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Ags a corollary of the proof it is not difficult to show that if M s 4N
then for any cardinal a, XoM =4 X, N. Further, it follows that if M
and N are L, .-equivalent then @M =@ N.
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A minimal model for strong analysis
by .
Erik Ellentuck * (New Brunswick, N. J.)

Tn [6] it is shown that axiomatic second order arithmetic does not
POSSESS & minimal o-model. Here we extend that result to general models
of the full second order theory of {w, 4-,-> and show that various model
theoretic concepts, e.g., the existence of prime models, minimal »-models,
gte., all coincide, but are independent of Zermelo Fraenkel set theory
and some of its extensions. These results arve then applied to the weak
second order theory of real numbers.

Let § = (F, @, +, -> where F' is the set of all functions mapping o
into . Consider a two sorted language £ for § which contains individual
variables ¥g, 0y, ... and function variables e, ¢, .. Under our intended
interprétation the individual variables range over e and the function
variables range over F. This distinction between variables has heen
introduced for convenience. We can easily find an equivalent (though
less suggestive) one sorted language for §. Thus we assume that all of the
standard first order concepts suitably generalize to £. In particular we
shall be interested in the notions of proof (i), satisfaction (=), sub-
system (C), and elementary subsystem (). Let T=Th(F) be the
£-theory of §. A model P of T' is said to be prime in the sense of Vaught
{cf. [16]) if P is isomorphic to an elementary subsystem of every model
of T. Let A be the set of functions f ¢ ' which are definable in § by some
formula p(a) of £ and leb A= <4, 0, +, ->. We characterize the prime
models of T in

TEROREM 1. B is @ prime model of T' in the sense of Vaught if and only
if B is isomorphic to U and A is o model of T.

Proof. We use theorem 3.4 of [16] that a model is prime if and only
if it is a denumerable atomic model. See [16] for an explanation of our
terminology. For % <  let n(v,) be a purely existential formula with v, as
its free variable and containing no funetion variables which defines 7
ing. It P=<P, N, @, O) is a prime model of T, we construct an iso-

* Prepared while the author was a New Jersey Research Counecil Faculty Fellow.
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126 E. Ellentuck
morphism H of P onto A as follows. Let p ¢ N. p satisfies some ato
@(v) in P so that ¢(v,) is consistent with 7. Then § |=(Hu,)gp(v )( 113
we can find an n < o what satisfies @(n) in F. Hence § |= (v )(‘()p(’z:jl)ll
~n(v,)) showing that g(v)An(v,) is consistent with 7. But qo(:)) jg“ql :
atom 80 that T | @(v,)—>n(v,). Since p satisfies () in P it mfxst"ftll;n
satisfy n(z;) in P. n is uniquely determined by p since T |~ n (v;) —>.»'\m‘ (: :
for‘ every a # m < w. Thus we can define a function H: N — o by H (p) = ;)
H is one one sinee 7' - n () An(2;) >0, =, and is onto since 7' |— (Hy Y (3, )
fm; every n < o. Next we show that H preserves the arithmeticaloo e;
a‘tmns. Let pre N for i< 3 with p,®@p, = p, and let H(ps) = ng 1?0 .
‘}po, Py Pa) satis_fies 2o+12, = 0y In P, likewise p; satisfies nq(vy) in.SB f;r-

1< 3. Thus T is consistent with v)-+o; = 0,Ane{vy) Any(v) Any(v;) Which

consequently must be satisfiable in §. But this can only happen if n,-+n ‘
07T Ty

= Ns- \F’e show that H preserves O in exactly the same way. Now let feP

f satisfies some atom g{a,) in P so that ¢(a,) is consistent with 7' Theli
Fhk= (E[aOZgn(ao) and hence there is a g ¢ F which satisfies p(a) 111% Let
Poy pre N with H(ps) = ni for i< 2. If f(p,) = p,, then f Osatisﬁt;s

¢ (ap) A (Fg, v,) (ao('l’o) = 1 Ag(0p) A "'1(”1))

in P8 and consequently this formula i i i i i
on atom, 3 18 congistent with 7. Since ¢(a,) is

T = () —(Es,, 01) {at(t5) = 2, Amg() Amy(py)) .

;DQ}:-EI;V{ gjﬁ) = %’1 foz‘w:@ry b eP‘ satisfying o(a;) in B and g'(ng) =n,
by fin %,ga;d iss a£i§$§ Z;ﬁ)sﬁl?dgb'yrrh?s g(aé) oo ot comtons
oF ) d ¢ ¢ in §. Since joi
2;2{:;::1 Eetiq;l?le{m in T, g is uniquely determined be ?’%ﬁ; OVI;ZISII?;;
s A 0 OZQE?;;H? H(f) = g. The preceding argument also shows
T = g Bines . anfl t?ha:t H Dreserves equations of the form
y:A thé o g l}mquely satisfies ¢(qy) in § it is & member of 4. If
‘P(%),isﬂ ein;iq;znc};em'\i]?h}’ in § by some formula y(a,) and consequently
which satisﬁe; p{o, ;?n B .LThen r- Srapleg) and thefo is on et
that g (o) rpin isn‘ > et tg(af,) be the atom that f satisfies in P so
A 2 Tc;nuste_nt with 7. -Then T~ ¢(a) —>p(ay) and conse-
Convexb‘sely suppgée . 1?:1;%1 I;O;t;; f:lﬁ 1(_; f;et-‘i§ the required isomorphism.
gl'g::rﬁ ih:]g it i.s an atomic model of 7. .thefsehjtwa,féajzilz 131\’}\11;6“%3ﬂ5;
it gone rzl ane;e “1:) ;;;n atom of T' which <f, n) satisfies in 9. Our method
Mgy ey N1_1y OF elemefatequfany ot (o ny fiuite sequence or oo ity
formula p(ay, v,) Whi('zsho',%' Let p(a) define fin §. We claim that the
satisfies in %I’ %‘1’1- £ 'S ple)An(r), is an atom of T that (f,n
- First § = (FLoy, vo)9p(a, 25) 50 that p(ag, vy) is consist’»ent
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with T. It w(ay, D) AA(a, v,) is consistent with T, then 3§ = (Hay, 1) X
(a0, vo) A A (%, 7). But & = (H! ey, 100)9 (0, m) 80 that
F |- (Vao, 70) [0, 2) =2, %)), ey T = (oo, %) —2(0; To) 5

which implies that (ay, v) ig indeed an atom of T. Now {f, n) satisfies
(g, o) in F. Since n(v,) contains no function variables and » satisfies
n(t,) in § it must do the same in 9. Also f uniguely satisfies ¢(g) in F.
Hence A |= (! ap)p{oy)- If p(a,) is satisfied in % by some g == f, then
there are %y, 7, such that g(n,)=mn, 7 f(%) and consequently (Vag, 0o, 1) X
X (q:(ao) Amg(vg) Ary(Dy) —> () = '01) holds in 9, and therefore also holds in §§
sinee 9 is a model of 7. But this implies that f{ne} = 71, 2 contradiction.
Thus § = f, i.e., f satisties ¢ (o) in oA, and <f, n) satisfies the atom p(as, 7o)
in %, g.e.d.

There is another notion of prime model in current usage. A model
of P of T is said to be prime in the sense of Robinson (cf. [11]) if P is
isomorphic to a subsystem of every model of 7. & is called an o -model
if it has the form & = (8, w, +, -> where SCF, and a minimal w-model
(ef. [2]) if it is a subsystem of every other w-model of 7. We characterize
this notion of prime model in

THEOREM 2. P is a prime model of T in the sense of Robinson if and
only if B is isomorphic to A and A is a model of T.

Proot. If 9 is a model of T, then by theorem 1 it is prime in the
sense of Vaught, a fortiori, prime in the sense of Robinson. Conversely
suppose that P is a prime model of T in the sense of Robinson. Let I be
a subsystem of § which is isomorphic to P. Since P is also a model of 7' it
must be an w-model of the form M = (M, v, +, ->. Let &= B, w0, 4>
be an avbitrary w-model of T and let H be an embedding of I onto
a subsystein of &. Since n(v,) contains no function variables it is uniquely
satistied in any w-model by the number n < . We will show that H is
an identity function by using the fact that embeddings preserve purely
existential formula. Bach n < o uniquely satisties n(v) in M. Since
n(ny) is purely existential H (n) satisties n(y,) in & giving H(n) = n. Let
fe Il and ny, 7y < o such that f(n) = . {fy Mo, Myy Satiisties ag(vo) = 1
in M and consequently <H(f), H{ng), H(ny)) satisties () = 2y In &
Since H is an identity on o, H(f)(n) = f{10) for every 7, < o giving
H(f)=f. Thus M is a subsystem of every w-model of T, i.e., it-is a minimal
w-model of T. We. determine M as follows. Let g ¢ 4 and let ¢ (a) define g |
in §. Since 9 is a model of T, M |=(H! ap)@(ap) 80 that g(a) uniquely
determines some function fe M. If g(n)) =7, then

(Vagy %o, 1) ('F’(ao)/\no(%)/\nl(vl) —>0g(%) = ﬂl)
9*
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must hold in § and consequently must also hold in 9. But this can only
happen if f(n,) = n;. Thus f= g and ¥ is a subsystem of M. We show
that % = M by finding an w-model & of T which omits any given fune.
tion f e F—A. Although this could be done by the methods of [16], it is
more convenient to use theorem 2.1 of [5]. This asserts that if 7' is a con-
sistent theory in a countable.logic and § is a finite or countable set of
sets of formulas o(v,) such that each X'« § has the property () for each
formula @ (v} which is consistent with T, there exists ¢(v,) € X such that

-~ @(v) A ~o(v,) is consistent with T, then T has a countable model which
omits each X eS. There is no difficulty in applying this result to the
two sorted logic £. For X, take the set {~n(ng): n < ). If ¢(v,) is a for-
mula consistent with T, then & = (Hvy)p(r,) and we can find an n < o

which satisfies g(») in §. Hence §l|= (E[’l)o)((p(’uo)/\n(%)) showing that -

@{o) An(w) s consistent with 7. Thus %, has the property (x). If feF—A4,
then for I, take the set

{(V%: 'L’z)("o(”o) AR () = ag(vg) = ”1): o) = "1} .
If ¢(a) is a formula consistent with T, then |= (Heap)p(a) so that some
function g e F satisfies p(a,) in §. Since f is not definable in § we may
take g # f, i.e., there are ny, n; < w such that g(n,) # ny = f(n,). Hence

§ = (F) ) A (B, 23) (o) ey () A ) )

80 that ¢ (ag) A ~(Voy, 0,){rg(ve) Any() > agfvg) = vy) is consistent with 7.
But f(n,) = #, and consequently X, has the pfoperty (). Let & be
a model of T which omits both X;. Since & omits X, we may take & to
be an w-model, and since & omits X}, but f satisties 21, f will not belong
to S. Thus M = 4 and P is isomorphic to A, q.e.d.

Thus the notions of prime models (in both senses) and minimal
w-models are coextensive for the theory T and are nonvacuous if and
only if % is 4 model of 7. We say that §§ satisfies an analytic basis theorem
if whenever ¢(u) € £1is a formula with one free variable and § = {Hag) @ (ty),
then ¢(a,) is satisfied in § by some function feA. We say that § admits
an analytic well ordering if there is a formula A(
variables such that {{f,, 7>
we have the well known
Lemwa. U is a model of T if and only
theorem.

LemMa. If § admits an analy
analytic basis theorem.

.Leet :ZF be_ Zermelo Fraenkel set theory including the axiom of
choice, V=1 is the axiom of constructibility, CH is the continuum

hypothesis, and MC asserts the existence of a measurable cardinal. Then
we have the independence result

ag, a;) with two free
$ § l=240fo, fu]} is a well ordering of . Then

if § satisfies an analytic basis

tic well ordering then § satisfies an
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orEM 3. The statement “U is a prime model of T” is relaiively
consits[‘t]ﬁt with (1) ZB+V =1L, (2) ZF+V # I.;, (3) ZF+ OH,”(4') ZFZ;I;}\{[(;,
(5) ZR -+ ~MC. The statement “9f is mot a prime model of T is é’; zﬁcy
consistent with (6) ZF+V = L, (T) ZF + CH, (8) ZF+~CH, (9) +MC,
7ZF 4 ~MC. ]
u Pro_‘;f. Let 9 be a countable transitive model of ZF—}—.V;—- L. ‘We
know from [4] that M satisfies CH, from [12] t.ha.t m sa,tls:fles _Nil?,
and from [1] that M satisfies “F admits an analytic well ordering (in ‘ M;
a A well ordering)”. This proves (1), (3') and (). Let N be Obtge L
fron; M by adjoining a single generic funection f: w—w. From [3] w;: o;x}
that 9t coincides with the eonstructible sets of N, howev.er It .SUI, 101}1 [gt
that 9%t has the property (#) if g: w—w, ge 9N, and g 18 .defmﬁbfa in
from elements of i then g « M, and from‘ 1 tlhat the predicate ae. a;E ;em
is non-constructible” can be expressgd_m H:l form, say () Z ﬁed bg
in R, ¢(o) is a formula which is sastlsfm;})le in § b1.1t is ncg.[ sa:fw[g]) >y
any element of A. This proves (6) and since 5R sajmsfl‘es CH (¢ .e ) [gj
obtain (7) as well. The extension of 3t of. S]R is mild in theS :soal:zsim e
so that 9 satisties MC if and only if M sat;sf(l(;z(;) )M(;; 5(702 [réie]gl.ﬂtnches()lmva;
. neither does M, and we have prove . T A
](ls(?;t(if itn 90 a nonzgeneric f may be chosen so that n is aJAIP'Ode;tofl‘ ﬁfﬁ
f¢ M, every element of N is constigcﬁil?lejflrggl ;‘, Aalng ui: cliio Is: 11;1“1. ohen
i admits a well ordering which 1s As 1 s I s
?A?’wizn ordering. This proves (2). We can proye (8) in ex.a;(iﬂtye 1;(}}1% szxﬁg
way that we proved (6) by constrltctiz]g,; itlzsg }%r[?;%;i:omw% ;V o ;]) e
oting that by [7] the property () holds 10T 1 - Now
;hf(l)uliltablge tra,nsizive model of ZF+MC eontmmng.an ;rdmasi Zfaﬂrjlg
a normal x-complete nonprincipal ultr:ﬁlt:.l;) iZe) ;);a:i ‘(;ntz eD se;rom 5
3 ; v lement of M is construetl y m [
:;f}i:igjvt ti:;g yS)J;3 satisfies “% admits an analytic w'ell orgermgéjt (?,fﬁ
a A well ordering).” This proves (4). Let R 'pe obta}ned teo:;) o sm ;1 o
joining a single generic function f: ®—>w. Since this 1ex _:()m s noni
by [8] we know that D uniquely exténds to a normal o ngith ot
piincipal ultrafitter D on = (in the sense of M), m cf)me 13\]’we L e
elements of N constructible relative to D’, and f -¢ €. FlOl-l'i [ o
that the predicate “ay: w—w I8 non-c.onstructlbler relative v
be expressed in IT; form, say @{a) € £, and from [AV] w.e‘ s::et e i
the property (+). Then in R, ¢(a) is & formul.a which ‘m;a‘ e
but is not satisfied by any element of A. This proves (9), d- .W.*e rave
There is one asymmetry in the statemgnt of our theg:glngrl-mCH.
not shown that “9 is a prime model of T is consistent wi e [d]) e
This seems to be related to the open proble%n (summer 19 B Cb;ve weli
to whether ~CH is consistent with the existence of a proje
ordering of .
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We apply our results to certain weak second order theories. Let
R = (R, +, > where R is the set of real numbers and -4, - are the
usual arithmetic operations. Let £ be a weak second order langnage
for N and let T% be its weak second order theory. The notion of “prime
model in the sense of Robinson” has an immediate generalization to the
caze of T models, and so does “prime model in the sense of Vaught”
once we have defined w-elementary subsystem to read exactly like its
first order equivalent except that we require all parameters to be indi-
vidual. There is a sentence in T” which guarantees that each model of 7%
admits an Archimedean ordering and therefore has a unique embedding
into R. Thus it is meaningful to talk about minimal models of T%. Le?
B={reR: 0<z<1and z is irrational} and define a function 6 from B
onto F by letting 0(2) = f where 14 f(n) is the nth denominator in the
continued fraction expansion of x. For each subsystem &" = <8%, 4, ->
of R let H(S")= &= (8, w, +, - where = {0(z): ze8*}, and,for
each subsystem S of § let H(S) = & where §¥ is the closure under
rational operations of {67*(f): f e S}. Then we have the

LeMyA. H takes models into models, is self inverse there, and preserves
the notion of proper elementary subsystem.

We meltely sketch a proof of this result. By [10] there is a formula
fpﬁ (12; rfzvg) in £“ with three wfree variables, each individual, such that
fe is a model of 1%, ze 8", and n,p < w, then {x,n,p)> satisfies ¢
in & 1‘f and only if p is the nth denominator in the continued fraction
expansion of r. From this we immediately see that H takes models of T%
into models of T preserving the nction of proper elementary subsystem
(_fonversely it is clear that given a family of functions, we can define th(;
field operatfons which give rise to these functions as continued fraction
expansions in a perfectly elementary way, i.e., in the language £. Thus H
takes models of 7' into models of T% preserving the notion of proper
;::iex;;a;i\' subsystem. ) The self inverse property is immediate. Let

| ti(m;d il(1 gile?)?:n gll'antmg our lemma all of the results which are men-
toned In theo ms 1-3 go over for models of T% (by replacing T by T”
! j, in t.hellr statements). This is in sharp distinetion to the first
order case szvhere it is known (cf. [15]) that the algebraic reals is a minimal
and prime in both senses, model of the first order theory of R. We brieﬂ};i
ZEDSS:::EIE.INSE ?esulfs with those concerning the weak séeond order theory
mmﬁ )ei iﬂgurtlbers. 1Let C=<C, +', -> where C is the set of complex
Lmbers Seeon;lr ,O;d%;etg;r:sugl ar;glmetie operations, and let T¢ be

% seco ! Y. 5= 48, ®,0) is a model of 7§ if and
griy if ; is an algebraically closed field of characteristic 0 andcinfinite

gree of franscendence (cf. [14]). Thus every such & has a proper sub-

svstem & which is s ¢
s also a model of T¢, and consequently there is no

cm
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minimal model. On the other hand, given models &, &’ of TG, where S
has countable degree of transcendence, by purely algebraic methods,
we can find an embedding H which maps & isomorphically onto a sub-
system & of &'. The methods of [15] then generalize so that & will
he a w-elementary subsystem of &'. Thus T¢ has prime models in both
senses, just as in the first order case (ef. [15]).
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