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Extensions of measures and abstract stochastic processes

by
E. O. Elliott (Holmdel, N. J.)

1. Introduction. In the general theory of stochastic processes the
extension of probability measure from finite dimensional distributions
to denumerable dimensions is easily effected in most cases. For abstract
processes, the theory of compact systems of sets dne to Marczewski and
Ryll-Nardzewski may be invoked to achieve the extension to denumerable
dimensions without the relianee upon topological structures. In the
theory of processes with mutually independent random variables {in the
continuous parameter case), the measurability of events defined by
2 condition on a nondenumerable collection of random variables has

‘been established. Using a general extension theorem which embodies

the essence of this second result and the technique used in obtaining
a separable extension of a stochastic process, the (transcountable) ex-
tension problem is completed here for abstract processes in a fashion
that assures the measurability of events specified by nondenumerable
collections of random variables. This provides a generalization of the
notion of separability which is applicable to both abstract and real
stochastic processes.

We consider an () space S of function space type with an abstract
parameter index set I such that the functions x S assume values in the
abstract spaces 8¢, tel, le,

S = {z: x is a function on I and z(t)e Sy, for each {eI}.

To each space S:, t eI, is associated a o-field of subsets F; and we define
the families of subsets Ry, J CI, as follows:

Ry={B: B={zeS: () efi,teJ}, freFs,teJ}.

Special cases of these are the sigma-field F;= Ry and R= R;. We as-
sume S; e F; for each el so that SeF; also.
Digressing for a moment, let us make the following set and measure-
theoretic notational agreements.
(i) Hyn= {K: K CH, K is finite},
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(i) Ha = {K: KCH, K is countable},

(ili) @ = g[H] is the function on the subsets of S such that if 4 C S
then u(A)= Inf{ Zag( : ACU G, GeHy,
Be

(iv) = p[modN] is the function on the subsets of S such that if
A'CS then u(A)=Inf{p(A—N): N eN}.

v) w/H is the function px with its domain restricted to (members
of the family) H.

(vi) 2(G) = the smallest sigma-field containing G =
H is a o-field}.

The following additional families of subsets of § may now be defined.
Let 43 = Z(Ry) and A*= {J {43 J ¢ I} and assume that Fj, J e Iy,
is & sigma-field eontaining 4% determined by restrictions of the a’s valucs
on the parameter set J. (FyC Fp when J CJ’ € Ipy). )

We assume a measure t° on the sigma-field F*= [ {F¥§: J ¢ Iy)
where Ff= X(|J {Fp:J’ eJu}) is given (or has been obtained from
measures on Fy by extension based on compact systems of sets ([1],
[2]))- Our goal is to modify v* by extending it to a universal sigma-field F
of measurable subsets of S which includes R and F*. Thus, the members
of these two families are measurable under the resultant measure so
when I is nondenumerable, certain events specified by a nondenumerable
collection of random variables are measurable. This goal is acecomplished
with a generalization of an extension theorem [3] which has its inception
* in the theory of mutually independent processes with a continuous para-
meter [4]. A device in this application is familiar for the obtaining of
a separable standard extension of a stochastic process [5]. As in [4] there
is no need to restrict consideration to finite (or probability) measures
or o-finite measures, but we do not undertake such complete generality
ab this time. Thus, we do not label t* as a probability measure here (for
possible fature reference) but the reader may think of it as such since
7*(8) < oo is often required.

As one final notational device, we let Ay denote

N{H: GCH,

{2 e S: for some ye 4, 2(t) = y(t) for each teJ}

and write 4;= Ay. Thus, when 4 eR, A=A;~ A7 ; for any JCI,
and 4 = [\ {44 tel}. Now, if 4 is any mbset of S and J C I then 4, is
the cyhnder in S over the projection of 4 onto the subspace [] {S:: teJ},
the cartesian product of the spaces 8;, 1 < J. (For a set-theoretic method

of handling the mechanies of product spaces some readers might be
interested in ([4], § 5).)

Throughout this paper we assume I is nonderumerable.

icm°®

Eaxtensions of measures and absiract siochastic processes 107

2. The extension of 7*. We let 7= *[F*] be the outer measure ex-
tension of 7* on S so that

F(4) = Int{r"(B): ACBeF*),

whenever 4 C S, and specify the further modification of z* by means
of the following:

Definitions.
(1) B={AnB: Ae¥F%, BeRr 5, J eI},
(2) C={a: a= U{a(t): tel}, a(t) e Fey tel}

If o« C we take the notational liberty of writing a= {J{as tel}
where now a: (= a(f)) has a new, but reserved, meaning.

(8) N(A)={ael: AeF* T(da)=0, tel},
(4) NYA)={(D: A= J{d" k=1,2,..},
D= {J{d*" k=1,2,.), FeNF), k=1,2,..],
(5) N=J{N"(4): AcF*}
(6) » = F[mod N1,
(7) F= {4ACS: 4 is a v-measurable set}.

The family IV in (5) ‘ﬂ)ove is our generalization of the nilsets in [3].
We begin with an intuitive but important orientational

2.1. TaEoREM. If A C 8 then
T(A)= Liminf{u(4dg): u=7/Fk} = Lunmﬂnf{r( ")z

Kely, Kelgn

ACA eFg}.

Proof. Recall that Az is the cylinder in S over the projection of 4
onto the space []{S:: ¢<K}. Observe that for some J ¢ Iy we have
that both
) T(4)=7(4"), ACA <Fy
and

Liminf {z(4x):

Kelgp)

p=T[FE) = E(4)

are satisfied (u = 7/FJ). ’

Since 4 C A’ € Ff we have A;C A’ and hence T(4) =T(4ds) = 7(4')
since 4 C A. Since for some A" e F5, A;C A" and p(d;)=7(4") it
follows that 7(4") = 7(4'4") = 7(4") = 7(4,s) completing the proof.

Fundamental to our goal is the next

2.2. THEOREM. If A ¢ F* and D e N*(A) then T(A—D)=7(4).
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Proof. Let. 4 ={J{4", D= U{4%* where oecN(4%),
%=1,2, .., and set fe= |J{4"a}, t eI, and let B= A—D. Then

D= \J{Bs: tel} and B=A—tgrﬁ;=tg (A—pBs) .

Now suppose J e I is the smallest such for which 4 ¢ F}. Then, when-
ever JCJ’ eIg, we have Byp=[) (4—B:) e« F#. Using the previous
ieJ’

theorem we infer

#(B) = Limint{#(Bxg): u = 7/F&} = SupInf{&(Bs): p = T/F$}
Eely - K JDE

> Sup Inf7(By),
K>J JOK

and consequently for some J' eI, J CJ', the right-hand side of the
inequality is equal

T(By) = ?(@, (A—pr) = 74— f) = T(A)—7 (L) fe) =7(4)—0

and we conclude 7(B) > 7(4) » 7(B) to complete the proof.
2.3. TEroREM. If B e F*, T(B) < oo and D ¢ N then 7(B—D) = 7(B).
Proof. Supposé A e F* and D e N*(4) then, DC 4 and since A is
7 meagurable we have

%(B—D) = 7(B—D—4)+7(4(B—D)) = 7(B—4)+7(AB—D)
= 7(B)—7(AB)+7(4B—D)

and checking that D « N*(4AB) we infer from the previous theorem that
7(AB—D)=7(AB) and then conclude 7(B—D) = 7(B).

9.4. TaEOREM. The set function v i8 an outer measure on S, v(A4)
=T(4) and A is v measurable whenever A ¢ F*, and v(D) = 0 whenever
DeN, and v=y[F* v N].

Proof. Noting that 7 = 7[F*] the conclusion is an immediate conse-
quence of the fact that IV is closed to countable unions which is easily
checked. This is well known [4] but for completeness we sketch a proof.
TFirst, to check that » is an outer measure we must verify that »(4)

<A£v(Bk) whenever AC 8, AC |\ J{B* k=1,2,..},B*CS8,k=1,2, ..

Since »(C) = Inf{z(0—D): DeN} for each 0 C S, we may use the fact
that IV is closed to countable unions to secure D*eN, k=0,1, ...,
80 that

v(4) =7(4-D") and »(BY=7FB*-DY, k=1,¢2,..

a

e ©
Im Extensions of measures and abstract stochastic processes 109

Then letting D= | {D* %k=0,1,..} we see that De¥ and D*CD
and hence »(4)=7(A—D) and »(B*) =7(B*~D), k=1,2,.. Now,
A—-DC|J{B*~D: k=1,2,..} and since 7 is an outer measure,

e

F(A-D)< ) T(B*—D)

o

Il
-

and the desired conclusion follows.
Next, to check that » = »[F* v N] we suppose 4C S and let D« N
be such that »(4) = T(4—D). Then, using the fact that 7 = T[F*] we
o

suppose 7> 0 and T(4—D)+r> Y T(BY) where B*e¢F* and A—D
k=1

C DB". Then, since »(B*)=7(B*) we conclude »(4)+r> kEv(B").
k=1 =1

Hence, lotting B°—= D we see that AC (J{B* k=0,1,..} and as
0 <»(B)<TB~D)=7(@)=0, »B)=0 and we infer »(4)+r
> 3'»(B*) > »(4), and since {B*: k=0,1,..} « (F* v Nja we conclude
v LZS[F* u N]. To see that members of F* are v measurable it is then
only necessary to check that »(4) = v(AB)+v(4—B) whenever 4 eF* uN
and B eF* which is clear.

Using a familiar technique from the theory of separable processes
([5], Lemma 2.1) we obtain another fundamental

9.5, TarorEM. If BeRiy, J elum, T(8)< oo, ar= S—B; for
each t eI, then for some J e (I—J" Vo1,

U {at: tEI—-J} EN(BJ) .

Proof. We proceed by induction and let #; be any member of I—J*
and suppose that Jy= {t;, .., &} has been defined in accordance with
the following scheme: Let

7y = Sup{T(Bnar): tel}.
Tf 71 > 0 and r; = 0 then take J = Jx. L rp >0 then let z+1 be choserc
in I—J'—dJx so that

T(By,ay,,) > ri{l— Y.

NOW, with Jp11 = I v {tk+1}g we see that .BJk+1 == ‘BJI: ~ B;k_” C Bjk and
hence that 7.1 < 5. Now, if 7> 0 for all k=1, 2, .., then

G = {BJkaikH: k= 1, 2, ...}
is a disjoint subfamily of 4* C F* and consequently

0

HU @) = D T(Bray,) <T(8) < oo
C k=1
Fundamenta Mathematicae, T. LXXIII 8
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and hence ' -
Um 7 (B, a,,) = 0.
k00 X
Thus

mrg(l—%™) = imrp =0,
ko0 k>0

and taking J = ) {Jx} we have

Sup{z(Bsogy): tel} < rg
so that
T(Bya;)=0 whenever tel—J.

Defining ‘f: = s, teI—J, fi =@, ted, we have |J{fs tel}= | {as
teI—dJ} e C which yields the conclusion | J{a;: t e I—J} ¢ N(By).

2.6. THEOREM. If A B and 7T(S)< oo then for some D eN:and
A’ eF* A= A'—D.

Proof. Suppose 4 =B~ B where B’ ¢F% and BeR;_; and
employ the previous theorem to secure J e (I—J')qy such that g = |J {fs
tel}eN(By) where f;=8—Bi, tel—J, and f:=@ for teJ. Then
taking A’ = B’ ~ By we have A’ ¢ F* and taking D = A’ we infer from
the fact A’ C By that f « N(4') and hence D e N*(4') so D e N. Clearly,
Bry=5—8 s0 A=DBByBr;=A(S—f)=A'—f=A'—D which
completes the proof.

2.7. TurorEM. If B eB and 7(S) < oo then B is v measurable and
»(B) = T(B).

Proof. By 2.6 let B'«F* and DN be such that B= B'—D so
that 7(B) = 7(B'—D) = %(B’). Now »(B)=7(B—D’') for some D’'eN.
Hence »(B)=7(B'— (D w D) and since D w D' eN, T(B'—(D v D)
= T(B’) and we conclude y(B)= 7(B).

To see that B is measurable, we need simply note that B is the dif-
ference between the two measurable sets B’ and D and is therefore
measurable. ‘

As a consequence of the foregoing theorems, we see that the meagure
7* on the sigma-field F* ean be extended to a measure »/F on the sigma-
field ¥ which includes both F* and R. Furthermore, if 4 ¢ R tlien for
some J € Iy #(4) = »(A ). Thus » has properties similar to but consider-
ably more general than those of a probability measure associated with
2 separable stochastic process of function space type. In this way, sepa-
rability is generalized not only to an abstract sebting, but also is freed
of the special topological structure and restrictions required of real
stochastic processes. In the next section we look briefly at some variants

of this extension which are not quite as general and relate more closely
to the classical theory. :
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3. Alternate extensions. Two alternate extensions will be briefly de-
seribed. We mention these because they are appropriate in some appli-
cations to real processes. In definition (2) of C we may add either of two
additional conditions that a(f) must satisfy. The first is that *(a(3) >0
or a(t) = @ for each ¢ « I. This change would then be reflected in defini-
tions (3) to (5) and result in & measure v, given by (6). Under this measure
not all members of R are measurable. Instead those members B of R for
which B; = S or 7*(S— B;) > 0 for each t ¢ I are found to be measurable.
(Altering (1) by adding this condition on B provides a means for using
the foregoing theorems with the modified definitions to reach this result.)
The second zlternate extension is for the case when the spaces §; are
topological. Then the condition that a(f) be ¢pen in §; for each ¢ e I may
be added to (2). Definition (6) then results, in a similar manner, with
a measure », under which members B of R for which B; is closed for each
t € I are measurable. This second case strongly resen:bles that of a classical
separable process. The big exception is that the spaces 8: may not be
related to one another and the sets B; are arbitrary closed sets.
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