Equivalence of the Borsuk
and the ANR-system approach to shapes

by
Sibe Mardesié and Jack Segal* (Zagreb and Seattle)

In a previous paper [5] the authors have presented an alternate
approach, based on ANR -systems, to Borsuk’s theory of shapes of metrie
compacta. The purpose of this paper is to prove that this approach is
actually equivalent to Borsuk’s. For simplicity the proofs are presented
only in the absolute case.

The basic notion in Borsuk’s theory [2], [3] is that of a fundamental
sequence of mappings. For two compacta X, ¥ embedded in the Hilbert
cube I° a fundamental sequence ¢: X Y consists of a sequence of maps
@n: I® 1% such that for every neighborhood ¥ of ¥ there is an integer
91,, € ¥ and a neighborhcod U of X such that gu|U ~¢n |Uin V for all n,
7' > n,. Two fundamental sequences g,y: X ~X are congidered to be
homotopie, ¢ =y, provided for every neighborhood V of Y there is an
#y e N and a neighborhood U of X such that ¢a|U=yps|U in V for all
n > an,. The composite pg: X—=Z of ¢: XY and y: Y7 is the
fundamental sequence y: X —Z, where yp = Yngn, 7 ¢ N. The identity
sequence lxy: XX consists of the sequence of maps 1,e: I° I
X is said to be of the same shape as ¥ (in the sense of Borsuk), written
as Sh(X) = Sh(Y), provided there exist fundamental sequences g: XY
and y: Y X such that yp~1ly and gp=lyr. -

In our approach [5] the basic notion (in the case of metric compacta)
is that of a map of ANR-sequences. An ANR-sequence is an inverse
sequence X = {X,, Pnn+1}, Where each X is an ANR, ie. a eompact
ANR for metric spaces. Along with the bonding maps Pan’ = Pm.n+1 -

Prr—r,mrt X =Xn, n <0, onealso considers projections p,: InvlimX —nln
A map of sequences f: X—>Y = {Tu, Guni1}, where X and ¥ are ANR-se-
quences, consists of an increasing function f: NN and of a collection
of maps fu: Xjm—Ys such that fubsemrw)= quefu for < n'. Two
maps of sequemces f,g: XY are considered to be homotopic, l’ =4,

- *During this research J. Segal was visiting the University of Zagreb on
a Fulbright grant.
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“provided for each # ¢ N there is an n'¢X, w2 f(n), g(n), such that
fn?ﬂn)n‘ = GnPgtnm’ - The eomposite QI E»Z of i "XL%X and -g—: X»Z_ Is
X -»Z where h=fg: N>N and ho = gnfom:

a map of sequences h:
X X is given by the

Xypmy—Zn. The identity map of sequences lx:
identity 1y: N —X and the maps 1x,: Xn—~Xa.

An ANR-sequence X is said to be associated with X provided
X — InvlimX. Two metric compacta X and Y are said to be of the
same shape (in the sense of AN R -systems), written as [X]= [¥], provided
there exist associated ANR-sequences X and ¥ and maps of sequences
f: XX and g: ¥—~>X such that g9f~1x and fg~1ly. It follows from
([5], Corollary 1) that if such maps exist for one pair of sequences X
and Y associated with X and Y respectively, then such maps exist
for any other pair X', ¥’ of sequences associated with X and Y.

We can now state and prove the main result of this paper.

THEOREM. Two metric compacta X amd ¥ are of the same shape in
the sense of Borsuk if and only if they are of the same shape in the sense
of ANR-systems.

For every compactum X C I we can choose a decreasing sequence
of ANR’s X,D X,D..D X such that (X, =X and that each X, is
a neighborhood of X. Clearly, if inn: Xy—+Xn, n<n', denotes the
incluéion, then X = {Xy, ina} is an ANR-sequence associated with X.
We call X the inclusion ANR-sequence for X. For given X,¥ CI” we
choose two fixed inclusion ANR-sequences X = {Xp,inw} and Y
= {Y,, jun-} and use these throughout the remainder of the paper.

LEMMA 1. Let gn: I° I be a sequence of maps, let f: N —N be an
increasing function and let fo: Xym—Yn be maps such that for each neN

(i) m, m' = J(1)=>pnl Xjm = @m!Xym i Ya,

(i) fo = @reml X
Then the maps gy form a fundamental sequence @: X Y and the function f
and the maps fn form a map of sequences f: X —»X. If ¢ and f satisfy (i)
and (ii), they are said to be related. B - -

Proof. For every neighborhood ¥V of Y there is an m, ¢ N such that
Y., CV, because [ ¥, = YCV and the ¥, form a decreasing sequence.
Then U = Xymy is 2 neighborhood of X, and by (i), for m, m’ = f(n),
in ¥,,CV,

which proves that ¢ is a fundamental sequence. ‘
On the other hand, for % < #/, f(n) < f(#’), so that (1) and (ii) imply

|V =gw|U

1) Frn= @ Xy 2 01| Xy in Y.
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Since Xymny C Xjmy, we can restrict (1) to Xywy and obtain

Ful X gy 2 g} X gy In Yy »

However, by (ii), for = @i Xsmy,

50 that fulXymy ~fu
other words, | X g 2 fu

in ¥Y,. In

fnif(n)f(n'):jnn'fn’ in ¥, y
which proves that f: X »¥ is a map of sequences.

LeMMA 2. Bvery fundamental sequence p: X Y admits a related map
of sequences f: X ~7¥. -

) P.ro of. For every n ¢ N, ¥, is a neighborhood of Y. Therefore, there
is an index g(n) e N and a neighborhood U, of X such that

(2) m,m' = §(1)>om|Un ~ew|Un  in ¥,

Since [ Xx =X and the Xi form a decreasing sequence, there is an
index g¢y(n) e N such that

(3) k= go(n)=>Xr CUp.
Choose an increasing function f: ¥ —N such that for each n e ¥

4
Then, by (2),

(8)
Since, by (3), Xjm C Un, we can restrict () to Xy, and obtain

(6)

f(n) = gu(n), gofn) -

m,’”b'}f('l’b):q;,,,]U,,:gp,,,:]U,, in ¥,.

mym' = f(n)=>gm| Xym = @w| X 10 T,
which is (i). It follows from (6) that @ym(Xm) C ¥» and we can define
fai Xy —>Yn as the map fu= @sn/Xm, which is (ii). By Lemma 1,
f is indeed a map of sequences related to .

A map of sequences f: X —+¥ will be called regular, provided f: N >N
is strietly increasing, ie. if < n' implies f(n) < f(n'). Note that the
composite k=g I of two regular maps of sequences f and g is regular.

LeMMA 3. For every map f: X ~Y there is a regular map g: XX
such that f~g. - h

Proof. We first choose a strictly increasing function g: N =N such
that f(n) < g(n) for each w e, for instance we take g(n)=f(n)+n.
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We then define gn: Xpm->Yn t0 De gn = fuDimew. The function ¢ and
the maps g, form a map of sequences g: X Y because for n < 7" we have

o Potmigns = oD rmam Potmraew) = Tal sty Pferatoty < s o D satsotny = G G’ -

Tt immediately follows from the definition of g that f~g.

TEvnA 4. Hvery regular map of sequences f: X —=Y admits a related
fundamental sequence p: X =Y.

Proof. Let f: X Y be a regular map of sequences. We shall define
maps gn: I°—I° by induction on n. If f(1) = 1, we take for ¢, any ex-
tension of f;, to I with values in I%; if f(1)>1 we take for @, any map
of T into I°. Assume that we have already defined maps o: I®»I°
for all »-<k in such a way that the following holds: -

(i) k= m, m' > F0)=>pm| Xy = @m| Xsem 0 Ya,

(i) fin) < k=fn = @l Zimn- .

Note that {i); and (ii); hold because f(n) <1 implies #n =1 and f(1) = 1.
We shall now define gris: I°—I7, k> 1, in such a way that (i)+1 -and
(1)1 Dold.

If f(1) > k-1, we can take for g4y any map from I® to I™ for the
conditions (i)z+; and (i)z+: ave vacuously fulfilled.

If f(1) = k-+1, we define gy as any extension of fi: Xp1 =¥, C ¥ i
to I™ with values in I®. In this case (ii)z+: holds because f(n) < k-+1
= f(1) < f(n) implies f(n) = f(1) and % = 1 so that the assertion of (ii)g+1
reduces to gri1]Xps1 = fi. Condition (i)z+: holds in tl}is case because
m=m = k1. ’

Tinally, we consider the case f(1) < k+1 and we denote by I the
largest integer for which f(}) < %. We shall define, by induection on
j=0,1,..,1, maps gkt Xy-p—>Yi_j, each extending the preceding
one (here by convention we consider that f(0)= 0 and Xy = ¥,= I%°).
The map @r+: will be obtained as qyzkﬂz I I, We start the induction
by putting gys; = gx| Xy i f(14+1) > k+1 and in the case f(I4+1)= k+1
we choose for gky; an extension of fri: Xygin Y1 C Y1 to Xy with
values in ¥; such that
(7) gha~fi  in ¥i.

Such an extension exists because by definition fit.~filXsey in ¥u
and f; extends fi} X4y to’ Xyp, so we can apply Borsuk’s extension

theorem (see [1], (8.1), p. 94 or [4], Theorem 2.2, p. 117). Note that in
this case

(8) Pl Xrgeny = Fr -
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Now assume that we have already defined gyq1, ..., phs1, 0 <7 <1,
in such a way that

(i) ¢P;;'I-;-111X1(z—)i = ¢Ii+1, 0<i<y,
(V) Pir12prlXa—n In Y, 0<i<I< T,
Note that (iii), is vacuously fulfilled. If f(I+1) > k-1, (iv), obviously

holds. Tf f(I-+1) = k-1, then by (7), ¢hs:i~fi in ¥;. Moreover, since
F@) <k, we conclude from (ii)y and (i)z that

fi= ol X2 glXsm In Yi,

50 that iy~ sl X in ¥y, which is (iv),.

In order to define gits, observe that by (iv); ghis ~gulXy—p in Yi_g
and that gr/Xs_j-y is an extension of @i|Xj-j5 to Xyg-j—n. Since
k=1 =f(l—j—1), it follows from (i) that @x|Xs-s-1) takes values
in ¥;-j-1. Applying Borsuk’s extension theorem, we can extend <p};+1 to
o map @il Xygejn—>¥iss in such a way that ¢} ceuXis-n
in ¥;—;—1. This completes the induction step. .

‘We now put grs1 = <p§c+1. In order to verify (i)x41 and (ii)z+1-assume
that f(n) < m, m’ <k-+1. I f(n) =k +1, then m = m' = k41 and (D)x+s
obviously holds. By definition of I, f(I-+1) > k-1 = f(n) so that I+1 > n.
On the other hand, f(I) < % < k+1 = f(n) implies I < %, 5o that I--1=n.
Sinece @iy = q:%m is' an extension of gh.1, it follows from (8) thab

0
ol X fary = PraalXjary = frea,

which shows that in this case (ii)4+: holds.
‘We now assume that f(n) < k and therefore n < I. In this case (ii)r+1

. is true by (ii)z. Since gpii= gks1 extends o, "we have

(9) Pr1 Xy = @its -
By (iv)i—n we also have

(10) it ol Xy in Y,
so that
(11) eyl X = @ul X I Yoo

This shows that (i)z4: holds for m = k-+1, m’ = k. All other cases follow
easily from (i) and (11).

We have thus defined, by induction, a sequence of maps @a: I°5I%
which satisfies (i) and (ii); for all % ¢ N, ie. it satisfies (i) and (ii). By
Lemma 1, the maps @, form a fundamental sequence ¢ related to f.

Remark 1. The assertion of Lemma 4 is false if one omits the as-
sumption that f is regular. :

Fundamenta Mathematicae T, LXXIL 5
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LA 5. ¢ XY be related to f: XY and y: XY to g2 X—>T.
Then @ =y is equivalent to f=~g.

Proof. First assume that g=y. Then for each neN there is
a neighborhood Us of X and an mteger hy(m) € N such that

(12) m > hy(n)=>en|Un 2ym|Un  in Y..

Let hy(n) e N be such that Xumy C Un, and choose an integer h(n)
> Iy(n), Byn), f(n), g(n). Then Xy C Uy and

(13) R (1) = om Xiwy = Pl Xny D Yn .
Moreover, by (i) and (ﬁ)

(14) m > h(n) = F(0)>gmlXim > @il Xsm =fa 0 Ya,
(15) m = h(n) > ¢(0)=>pm|Xom = ol Xom = ga 10 Y.

Restrieting (14) and (15) 10 Xnimy C X piays Xoms We obtain

(16) m = h(n)=> pulXne = fal Xnw 0 T,
17) m > h(0)=>pulXnm = gn| Xnwm 0 Fn.
This together with (13) yields

(18) Il X o 2 0ol Xy In Y,

which proves that f=~g.
Now assume that f g. Then for each n e N there is an h(n) = f(n),
¢(n), such that (18) holds By (i) and (ii) we have again (16) and (17),
which together with (18) yields (13). Moreover, for every neighborhood V
of Y there is an n e N such that ¥, CV. Thus, by (13), for m > h(n)
and U = Xpm we have )
om|U = 9pm|U
which proves that ¢ ~y.
LEmwa 6. Let 92 X»Y and f: XY, p: Y>Z and g: Y > 7, z: X->Z
and h: X->Z be related in pairs. Then y~yy is equivalent to h~gf. The

fundamental sequence 1x: X —~X and the map of sequences Llx: Z—+§
are related. -

in 7,

Proof. Since p and f are related we have, by (i) emd (ii),

(19) m 2 f4(0)= pm| X pym = Q1o X pgmy = foy 10 Ygimy
Similarly, since y and g are related, we have
(20) . m = (”)”wmlya(n) Yo Yooy = Gn. D Zy .
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Thus, if k: NN is an increasing funection and k(n) > fg(n), '(n) for
each 7 e N, then
(21) m = k()= vmonl Xpm = gnfom 0 Zn .
Restricting (21) t0 Xym C Xjm We obtain
(22) = k(0= Ym@ml Xim = o fo| Xy 0 Zn -

It follows from (22) that the function % and the maps

Bn = Prm Pron] X

form a map of sequences k: X —Z related to the fundamental sequence peg.
It also follows from (22) that o

n ™ Gnfom) Xy 10 Zn,

which proves that k=~gJf.

Since k is related to pp and k is related to y, we conclude from
Lemma 5-that y ~pgp is equivalent-to k~k. However, k~gf, so that
h >k is equivalent to k=~ g f. Consequently, y =~y is equiva.len—{;—to b~y I

Remark 2. Note that the composites pp and gf need not be related
when ¢, f and p, ¢ are related in pairs.

Proof of the Theorem. Sh(X)= Sh(Y) means that there are
fundamental sequences ¢: X —Y and yp: Y —>X such that pp=~1x and
pyp=1y. By Lemma 2 we can find maps of sequences f: X »¥ and
g: ¥ —X related to g dnd ¢ respectively. Since 1x: X ->X is related to
1x: X—>X, we conclude from Lemma 6 that gf=~1x and similarly,
fg~1y, which shows that [X]= [Y].

- G:)nversely, [X]=[Y] implies the existence of maps of sequences
fr XY and g: Y X such that gf~1x and fg~1ly. By Lemma 3, we
can assume without loss of generality that f and g are regular maps of

sequences. Then we can find, by Lemma 4, fundamental sequences
g: X =Y and y: Y >X related to f and g respectively. It follows irom

Lemma 6 that yp~1x and gy~1ly, which shows that Sh(X) = Sh(Y),
and the proof is completed.
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Concerning the unions
of absolute neighborhood retracts

having brick decompositions *
by‘
Steve Armentrout (Iowa City, Ia)

1. Introduction. In the study of retracts, one is interested in de-
termining those properties of polyhedra that are also possessed by
"compact metric absolute neighborhood retracts. A basic property of
polyhedra is that they can be decomposed into simplexes in such a way
that if any number of them meet, their intersection is a face of each
of them, and hence is a simplex. This property of polyhedra leads to the
notion of a brick decomposition of a space.

If X is a topological space, then a brick decomposition of X is a finite
collection. {X;, Xs, ..., X} of compact metric absolute retracts in X such
that (1) X=X, v X,u..vX, and (2) if any number of the sets
X,, X,, ..., and X, intersect, their intersection is an absolute retract.

Clearly, every polyhedron admits a brick decomposition. Further,
any metrie continuum admitting a brick decomposition is an absolute
neighborhood retract [4, page 178]. However, not every compact metrie
absolute neighborhood retract has a brick decomposition [4, page 178]. The
existence of compact metric absolute neighborhood retracts with no brick
decomposition is related to the existence of such retracts with the
singularity of Mazurkiewicz [4, page 152; 31

In [4, page 179], Borsuk mentions the following open question:
Tf X and ¥ are spaces such that X, ¥, and X ~ ¥ have brick decompo-
sitions, then does X v ¥ have a brick decomposition? The purpose of
this paper is to give a negative answer to this question. .

The example that we describe here is obtained by an easy modifi-
cation of the construction of [3]. A similar construction could be made
using toroidal upper semicontinuous decompositions and the tech-
niques of [2]. ‘
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