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Noetherian lattice modules and
‘semi-local completions

by
Johmny A. Johnson * (Covina, Calif)

§ 1. Introduction. The general a-adic completion of a Noetherian
attice module was developed and studied in [1], and some specific results
for Noetherian lattice modules over local Noether lattices were obtained.
Some of those results were generalized in [2] to Noetherian lattice modules
over semi-local Noether lattices. In this paper we are concerned with
completions of Noetherian lattice modules over semi-local Noether lattices.

In § 2 the basic concepts are given. Some preliminary results are
developed in § 3 which are required later in the paper. Let (L, py, ..., Br)
be a semi-local Noether lattice, let M be a Noetherian L-module, let
m = PyA..APr, and let M* be the m-adic completion of M. In § 4 it
is shown that the L-module [ A M*, BM*] with the m-adic metric is the
m-adic completion of the Noetherian L-module [4, B], where 4 and B
are elements of M such that A < B (Theorem 4£.2). In § 5 we establish
that the extension map A—-AM* of M —~MM* is a lattice isomorphism
{(Theorem 5.3). Thus, the Noetherian L-module M is lattice isomorphic
to a sublattice of its m-adie completion.

§ 2. Preliminary remarks, By a multiplicative lattice we shall mean
a complete lattice on which there is defined a commutative, associative,
join distributive multiplication such that the unit element of the lattice
is an idéntity for the multiplication. Let I be a multiplicative lattice
and let M be a complete lattice. We shall denote elements of L by
a,b,c, .., with the exception that the null element and unit element
of I will be denoted by 0 and I, respectively. We shall denote elements
of M by A, B, 0, ..., with the exception that the null element and unit
element of M will be denoted by Oar and M, respectively. When no con-
fusion is possible, 0 will also be used in place of 0. Recall that M is an
L-module ([1], Definition 2.2) in case there is a multiplication between
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elements of L and M, denoted by .4 for ain L and 4 in M. , Which satisfies:
(1) (ab)4d = a(b4); (i) (V aa)(y Bp) = \/ﬂaﬂBBE (i) T4 = 4; and (iv)

04 = 0; for all a, a,, b in L and for all 4, Bs in M.

Let M be an L-module. For @, b in L and for A, Bin M, (i) a:b
denotes the largest ¢ in I such that ¢b < a; (i) A : B denotes the largest ¢
in I such that ¢B < 4. An element 4 in M is said to be meet principal
in case (bA(B:A4))A=bAAB, for all b'in L and for all B in M; A is said
to be join principal in case bv(B:4) = (bAVB): A, for all b in L and
for all B in M; and, 4 is said to be principal in case A is both meet and
join principal. If each element of M is the join (finite or infinite) of prinei-
pal elements, 3 is called principally generated. M is said to be Noetherian
if M satisfies the ascending chain condition, is modular, and is principally
generated. If I is & Noetherian L-module, L is called a Noether lattice,
For other general properties and definitions concerning Noetherian Iattice
modules, the reader is referred to [1] and [2].

We state the following results for convenience. The reader is referred
to [2] for their proofs.

DEPINITION 2.1. Let T be a multiplicative lattice and let M be
a Noetherian Z-module. For ¢ in L and A in M, let T(a, A) be the col-
lection of all. sequences (Bi), i=1,2, .., of elements of M satisfying

(21) atd > B; = Bi+1 > aB; s

for all integers i > 1. For <> and (Bi)‘in T(a, A), define

(2.2) (O < <{Byy if and only if  C; << By, for all integers 4 > 1
(2.3) CDHVLBy = (C:v By)
(2.4) {ODALBy = <04 ABg) .

It is easily seen that T(a , A) forms a complete, modular lattice under
the relation < with the resulting join and meet being given by (2.3)
and (2.4). The resulting lattice will be denoted by R{a, A).

THEOREM 2.2. Let L be a multiplicative laitice, let M be a Noetherian
L-module, let a be an element of M, and let (Byy,i=1,2, ..y be an element
R(a, A). Then there exists a natural number n. such that B,i; = By,
Sor all integers m = n and for all imtegers ¢ 0 (2], Theorem 3.2).

A Noether lattice is called semi-loeal if it has only finitely many
maximal elements. If I is a semi-local Noether lattice with maximal
elements p,, p,, -7 Pr, We will say that (Ly P1y Pay -, P&) 18 2 semi-local
Noether lattice. For the rest of this section, (L, py, ps, ..., px) is & semi-
local Noether lattice, M-is a Noetherian L-module, M= Py A APk,

M* is the m-adic completion of M, and L* iy the m-adic completion
of L (see [2], Corollary 3.4).
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Levma 2.3. Let <4, i=1,2,..., be a sequence of elements of M
satisfying Aoy < AvmiDt, for all integers © > 1. Then the sequence {A>
is Cauchy ([2], Lemma 5.4).

PROPOSITION 2.4, Let B, C be elements of M*. Let {By> and {Cy)> be
the completely regular representatives of B and C, respectively. Then the
sequence {BiA\Ciy is a representative of BAC ([2], Proposition 3.3).

PROPOSITION 2.5. M* is modular ([2]; Proposition 5.6).

PROPOSITION 2.6. Let A, B be elements of M*. Let (A:) and (B:> be
the completely reqular vepresentatives of A and B, respectively. Then the
sequence {A;:By> is a representative of A:B ([2], Proposition 5.7).

THEOREM 2.7. Let {A:> be a Cauchy sequence of principal elements
of M. Then the equivalence class determined by (A:) is a principal element
in M* (considered as an L*-module) ([2], Theorem 5.8).

THEOREM 2.8. L* is a Noether lattice and M* is a Noetherian L*-module
([2], Theorem 5.9).

THEOREM 2.9. Let m™ be the greatest lower bound of the mazximal elements
of L*. Then, ([2], Theorem 6.2)

(2.5) L* is a semi-local Noether lattice with maximal elements

Pl oo, Pl

(2.6) m=m* nL;
and,
(2.1 (LA ADR) LT = mL* = m* = p, L*A... ApaL*.

§ 3. Preliminary results. Throughout this section we will h:?ve
(L, p1s Pay ---, Px) is a semi-local Noether lattice, M . is a Noetheria,.n
L-module, m = p, A... Apr, M* is the m-adic completion of M, and LZ* is
the m-adic completion of L.

We will need the following generalization of an unpublished result
due to E. W. Johnson.

TerorEM 3.1. M is a complete L-module with respect to the m-adic
wetrie, if and only if, given any decreasing sequence {Bp, i=1,2, ..,
of elements of M and positive integer n, B; < (é\ By)vm I, for all suf-
ficiently large integers i.

Proof. Assume M is a complete L-module with respect to the m-adic
metrie on M. Let (B, i=1, 2, ..., be a decreasing sequence of elem(f.nts
of M. By Lemma 2.3, {B;)> is a Cauchy sequence. Thus, by our assumptm]fx,
there ex}sts an element € in M such that B;—C as i—>-+ oo (in the m-adic
metric).

Hence, by ([1], Remark 3.6), for each integer »n>1, Cyvm™IN

7*
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= Byym™, for all sufficiently large integers . Therefore, for each
positive integer # and each positive integer k, we have

Cvm®I = B;vm™ M < Brvm» M,

for all sufficiently large 1ntege1s i. 00nsequently, by ([2], Corolkary 3.4),
it follows that

= A (Cvme)

n

< A (Beym ) = By,
n

for each positive integer k. Thus C < A Bg. Then, for any positive
k
integer 7,

Bi < BivmIt = Cym»IM < (A Br) vm M,
A

for sufficiently large integers i.

To show the opposite implication, assume that given any decreasing

sequence (B}, 1=1,2,
ger 7y Bi << (A By)

to show thant7 M is a complete L-module with respect to the m-adic
metric. Let (0;), i=1,2, ..., be a Cauchy sequence of elements of M.
Let <Ci,4=1, 2, ..., be a regular subsequence of (0> ([1], Lemma 4.11).
Set Dy = 0;vm™R, for 4=1,2,.. Then <Dy is a completely regular
Cauchy sequence ([1], Lemma 4 1‘)). Since

., of elements of M and any positive inte-
ansm, for all sufficiently large integers 7. We wish

limit ¢; = limit 0; = limit D;

00 >0 100

if any one of these limits exist, it is sufficient to show that limitD; exists.
We shall show that hmlt]) /\ D;. Let £ > 0. Let n be ‘rhéui:ast natural

number k¥ such that 2’“ < e Smce D; is a completely regular Cauchy
sequence, it is decreasing ([1], Remark 4.8). Consequently, by assumption,

¢ < (A Dy)vmm,
for all sufficiently large integers 7. It follows that
Divme I = (A Dj)vm» i,
i

for all sufficiently large integers 4. This implies that dm(Ds, \ Dj) <27,

B i =
(11, Remark 3.6). Thus, limit Dy

00

for all sufficiently large integers i.
= A Dy, in the m-adic metric, q.e.d.

If 4, B are elements of M with A’ B, then the set {D in K|
ALD<< B} is a sublattice of M, and will he denoterl by [4, B].
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Remark 3.2. Let 4, B be elements of M with A < B, and let d be
an element of L such that dC < 4, for all ¢ in [4, B]. For b,¢ in [d, I],
define b o ¢ = bevd. For ¢ in [4, B], and b in [d, I], define b o« C = bev 4.
These definitions of multiplication make [d, I] into a multiplicative
lattice, and [4, B] into a Noetherian [d, I]-module (see [2], Remarks 2.3
and 2.4).

ProPOSITION 3.3. Let A and B be elements of M such that A < B.
Then the extension map C—OM* of the Noetherian L-module [ A, B] with
the m-adic metric to the L-module [AM*, BM*] with the m-adic metric
is an isometry.

Proof. Let ¢ and D be elements of [4, B]. A routine caleunlation
shows that

CM*vmn o (BM*) = DM*vm» o (BM*),

if and only if,
CymreB=Dwvm"-B,

for each nonnegative integer n. It follows from this that the map is an
isometry, q.e.d.

We will now develop some properties that will be used in later
sections of this paper.

LevMA 3.4 Let A be an element of M*. Let (A¢), i=1,2,.., be
a representative of A. Then limitdm(Agﬂf*, A)=0.

Proof. Let £ be a positive real number. Let k be the least natural
number g such that-27? < &. Thus 27F < ¢ Since (4> is a Cauchy sequence
of elements of M with the m-adic metric, there exists a natural number ¥
such that du(ds, 4;) <27F for all integers ©,j > N. Thus, Avm* R
= A;Vm’ﬂ]l for all integers 4,j = N. Consequently, for each integer

> N, we have A;vmit = A;vm*M, for all integers j > N. Now, fix
) > N and let j vary. Since the constant sequence (Asvm¥Ry,j =1, 2, ..
is a 1epresenmtwe of A;M*v(m* ) M* and the sequence (A,vmkim/,

ji=1, , is a representative of A v (m*IY)M* ([1], (5.8)), it follows that
A M mEONAY) = A M*y (mES) M* = A v (mik ) M*
= Avm¥ I M*) .

Hence, for each integer 7 > N, we obtain

A My mEM*) = A vmEIRM*) .
It follows that d,,;(A;M*, A) < 27F < &, for all integers i > N, g.e.d.

The following result shows that the metrics d3, and dm are equiva-
lent on M™.
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PROPOSITION 3.5. Let A, B be elements of M*. Then dy(4,B)
= dm(4, B).
Proof. Let the Cauchy sequences (4>, <Bi), i =1, 2, ..., be repre-
sentatives of 4 and B, respectively. Since ’
limit dm(A:H*, A) = 0 = limit dm(B:M*, B)

00 i—»o0

by Lemma 3.4, we have that
Am(4A , B) = limit dm(A4:M*, B;M™).

=00

Also, by Definition 5.5 of [1] and Proposition 3.3, we know that
dn( A, B) = limitdn(Ad:, By) = limitdu(d,M* BiM*) .

100 1—>00
By combining these last two results we cbtain di (4, B) = dm(4, B), q.e.d.

COROLLARY 3.6. The three metrics dh, dm, ond dm» are equal on M*.

PROPOSITION 3.7. Let b be an element of L and let B be an element
of M*. Then bL*-B = bB. .

Proof. Let <B;y; i =1, 2, ..., be the completely regular representative
of B. Then the sequence (bB;>, i =1, 2, ..., is a representative of bB ([1],
Definition 6.5).- Consequently, the sequence (bB;vm™ My, i=1,2,...,
is a representative of bB ([1], Corollary 4.6). Since <bvm®y, i=1,2, ...,
is the completely regular representative of bL* ([1], Remark 5.2), we
have that {(bvm¥)B:), i=1,2, .., is a representatives of bL*-B ([1],
Proposition 5.14). Thus {(bvm?)B;vmi Ny, i = 1,2, ..., is a representative
of bL*B. Since (bvm?)B;vm I = bB;vm M, for each nonnegative inte-
ger 4, the result follows, g.e.d.

§ 4. Completions of intervals. Throughout the remainder of this paper,
(Ly D1y Pay -, pr) is & semi-local Noether lattice, M is a Noetherian
L-module, m = p;A...Apr, M* is the m-adic completion of M, and L* is
the m-adic completion of L.

In this section we shall establish the form of completions of intervals
of M. This result is needed later in' the paper.

THBOREM 4.1. Let A and B be elements of M such that A < B. Then,
the set [A, BJM™ is dense in the L-module [AM*, BM*] with the m-adic
metrie.

Proof. Let C be an arbitrary element of [4 M*, BM*]. Considering ¢
as an element of M* let (C:), i=1,2, .., of elements of M be the
completely regular representative of ¢ determined by the m-adic metric
on M. Since (Cr) is completely regular, it is decreasing ([1], Remark 4.8).
Thus {C;AB} is decreasing, and hence is Cauchy (Lemma 2.3). Since
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{0y and {Bvm') are the completely regular representatives of C
and BM7, respectively, the sequence {CiA(Bvmi™M)> is a representative
of ¢ ABM* (= () by Proposition 2.4. Since C; A(Bvm™ M) = (0; 2 B)vm'M,
for all integers 7 > 1, by modularity, and since {CiAB»~<{(C;.B)vmR;,
we have that the Cauchy sequence {C;AB) is a representative of C.
Thus (CiAB)M*—C as i—>-oco with the df metric and thus with the
7 -adic metric (Proposition 3.5). Since (Ci», (4 vmiWty, and (BvmM>
are the completely regular representatives of C, 4, and B, respectively,
and since AM* < O < BM™, it follows that 4 < Avm* M < O < BymM,
for all i> 1 ([1], Proposition 5.9). Consequently, C;AB is in [4, B],
for all i > 1. . )
Consider the sequence {(m*)(MM*yABM*», i=1,2, ... Since

(m* (M) > (m*) (MM ABM* > (m™) F(MM*) A\BM*
= m*((m*)(MM*) A BM*)
for each i >1, this sequence satisfies the conditions of Theorem 2.2.
(See Theorem 2.8). Thus, (Proposition 3.7) there is & natural number n
such that i
(£.1) w"TMM*) ABI* = mi{mr(MMM*)ABM*),  for all integers 4220
Let ¢ be a positive real number and choose k to be the least natural
number ¢ such that 27%< . We showed above that (CiAnB)M*—C as
i—-oco with the m-adic metrie, so there exists a natural number N
such that
(CiA BYM*ymn+ R MM*) = OvmrHe(INM*) ,
for all integers ¢ > N. Thus,
(4.2) BM*A[(CiAB)M*ymrHIIM*)] = BM*ALOVmrtH(IRM™)],
for all integers i > N. By modularity in M* (Proposition 2.5) and (4.1)
we have
BM*A[(Cs AB)M*vamr i (IRM*)] = (CiAB)M* vmA{m{ SRIM*) A BH™

and . .
BM*A[Cymr R IMM*)] = Cvmm (MM )ABM] .

It follows that
(4.3)  (CeaB)M*v AL IMM*) ABIM*] = Cvm*m™(MM*}ABM*],
for all integers i = N, by (+.2). Now, let ¢ be an integer such that i > N.
Then
(Ci AB)M*vm* o (BM*) = (CAB)M* vmk[m”(SRM*) ABM*]vm (BM*)
= CvmHmMI*) \BM*]vm*(BM*)
Cvm¥BM¥)

I
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i)}* (4.3). Thus, we obtain
(CtAB)M*vm¥ o (BM*) = (Ovmk o (BM*).

for all integers ¢ > N. Hence, for ¢ > ¥, the m-adic distance from 0;AB
to O is less than or equal to 2% ([1], Remark 3.6), q.e.d.

THEOREM 4.2, Let A and B be elements of M such that A < B. Then
the L-module [AM*, BM*] is complete with respect to the m-adic metric
on [AM*, BM*).

Proof. We will make use of Theorem 3.1 to prove this result. Let
{C¢, i =1,2, ..., be an arbitrary decreasing sequence in the I-module
[AM*, BM*], and let j be a positive integer. We wish to show that

(4.4) Ce< (A C))v(m*) o (BM*)
q

for all sufficiently large integers 4. )
For this, consider the sequence {(m*)(MM*)ABM*), i=1,2,..
Since

(m*(MU*) > (m*) (MM ABM* > (m*) T IMIM*) \BM*
>m* '

m*((m*) (M) ABM*) ,
for each positive integer 4, the sequence ((m*) (MM*)ABM*S,i=1,2, ...,

satisfies the conditions of Theorem 2.2 (recall that M* is a Noetherian

L*-module by Theorem 2.8). Consequently, there exists a natural number
such that

(4.5) (m* M) A BM* = (m*)((m*)"(MM*) ABIY) ,

for all integers % > m, and for all integers 7 > 0. Since the sequence {C>
is decreasing, and since M* is a complete L-module with respect to the

m-adic metric on M*, by Theorem 3.1 there exists a natural number N
such that

(4.6) Oe < (A Oy (m) (may ,

_for all integers i > N. It follows that

(4.7) O = CiABM* < BM*A(( {z\ Co) v (m*) (M)
= ( {1\ Ca) v ((m*Y (M) AB M)

= (A o)V (m*) {(m*) (0 1*) A BILY) ,
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for all integers i > N, by (4.5) and (4.6). Now, let 4 be an integer such
that ¢ > N. Then,

O = CiVAM* < (m* (BM*)vCivAM*
< (N GV () (ORI ABIL) v () (B v A 2g*
= (A OV (m*(BM*)vAM*,
4

by (4.7). Thus,
Ci < (A Og)v(m*) o (BI*),
aq

for all integers ¢ > N, which establishes (4.4), q.e.d.

THEOREM 4.3. Let A and B be elements of M such that A < B. Then
the L-module [AM*, BM*] with the m-adic metric is the m-adic completion
of the Noetherian L-module [ 4, B).

Proof. This follows immediately from Proposition 3.3 and Theo-
rems 41, 4.2, by the uniqueness of the completion (up to an iso-
morphism), q.e.d.

§ 5. The extension isomorphism. In this section we establish some
results about residuation and show that the extension map is a lattice
isomorphism.

THEOREM 5.1. Let A be an element of M and let B a principal element
of M. Then (A:B)L* = AM*: BM*.

Proof. Since (4:B)B < A, we obtain (4:B)L*- BM*= [(4:B)BIM*
< AM*. Thus (4:B)L* < AM*:BM* Therefore, we need only show
that (4:B)L* > AM*: BM*.

Let # be a nonnegative integer. Since LL* is dense in L*, there exists
an element x of I such that aL*v(m*)" = (AM*:BM*)v (m*)". Since
(AM*: BM*)(BM*) < AM™, we have

(B)M* < [(#L*)v (m*)"|(BM*) = (AM*: BM*)(BM*) v (m*)(BM*)
< _AM'*V('m,*)“'(_BM*) = (A vmﬂB)M* .
Thus, @B = (xB)M* ~ M < (Avm"B) M* ~ M = Avm"B. Consequently,
< (Avm»B): B = (A:B)vm®, since B is a principal element of M.
Hence, «L* < [(4:B)vm»] L* = (4:B)L*v(m*)". It follows that
(AM*: BM*)y (m*)" = aL*v (m*)" < (A:B)L*v(m*)" .

Since n was arbitrary, we have

(AM*: BM*)v(m*)" < (4: B)L*v(m*)",
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for all nonnegative integers m. Now, since L* is a semi-local Noether :

lafatme (Theorem 2.9), we have

AM*:BM*= A ((AM*BM*)\V(m*)")

< A ((A:B)L*v(m*)") = (4:B)L*,
n
by ([2], Corollary 3.4), g.e.d.
COROLLARY 5.2. Let A be an element of M and let B be a principal
element of M. Then (ANB) M*= AM*ABM*
Proof. Since principal elements extend to principal elements (Theo-
rem 2.7), BM* is a principal element of M* It follows that

(AAB)M*= ((A:B)B) M* = ((4:B)L*)(BM*)
= (AM*: BM*)(BM*) = AM*\BM*

by the theorem and the definition of a principal element, g.e.d.

The following theorem shows that Jf is-lattice isomorphic to MM*
considered as a sublattice of M.

TeEOREM b.3. The extension map A —~AM* of M->MM* is a lattice
isomorphism.

Proof. Let .4 and B be elements of M. Recall that (AvB)M*
= AM*vBM* by definition ([1], Definition 5.4), and that the extension
map is one-to-one ([1], Proposition 5.3). Hence we need only show that
(AAB)M* = AM*ABM*. )

Since M is a Noetherian L-module, there are principal elements

1y 3 P In M such that B= P;v...vPrV(AAB). The proof is by in-
duction on #. Assume B = P;v(4AAB). Since P; is principal in M,
P,v(4AB)is a principal element of the Noetherian L-module [A A B, M].
Hence,

(AAB)M* = (AA(PV(AAB))) M* —>{AA(P,V(4AB) )[4 AB, MI*

= A[AAB, MI*A(Pyv(4 AB)J[AAB, MT*

= A[AAB, M*AB[AAB, MI*—~AM*\BM*
by Corollary 5.2 and Theorem 4.3, Thus the case when n = 1 holds.
Assume the result holds for case n= %, and suppose B = PV..VPrV
V(AAB). Set P= AVPr.;. Then AAB = AANBAP). Tt follows that
P~B = Py.1v (A A(PAB)). Thus, applying the case n = 1 to 4 and PAB,
we obtain (AAB)M*= (AA(PAB)) M* = AM*A(PAB)M*. Also, since

B=Pv..vPyv(PAB), we obtain (PAB)M* = PM*\BM* by the in-
duction hypothesis. By combining these results we have (AAB)M*
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= AM*NPAB)M* = AM*AN(PM*ABM*)= AXM*+BM* This completes
the induction, g.e.d.

COROLLARY 5.4, Let A and B be elements of M. Then (4:B)L*
= AM*: BM*.
Proof. Since I is Noetherian, there are principal elements Py, ..., P,
in M such that B= P;v...vPy. It follows that
(A:B)L* = (A: (P, V..V Py)) L = ((A: Py n...n(A: P)) ¥
= (AM*: P, M*)A oo AN(AM*: Py %)
= AM* (PyM*V..VP,M*) = AM*: BM*

by Theorem 5.1 and 5.3, g.e.d.
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