to the formula §(x); this is essentially a relative inter-
pretation I of 4 where I assigns the cited formulas to the cited predicate
letters and relativizes by the formula 6. (We have chosen to suppress
the formula 7= which corresponds to Z.)

Let the formula 4 have number a, and T(x, y) a standard PR for-
mula which holds if y is the number of a formula in the relational language
and x is the number of its arithmetic correspondent. Finally, let Pruy)
and Con, be as in the fourth section of Feferman. .

THEOREM 4.1. If § is a consistent, reflexive, r.e. theory and § D F, then
there exists a. number N and an RE formula s(x) which designates some
axmiomatization of $ for which there is no Boolean homomorphism preserving
(i.e., commuting with) all quantifiers Hy, ..., Hy which mdps Bn(8 v {Cong})
to Bu(8).

Proof. We construet 4 as above; then the formula

(@y) (Pra=ay) A T(x, 7))

has a logical equivalent §(x) in § which is an RE formula, and by Kleene’s
results it designates precisely all the theorems of 8.

With judicious construction of T(x,y) we have

Fg Cong —Cong=z,
and, from Feferman’s Theorem 6.2 in [1],
FsuiCon,a L (A (@15 ---r @y S, Add, Mult))
for some relativizing map I. Combining these two results we see that,
for some formulas 6, %, ..., s, 0, ¢, ¥, We have
]’Su{c(ms}ﬁa(%y s Yoy Oy @y )

Let Ag(wy, ..., 9, 0, @, ) be put in a “special” Prenex Normal Form,
in which only the quantifiers outside. of vy, ..., yt, 0y a, 4 aTe “moved
outward”, these formulas are treated as irreducible predicate letters,
and the resulting matrix is a Boolean combination of these formulas.
Let the largest index of any variable “moved outward” to the prefix be ¥,

50 that x is in the prefix, but %, is not if 2> N. Suppose, for the sake
of contradiction, that there exists a Boolean homomorphism

F: By(8 v {Cong}) >Bn(8)

which preserves all quantifiers Hy, ..., dn.
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CLATM. F([Aa(v)l, ey Py O, 0, ,“)]) = A1, oy yt, o'y 'y u)].

Proof of Claim. TLet A(3p1y ey Y1y Oy 05 1) DO put in the special
Prenex Normal Form Q; we see that [Q] = [ds(pyy oy W1y 05 @, w)]. It is
easily seen that, for any formula ¢ in the first m free variables where

m < N, that we have

F{(Ax;)g]) = [(Axy)e']
and i )
’ F([(Vxlw]) = [(Vx;)¢'] - (rgm)

for any formula ¢ such that F([g]) = [¢']; the first equation is immediate,
since F' commutes with 7, and the second is almost as easy if one treats
(Vx)p as }(&x,) Tlp and unses the fact thab F is a Boolean homo-
morphism.

Thus, if, e.g., 2 is (VXq)(0xa) (VX3) ... I for some matrix I" which
is o Boolean combination of the formulas &, yy, ..., %, 0, ¢, 4, we have

F([Q)) = [(Vx4,) (Hx4,) (VX35) . ']

where I is any formula such that F([I')) =[]l If we set F([8])
— 8], F(lw) =] for i=1,..,%, F(o])=1[0'],F(a))=[a'], and
F([u]) = [u'], then the Boolean nature of F shows that I can be taken
to be the same Boolean combination of &, 1, ..., 4, o'y a’, p’ as I'is of
8, sy ey Wi, 05 Gy 4o 'Thus, “undoing” the special Prenex Normal Form
(Vx4 (Fx4) (V) ... I’ we shall arrive at a formula ds(y1, ..., v, 8", @', #')
which is logically equivalent to it, and this complétes the proof of
the claim.

From the claim, and the fact that P(1) =1 and that

[Aﬁ(wly s Pty 0, @, p)] = 1.
in the algebra Bxn(8 v {Cons}), we must have
slpr, o9ty oy oy @)1= 1
in the algebra Bx(S), which means
Fsda(pr, -y iy oy oy 1)
Thus, for some relative interpretation I’
FsI'(A(wy, ...y w1, 8, Add, Mult));

this shows that, for some finite subtheory & C$§ axiomatized by an
axiom ¢, B

FsI'(A (w1 oory w1, 8, Add, Mult)) .
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By Feferman’s Theorem 6.4 in [1],
FsCong—y >Conx—z,;
gince 8§D ¥, § is reflexive, so we have

ks Conx—y
and hence
FsConge—j, -
Since it is clear that

FsCong—g, > Cons
we evidently have
s Cong

which is an impossibility by Feferman’s Theorem 5.6 in [1], since s(x)
is RE and numerates all theorems of 8 in 9. Q.E.D.

Since the whole problem of polyadic algebras of theories is wide
open, it is almost humorous to list unsolved problems, but the ones listed
below seem to be particularly worth investigating.

We ask:

(1) If 8,329 and 3 has the uniform refloction principle over 8, is there
a Boolean homomorphism from $,(3) to $,(8) preserving q, and E*?
A. Nerode conjectures “no”.

(2) If 8,327 is there a Boolean isomorphism From B(8) to By(T)
preserving ¥, (This is essentially an open problem stated by Pour-El.)
We conjecture “yes’.

(8) If 827, is By(S) a universal monadic algebra’ We conjecture
& ”
yes”.

(4) Are there means of computing the algebras Bn(8), n < oo, which
rely only on a presentation of a given awiomatization of 8%

References

[1] S. Feferman, Arithmetization of metamathematios in a general setting, Fund.
Math. 49 (1960), pp. 35-92.

2] R. Jeroslow, Uses of self-reference in arithmetic, doctoral dissertation at Cornell
University, 1969, unpublished. 3

[3] 8.C. Kleene, Finite asiomatizability of theories in the predicate ocaloulus using
additional predicate symbols, in Two papers on the predicate calculus, Memoirs of
the AMS, no. 10, Providence, R. 1., 1852, 68 PP


GUEST


40 R. G. Jeroslow

[4] RB. Montague, Theories incomparable with respect to relative interpretability,

J. Symb. Logic 27 (1962), pp. 195-211.

{51 M. B. Pour-El, Effectively extensible theories, J. Symb. Logic 33 (1968),

pp. 56-68,

[6] B. Rosser, Hutensions of some theorems of Godel and Ohurch, J. Symb. Logie

1 (1936), pp. 87-91.

THE UNIVERSITY OF MINNESOTA

Regu par la Rédaction le 20. 1. 1970

©

Shapes of compacta and ANR-systems
by
Sibe Mardes$ié and Jack Segai* (Zagreb and Seattle)

1. Introduction. It is well-known - that local difficulties prevent
a successful application of homotopy notions to arbitrary compacta.
In an attempt to remedy this K. Borsuk introduced a theory of
shapes of metric compacta [3, 4]. In this paper we give an alternate
description of shapes and at the same time we generalize the theory to
the non-metric case. Our approach is based on inverse systems of ANR’s,
one advantage of which is that it is more categorical. The actual proof
that the two approaches are equivalent on metric compacta is given in
a sequel to this paper [11]. As an application of our method we classify
2]l P-adic solenoids and all (n-sphere)-like continua as to their shape.
Tt is also shown that the shape classification of 0-dimensional compacta
agrees with their topological classification. The theory is presented in
detail only in the absolute case, while for the relative case, i.e. the case
of pairs of spaces, we content ourselves with indicating the appropriate
changes. )

2. Category of ANR-systems. A directed set (4, <) is said to be
closure-finite provided for every a e A the set of all predecessors of ais
finite. Note that the natural numbers N with the usual ordering form
a closure-finite directed set. Another example is the set F(£2) of all (non-
empty) finite subsets of a given set 2 ordered by inclusion (a < o if and
only if aC a'). For ae(4, <) we define the rank 7(z) as the maximal
cardinal of a chain (linearly ordered set) in 4 having o for its terminal
point. If (4, <) is closure-finite, each a has a finite number of predecessors
and therefore 7(a) is a well-defined natural number. Note that in the
case of F'(Q) the rank 7(a) is just the cardinal of o and in the case of the
integers IV the rank r(m) = n.

By an ANR in this paper we mean 2 compact absolute neighbor-
hood retract for metric spaces (see [2], p. 100). We shall now introduce

* During this research J. Segal was visiting ‘the University of Zagreb on a Ful-
bright grant.
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