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On Kan extensions of cohomology theories
and Serre classes of groups

by
Aristide Deleanu (Syracuse, N. Y.) and Peter Hilton (Ithaca, N. Y.)

1. Introduction. This paper constitutes o continuation of the investiga-
tion initiated in [4], [5]. In those papers we introduced & process, involving
the Kan extension of a functor, for extending a cchomology theory from
a category J, of based topological spaces to a larger category . This proc;
ess generalizes a characterization of Gech cohomology which has been noted
by .Bilenberg and Steenrod and studied by Dold. However, the process
partakes far more of the spirit of Kan’s work on extending funetors than
of the original description of Clech cchomology, so that the examples of
cohomolegy theories expressible as Kan extensions take one very far
from Cech cohomology, while retaining a certain generalized continuity
property. We should mention here that Lee and Raymond [11] have
studied generalized Cech theories in a somewhat different sense, more
strongly motivated by the classical deseription of Ceeh theory. There
is some small overlap with the present authors’ work, and a comparison
of the two approaches will form the subject of a later paper ).

A principal coneern in [4], [5] is that of deciding under what con-
ditions the Kan extension (3), h, to Jy of a cohomology theory & on J,
(or maximal extension in the terminology of [2]) is itself a cohomology
theory. We always require that the categories J considered suitable for
supporting a cohomology theory be admissible; that is, they should be
non-empty full subcategories of the category of based spaces and based
waps, they should admit mapping cones, and should contain entire
Lomotopy types. We can state the axioms for 2 or, move precisely, (%, o),
where ¢ is the suspension transformation =K1 E, to be a cohomology
theory in any admissible category; but the Kan extension of a cohorology
theory from an admissible category J, to an admissible category o, may
well fail to be a cohomoclogy theory. After rome preliminary algebraie
argnment in Section 2, we formulate a eriterien for the Kan extension

() Remark on (ech extensions of cohomology funclors, Proc. Adv. St. Inst. Aarhus
(1970), pp. 44-66.
() We use here the notation %, in preference to the b notation of [4], [5].
10%
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144 A. Deleanu and P. Hilton
of.a cohomology theory to satisfy the axioms in Sections 2 and 3. Thj
criterion is much more general than that of [5] and presumably ézomelé
rg&.sona‘bly close to constituting a set of necessary and sufficient eon.?
ditions for any cohomology theory on J; to extend to a cohomology theor
on Jy. It divides itself into two parts; there is a condition for the extendeg
theory to satisfy the exactness axiom, which is expressed by means of
a local pull-back property (Theorem 2.14), and a condition for th
extended theory to satisfy the suspension axiom, which is expressed ]1)(j
means ?f a local right-adjointness property (Theorem 3.5). This Iatt;
notion is closely related to that of a locally adjunctable funcﬁor’ due tll
Kaput [10]. Indeed both Kaput’s definition and ours involve an existencz
and a universal statement for a factorization of a morphism f; the existenc k
statements are identical, but our universal statement is l:ass restricti .
than Kaput’s. In addition, our coneept is related to a pair of categoiﬂi?s}
(JI,J‘,) and so only requires the factorization if f: ZX Y, X ¢|J,
Ye ;JO}..C[“he main advantage of the new criterion over that of E5] is th;t’;
the sufficient conditions of {5] are localized. For example the weak local
pull-back property asserts that a diagram of homotoj)y classes of ma;p{;
td

X

1 %o
' *uo Xe [ily Yoy X1, ¥ € ol

Yl——:h—by

may be embedded in a diagram
X
\ To
g ——=>
o
jt ¢vl

Yl —
Uy

Y
&uo Zel]y;
Y

3

that is is )
unlik(l:’t ;;Iiiﬁllggﬁa;ri 9, iﬁoy v} may be chosen afier f, and f, are given,
L e vailing for a weak (global K

We ate e do g ) pull-back of u, and u,.

;:inw:: etl(? ga(gz;mlﬁﬁst% the end of Section 3 how the new oeriterio?n
o ) guarantee that certain Kan extensi in si ions

cov e;a}ii by [5], are indeed cohomology theories Fions, n sttuations not

€ 5eco: ; o

atter of Sce Cf[lit}) yff;%fe two‘exa:mples constitutes essentially the subject

Cp, of torsion abei‘ © consider the acylic ring, or Serre class [13], [14]

muitiples‘ (')f i 1 a}1 groups A whose elements have orders Whie’h are,

consist (;f : ~'p mes in a certain family P (which could, in particular
si8 a single prime p or of all primes). If J, is the cat,egor; of ‘1-0011—’
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nected finite CW-complexes whose homology groups belong to Cp and
it J, is the category of l-connected finite dimensional CW-complexes,
then the Kan extension, hy, o J,, of any cohomology theory % defined
on J, is again a eohomology theory-and we identify it in the case that & is
representable with finitely-generated coefficients. It turns out that, in
fact, (see (4.2)),,

(1.1) XelJy.

Here h(X;Zp) refers to the cohomology theory obtained from % by
putting in the coefficient group

Zpo = @ Ly ,

peP

HAX) 2 BV (X; Zps)

in the sense of [9]; it is proved in that reference that the groups A(X; Zpw)
are determined by X and P up to natural isomorphism if 2 ¢ P and up
o ‘quasi-natural’ isomorphism if 2 e P. It is worth remarking that if
h= H, ordinary reduced cohomology with integer coefficients, then hy is
a theory which does not even satisfy the restricted wedge axiom,
IV 8") # [1h,(8™)

over any infinite wedge of spheres.

There is also established in [9] & universal coefficient theorem for
(. ; G) which plays a crucial role in the proof of our main result, Theo-
rem 4.1. The proof is, in fact, broken up into a sequence of lemmas in
order to display the role of the various elements in the hypotheses of the
theorem and to enunciate certain features of the Kan extension process
which should play a role in any future attempt to identify the nature
of a particular extended theory. The paper ends with two variants of
Theorem 4.1, in which we alter the hypotheses but obtain essentially
the same conclusion. Thus, in all cases considered in Section 4, (1.1) holds.
This relation serves to illustrate the violence which ean be done to a co-
homology theory defined on Jy by replacing it by the Kan extension of
its restriction to J,. If we start with ordinary cohomology with integer
coefficients, and carry out the process described, then (taking P, for
the purpose of this remark, to e the set of all primes), the groups of
an #n-sphere are given by

(1.2) WTEY = Qy, M(8)=0, iFnil.

This result illustrates a fact to which we hope to give attention in a sub-
sequent paper, namely, that there exists a close connection between the
Kan extension process for cohomology theories and Adams’ notion of
completing a space with respect to & homology theory ().

Battelle Institute Report

(®) Localization, hdmology and a construction of Adams,
47 (1971).
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We remark that the arguments used in the proof of Theorem {1
involve a study of colimits for functors to sets; since this theory is so
much more elementary than that involved in a study of functors to
groups, we have felt it to be adequate simply to refer to the arguments
at the beginning of Section 2 and ask the reader, in considering funectors
to sets, to ignore anything in those arguments referring specifically to
groups rather than sets.

Tt is hoped to devote a subsequent paper to applications of the
lemmas of Section 4 to other examples of the Kan extension of a cohomo-
logy theory, different from those treated in this paper.

It is a pleasure to acknowledge the benefit of very helpful con-
versations with Guido Mislin in connection with specific aspects of this work.

2. The construction of colimits of functors to groups. In order to motivate
the abstract study of colimits undertaken in this section, we first recall
explicitly the definition of the Kan extension of a cohomology theory h,
defined on J,, a category of based spaces and based maps, to a la.lger
category J, of based spaces and based maps, as given in[5]. Let JD, J. be
the homotopy categories associated with Jy,dJ; (i.e., the morphisms of
Tu(d,) are based homotopy. classes of based maps in Jo(J1)). Let X e |J;| and
form the category Tl X) of Jo- objeets under X as follows. An object. of
JN(X) is a morphism f: XY in Jy with ¥ e lJyl. A mmphlsm ws fy—fa
in JylX) is a morphism u: ¥;—¥, in Jo such that the J1 diagram

iz/ :Yl
X}\ +u
X,

commutes. With the evident definition of composition, :fm(X ) is a category.
Moreover, the contravariant functor k from J, to Ab%, the category of
graded abelian groups, induces a functor hx: 'fm(X) —Ab? by the rule

(2.1) hx(f)=h(T), hx(w)=h(u).

We then define the funetor h: J,—Ab% by hy(X) = limhy; the
universal property of the colimit then implies the definition of In(g) for
g: X'—X. Since we only consider cohomology theories defined on full
subeategories of the category of all based spaces and based maps, it
follows that k, does indeed extend h; but it may, of course, fail to be
& cohomology functor, although it is evidently homotopy invariant.

Thus, replacing J;,(X)°® by I and hx by F, we wish to study the
colimit hmF of a (covariant) functor F: I->® where G is the category

of groups "(there is no gain in simplieity. in supposing the values of F to
be abelian}.

icm
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We wish to study conditions on I which guarantee that the standard
construction of the direct limit when I is a directed set still apply to our
case; plainly, however, I is not a directed seb and, indeed, it may well
fail to be even gquasi-filtered (see [8]). Thus we require a substantial
generalization of the usual theory although this generalization may be
known in the folklore. In addition we are, of course, hoping that the
colimit of F, viewed as a functor on J;, will inherit from % the exactness
property required of a cohomology theory. )

We suppose now that I is a connected category such that

(a) given < in I, we may construct a commutabtive diagram «< }
in I; and ’

(b) given -=- in I, we may construct a commutative diagram - —-->
in 1.

We will then say that I is adapted (for colimits); notice that con-
ditions (a) and (b) together yield the definition (in a suitable ‘universe’)
of a q_uasiiilter'ed category. We remark that condition (a) implies that
any two objects of I may be connected by a path - —-<. We also remark
that if I satisties (a) and

(b") I admits finite coproducts,

then I satisfies (b) and hence is adapted. )

Now let F: I+ be a functor. We will write F; for F(4), i  |Z], and

@: Fy—F; for F(p), where ¢: i—j in I. We introduce a relation in [ JF
. i

by declaring
(2.2) zi~zs, diel;, wiel;
if there is §—> k<«e 74 in I with p(z) = (mj
TasoreM 2.3. If I is a connected category satisfying condition (a),
then (2.2) is an equivalence relation.

Proof. Only transitivity is in question, so we suppose 2;~u;, %; ~¥1,
thus,

i k], plo) =pla) ;.
§—emei—1, B(z)=z(@)-
By condition (a) we have & commutative square in I

ok

j

o]

v v

n—> 1
ag

[

=
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Then § —2>n <2—1in I and

op(@e) = op(@s) = ob(2y) = oy (w),
80 &y~21. .
We write [2;] for the equivalence class of #;. We define a product
operation among the equivalence classes by the rule

(2.4) [i]l@s] = [p (@) -p(2)]
where i—Z> k<7 in I.
TeeorREM 2.5. If I is adapled then (2.4) is well-defined.

Proof. We first show that the function (m:, 25)~[o(2:) ()] is
well-defined. Thus suppose
ket jin T,

A=1,2.

We construet, by (a), the commutative square

i< ' '
A

and then use (b) to construct the commutative diagram

.
xyL ., #

s A
=k —k.
%P2

J
If we set 3= «ax, 4=1,2, we have the commutative diagram
k

o
A

4
ks

/n/
(2.6) i N
N\

i

Thus

[plzd @] = Dagy(zs) zlipl(a’;)] = [aa{s) o 0a(21)] = [ga(s) u(m))]

50 that the function (i, ) I=>[o(z:)p(2;)] is well-defined.

' S«.acond we fshow that [@(z:)p(25)] depends only on [a,] and [w]. Tt
is plainly sufficient to show that it is independent of the choice of
from [w;]i and it is then obvious that we need only consider the effect
of replacing #; by p(w;) where w: i—1lin I. There is a diagram

Z——:—>m<-e—j

icm
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in I and by what we have already shown, since we have § ——sm<—j in I,

(2.7) (o (@) -y (@)l = [ () - o ()] -
However the right-hand side is the image of (,u,(wf), wj) under the given
funetion, so that our claim is established and the theorem proved.

Let us write G for the collection of equivalence classes under (2.2)
and 03 Fy—@ for the function 6i(wg) = [@]. Plainly 6; is homomorphie
with respect to (2.4) and if ¢: ¢—j in I then

(2.8) 0= O .

THEOREM 2.9. If I is adapted, then G is a group under (2.4) and
11_1{11?’ = (G; 03) . .

Proof. If ¢; is the identity of F; then plainly e;~e; for any <, j € |I]
and e=[e;] is the identity of & Equally plainly [#7'] is the inverse
of [x:] and associativity follows immediately from the observation that,
given 1,j, k ¢ |[I], we can find

N
N

j—=l
//’
; k
in I. For ([m:][w])[es] = [wel([ws]lex]) = [p(@a)p(@s) z ()] -

Now suppose given a group H and homomorphisms g2 Fy—H
such that if @: i—j in I then pg;= gyp. We define a homomorphism
0t GH by o[@] = oi{@i). If i ——>k<— j in T and if p(1) = p(z;), then
oi@s) = prp(mi) = exy(®s) = os{ay), so that o is well-defined. It is easy
to see that o is a homomorphism and that

(2.10)

Moreover, g is obviously uniquely determined by (2.10) so that the
theorem is completely proved.

We now consider how to apply Theorem 2.9 to our example (2.1),
so that I = I(X)= Juo(X)®®, F = hx.

DEFINITION 2.11. J, has weak local pull-backs relative to J; it and
only if, given the diagram

o= gi.

~

x .y,
| L
fl‘L J o

Y,— Y
u
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commutative in J, with ¥,, ¥y, ¥ €|, there exists a diagram

X—————"—"‘—’Yo

f
X e

h1
w
7 °
.

Yl_——m-—-—>Y

commutative in J;, with Z e |Jy).

THEOREM 2.12. (1) I(X) is connected for all X ¢ |Jy;

(1) I(X) satisfies condition (a) for all X el|J1| if and only if J, has
weak local pull-backs relative fo Ji;

(ili) I(X) satisfies condition (b') for all X e 1| if J, is closed under
(finite) products. .

Proof. (i) is trivial since J, contains singletons so that Jg(X) has

a terminal object. (ii) is obvious since Definition 2.11 asserts that, for
each X, the diagram :

B

(= wfo=wfy)
p;

h

in 710(X) gives rise to a commutative diagram

fo

'-‘u/ o

4

g

N\ /‘

01\ W
fi

in TTN(X)' As .to (i‘ii), we simply show that if ¥, YoelJ,] and
(1}1:1 44(1’2; Py; P} I8 heir product, and if fi: X—¥, i=1,2, in Jg(X),
tf en {f; é fg}:. XY, %Y, tggether with p; and p,, constitutes the produet
?ufl :;f IA gJ;%X). g‘m; given u;: f—>f; in Jy(X), ¢ = 1, 2, then w;f = fi,
ity Uasf = Jiyfar and {uy, w}: f{fy, fo} is th i i i
Tia(E) such et petis mg e 11’; ?J,cz e unique morplusm in
We say J, is J;-adapied if J, i ini

o 18 closed under (finit

has weak local pull-backs relative to Ji. (Huite

CoroLrLARY 2-13- If Jy is Jy-adapted, T(X) is adapted for all X e |Jy.

) products and 5'0

©
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Now  define 7y (X)=limhy. This clearly defines a contravariant
funetor i J;—Ab, called the Kan extension of h. We prove (compare
Theorems 3.9, 3.10 of [5]):

TueoREM 2.14. If J, is Jy-adapted, hy satisfies the exactness axiom.

Proof. Let XXX be a mapping cone sequence in Jy;

we must show
I(X) 2 03y B gy x)

exact. Since I(X) is adapted for all X e |J,|, we may represent an ele-
ment £ of hy(X) by means of a pair (a, f) where f: X ¥ injz and a e h{X).
Moreover (4), hy(g’)a, f1= [a, fg'}. Thus if k(g")a, f1= 0, [a,fy'] = 0 s0
that, in view of (2.2), there exists «’: f*—fg’ in J1,(X’) such that k(') a= 0.
Consider the diagram

i 9"
X —X—=X"
| i
v Ly i

+ ¥

4 u’ ’u,l 1r
Y — T ——%

(2.15)

where the bottom row is also a mapping cone sequence (and so in Jg).
Since the top row is a mapping cone sequence there exists f'': X X"
such that the right-hand square in (2.13) is homotopy-commutative; and
since h{u')a =0, there exists «" eh(X") with h(w'’)a" = a. Then u':
F—u'f in Jog(X), s0 that '

hylg)a" f"1= o, fg" 1= [a", u"f1= [h{u") ", f1 = [a, ]
and the theorem is proved. We draw particular attention to the repre-
sentation of an element of A (X) as
(2.16) [a,f], f: X=YinlJ;, aech(¥).

Since the homotopy axiom is automatically satisfied by h,, it remains
only to consider the suspension axiom. This will be handled in the next
section, always under the hypothesis that J, is J-adapted.

3, Invariance under suspension. Let J, be J;-adapted and let (%, o)
be a cohomology theory on J,. We extend & to Ay Jy —AD as in Section 2.
Then the natural equivalence o: k" —}""'T: J,—Ab extends to a natural
transformation o,: AP —~hI'Z: J,—+Ab and we seek conditions in this
section under which o, is an equivalence. e remark first of all that o, is
given by

(3.1) oifa, f]= [oa, Zf]

(%) As in [5], we write [a, f] for the equivalence class containing (a, f).
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e now introduce a condition on the triple (Jy,J,, &) which will
guarantee the result we seek to achieve. Recall that J is the category
obtained from J by replacing maps.b'y homotopy classes.

DEFINITION 3.2. We say that X: J;—dJy is locally right-J,- adjunctable
if (i) given f: ZX =Y in j;, Y e |J,}, there exist Z ¢ |Jol, 9: X —Z in j’“
u: 7Y in f; such that f= w o Xg; and (i) given

7, 2
0/ Zg1/ w
N\
X X Y
AN N /
ﬂ:\ —‘—’Qn\ / Uz
Z, X7,

Zyy Zp, Y e ol

there exist vy: Z,~2Z, v Z,~Z, u:
= Uy, U o Zvy= U.
This definition may be domestlcated by the following observation.

PRrROPOSITION 3.3. Suppose X J1—>J has a right Jy-adjoint Q: JO —»Ju
that is, there is a naiural equivalence

JZX,Y) =YX, QY), Xeldil, Yeldy.

Then X is locally right-zﬂ-adjunctable.

Proof. Let &2 221 be the counit of the adjunction, and let f':

X —0QY be the adjoint of f: XX ¥, so that
(3.4) f=reo Xf".
We fulfil condition (i) of Definition 3.2 by taking Z = QY, g = f, u=.
As to condition (ii), we first remark that if u, o Zg; = 4y o Zg,, then
uig; = uzg,. Thus we fulfil condition (ii) by taking Z = QY, v, = w1,
To= Uz, U= €.

On the other hand we will produce exa,mples below where X' is locally
Tight- -Jp-adjunctable but does not have aright J,-adjoint (let alone a right
To- adjoint extendable to a right J1 adjoint).

We now prove the main result of this section.

THEOREM 3.5. If J, is J,-adapted and X is locally right- -Jy - adjunctable,
then oy MY —hi™'E: Jy—~Ab is a naiural equivalence.

Proof. We must show that o, given by (3.1) is onto a.nd one-one.

6, is onto. We construct

Uy o Xy = Uy 0 X,

37X in J, with v,0; = a8, % o Zp,

-y
N !
A
py

icm

©

On Kan estensions of cohomology theories and Serre classes of groups 153

as condition (i) of Definition 3.2 permits. Given [a,f]eh(

8 e hy(Z) be such that of = h(u)a. Then
[a, f1=T[08, Zg1 = B, 9],

X), let

30 'o; is omto.
o, is one-one. Let [a,f]em(X) and suppose oyfa, f]= 0. This
implies & commutative diagram

x5y
PSRRI
%

with %(u,)oa = 0. By condition (i) we may augment this diagram to

80 we Iray assume

(3.6) S J
' Z
with h(u)oa = 0.
Now consider
Y Y
A e/ N
174 xf;
x{ _1{ pios
\ .
™ A
Z X7

By condition (ii) of Definition 3. 2, we may find

(3.7) v YT, w:Z->T, s ST -3Y in J,

with of =wg, s Sv=1, s Tw = u. Set

(3.

2]

) k= 1tf=1wg
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and consider

Define 3 e k(T) by h(s)oa = of. Then h(Iv)cf = da, since s « Tp =1,
so that ' '

(o) =«
and [a, f]==[#, k] Also h(Xw)of = h(u)oa = 0, since § o« Jw = u, 50 that
hw)f=0.

Thus [a, f]1=1[8, k] = [h{w)p, g] = 0, and the theorem is proved.

COROLLARY 3.9. Ifd,is J,-adapted and X is locally 'right—f‘,—m?junctable,
then the Kan extension of a cohomology theory (h, o) is a cohomology
theory (hy, oy).

Since the hypotheses of Corcllary 3.9 are substantially weaker than
those of Theorems 3.9 and 3.10 ¢f [5] all the examples given in that paper
{see especially section 4 of [5]) are applications of Corollary 3.9. We now
give two further examples (among many) to indicate the wider scope
of Corollary 3.9.

Exsapre 3.10. Let J, be the category of finite CW-complexes (5)
and let J; be the category of compact spaces. Then J, is cortainly admis-
sible and closed under finite products. We verify that J, Las weak local

pull-backs relative to J,. For, given
1
X257,
1l j/’llo
¥ .
L
U
we can construet a first approximation

xr—" sy,

It / Uo
B .
1

—_—
i Y, ” Y
(*) Recall that we always insist that our cate
theory. Thus J, is really the category of sp
CW -complexes. W

gories J are admissible for a cohomology
aces of the (based) homotopy t; f finite
B ? ’ 5 ype o e
e will, however, always permit ourselves this abuse of language

icm
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where Z' is the weak (homotopy-) pull-back (see Proposition 3.2 of [5])
of 4, and ;. Z' is not in J, in general but, by Milnor’s Theorem [12] i6
may be assumed to be & CW-complex and hence ¢'X lies in some finite
subcomplex Z of Z',

¢XCzCZ .

If g1 X7 is just ¢’ with restricted range, and vz 7Y, i = 1,2,
is just v; with restricted domain, then we obtain the diagram verifying
the condition given in Definition 2.11.

Finally we show that Z: J;—J; is locally right-J,-adjunctable. To
obtain the factorization

Zy

o) Qi 5, S,

of f: XY, we take as our first approximation

o QNG A

Z' = QY, the loop-space on ¥; f' adjoint to f.

Again by Milnor’s Theorem we may assume Z’ to be a CW-complex
and then we find Z C Z’, a finite subcomplex containing f’X. Then we
define ¢: X —Z by restricting the range of f’ and u: ZZ —Y Dby restricting
he domain of e. As to part (ii) of Definition 3.2 we take Z' = 07, ;= Ui,
wdjoint to us, 1 = 1,2, ' = e: TR~ as our first approximation, yielding

Z, 27
gl/z \\"’; :UI/ !g‘;{ M1
2N T8
3.11) X 7z XX 27 =¥
PN NS
AW vs ZgaN\, (Tre Sus
Z, 7,

Recall that our arrows are homotopy classes, so that the left hand diagram
of (8.11) represents a homotopy-commutative diagram vigy = vagz. The
homotopy is a map F: X XI—~Z so F(X x I) lies in some finite sub-
complex Z of Z', chosen so that v], ts have their images in Z. Then we
verify part (ii) of Definition 3.2 by taking o, r; t0 be =i, vz with range
restricted to Z, and u: %Y to be the restriction of u'.

e now give an example which will figure prominently in the sequel.
Let C be an acyelic ring (Serre class () [13]) of abelian groups; we say that
a CW-complex X belongs to C-if it is 1-connected and all its (reduced)
integral homology groups or, equivalently, all its homotopy groups
belong to C.

(%) We always assume that our Serre classes C satisfy conditions ITA and 111 of [13].
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Examprr 3.12. Let J, be the category of finite CW-complexes
belonging to a Serre class C and let J; be the category of 1-connected
finite-dimensional CW-complexes. Then J; is admissible since the mapping
cone Cy of a map f: A—X of finite 1-connected complexes is finite and
1-connected, and the homology groups of €y belong to C by a simple
application of the exact homology sequence. J, is- plainly closed under
finite products and we verify that J, has weak local pull-backs relative
to J;. As in Example 3.10, we start from

X — 5%,
4],1'1 . lua
Y—> Y

and construct the first approximation

x—" 7,

N

VA

h u
©

Ny

where Z’ is the weak (homotopy-) pull-back of u, and u,. An easy argu-
ment using the homotopy sequence of a fibration shows that theu homeo-
topy groups of Z’ belong to C; and, ag already argued, we may assume Z’
to be a CW-complex. As a second approximation we take Z'’ to be the

universal eover of Z'. Sinece X is 1-connected, ¢’ lifts to ¢'’: X —2Z'* and
we obtain

To

X ‘—""-———’

3 / tho
"
n

yl—_:-‘l—*)Y

¥,

Since Yy, Y, ¥, are all 1-connected finite complexes, their homotopy
grou;’)? are finitely-generated. So therefore are the hom(;topy grouﬁs of 7'
ii]?[i { " and hence the homology groups of Z”. Thus Z" ¢ C and the skeleta
of Z may be taken to be finite complexes. Now Z* admits a homolo Y
dem‘m?osziwn (see [6]). By varying Z" within its homotopy type (bi]ﬂl
retaining the property that its skeleta are finite complexés) bx%*e may

icm

©

On Kan estensions of cohomology theories and Serre classes of groups 157

suppose that, for each k, there is a subcomplex Z"® of 7" such that
() Zy C 2% C Zis1, where Zi is the k-skeleton of Z";

(i) Hd2"®) =0, i > k; '

(iii) the inclusion 7™ C Z" induces an isomorphism in homology
in dimensions <k.

Conditions (ii) and (iil) guarantee that Z"® ¢ C and condition (i)
then guarantees that Z"* ¢ |Jyl. If dim X < %, then g" may be deformed
into Z and thus we verify the condition given in Definition 2.11 by
taking Z = 7'"® and defining g: X—Z by restricting the range of g”
(atter submitting ¢’ to the necessary deformation), and vy Z—Yi,
i=1,2, by restricting the domain of i

The argument showing that =: J,—J; is locally right-Jo-adjunctable
now follows very similar lines, replacing the weak homotopy-pull-back
by the loop-space. Thus, without giving all the details, we obtain the
required factorization

Jor QNG I o

of f: XY Dy first setting Z’=QY, then setting () 2" = aY, the
universal cover of 2Y, and finally setting Z = suitable homology sec-
tion Z"®. Again, part (i) of Definition 3.2 is verified by first sefting
7’ — QY, v} = u}, adjoint to ug £Z~Y, i = 1,2, then setting 2" = ay,
and finally setting Z = 2" if X is k-dimensional and | = max {dimZ,,
dim Z,, k-+1}. With this choice of Z we may suppose o5 maps Z; into Z
and )'g, ~ g, as maps X —~Z. The reader should easily be able to fill
in the gaps in our description of this argument.

This example figures very prominently in the next section. We recall
from [5] the remark that the restriction to 1-connected complexes in
this, and other, examples has no restricting effect on the scope of the
extended theory hy, since any theory defined on 1- connected complexes
extends to all complexes, together with the full apparatus of additional
algebraic structure, by passing to the double suspension.

4. The main theorem. Let P be a family of prime numbers and let Cp
be the Serre class consisting of torsion abelian groups A such that the
order of any a < .4 is a product of members of P. Let Q, be the group
of rationals mod 1 and let Zpw be the subgroup of Q, which is the direct
sum of its p-components, p ¢ P. Let & be & cohomology theory and let
h( ; Zp) be the theory obtained from h by introducing the coefficient
group Zp= as in [9]. We specialize Example 3.12 by taking C= Cp
and prove

(") Of course, 0 is right adjoint to Z on the category of 1-connected CW-complexes.

Fundamenta Mathematicge, T. LXXII 11
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TEEOREM 4.1. Let h be a representable cohomology theory with finitely-
generated coefficients (%), and let hy be ils resiriction to the category J, of
1- conmected finite CW- complewes belonging to Cp. Then the Kan ewtension b,
of h, to the category Jy of 1-commected finite-dimensional CW-complepes
18 given by

(4.2) "RHEX) = B Zpw) -

The proof of this theorem will be achieved with the help of a series
of lemmas; the lemmas themselves may well have an independent interest:

Lemyma 4.3. Let ¥ be a finite CW-complex belonging to Cp and let b be
a cohomology theory. Then E"(Y)e Cp.

Proof. We apply the generalized Atiyah—Hirzebruch spectral se-
quence [1], [7]. Then

B o BYY;7) o Hom (Hy(Y), 17%) @ Bt (Hy-o( X), 147)

so that EP? ¢ Cp, since H(Y) is of finite type. (Notice that EP?= ¢
if p=0 since we are using reduced cohomology and ¥ is connected.)
It follows that B’ ¢ Cp and since A(¥) has a finite filtration with
quotients belonging to Cp, we deduce that 2"(Y) itself belongs to Cp.
Levmas 4.4. Let GeCp. Then G®Zpo= 0, and there is a natural
isomorphism
Tor(@, Zp=) =~ G .

~Proof. Since ¢ is a forsion group and Zpe is divisible, it follows
that G® Zpo = 0. To prove the second assertion it is plainly legitimate
to replace Zp= by Q. Then consider the sequence

0+Z>Q—>Q—0;
this gives rise to the exact sequence, natural in @,
Tor(@, Q)—Tor(&, @) ~GRZ-GRQ .

Now G®Q = 0 by the previous argument and Tor(@, Q) = 0 since Q is
torsion-free. Since G®Z =~ @, the lemma is proved.

Lemwa 4.5, Let Y be a 1-connected finite CW- complex belonging to Cp

and let h be a cohomology theory. There is then a natural equivalence of .

cohomology iheories on the category J, of such complexes Y, given by

BNY) o BV Y Zpoo) .
(*) We must distingnish between the coefficients of a theory B, that is, the gra;ﬂtéd

group h(S°), and the introduction of a group @ as a coefficient group into a theory k..
as in [9).

icm

©

On Kan eziensions of cohomology theories and Serre classes of groups 159

Proof. We have (see [9]) a short exact sequence
(4.6) 0—k""(X)@Zpo—h""¥; Zpeo) >Tor (A X}, Zpe) =0 ,

which is natural in ¥ and commutes with suspension. By Leréma 4.3,
A*7Y(¥) and 2"(Y) belong to Cp; thus by Lemma 4.4 and (4.6) we have
isomorphisms

R""N(X; Zpe) = Tor (A" X), Zpeo) == K X),

which are natural in ¥ and commute with suspension.

Lenya 4.7. Let Jy be J,-adapted, let Fy: ﬂ’pies be a contravariant
Junctor from Jy to the category of sets s, and let Fy: J1°F —s be an extension
of Fy to Ji*F such that

(1) every & eFy X is expressible as &= (Fif){a), aeF,¥, YelJy,
fr XY in Jy;

(i) if (F1fi)(ay) = (Fifs)(w), there exisls a commutative diagram

Y, o eF XY,

1 i’ul
-1,y aeF Y,
\\ 1\
N
Y. @ e F,Y,,

with (Fouw)(a) = a;, (Foup)(a) = a.

Then F, is the Kan extension of Fy.

(Compare the Proposition on p. 431 of [11]).

Proof. If F is the Kan extension of F,, there is a canonical natural
transformation w: F-—+F; which is the identity on fo Now the theory
of Section 2 applies to funetors to sets as well as to functors to groups —
and is, indeed, more elementary in this case (°). Thus we have the repre-
sentation of FX given by (2.16), and condition (i) asserts then that w is
surjective, while condition (ii) asserts that o is injective.

Leanes 4.8. Let Jy be Ji-adapted. If F: JPP s is a direct Limit of

Junclors representable in Jy, then F is the Kan exiension of FiJ¢™™.

Proof. We have F(X)=1im[X, Ts], T; € |J,|. We proeeed to verify
g

(i) and (ii) of Lemma 4.7 for F, = F, Fy= FJ¢™. Set Fy=[ , T5] and

(*) The index category I need only satisfy condition (a) at the beginning of
Section 2 in order to be adapted for colimits of functors to sets. The construection of
the colimit set is then exactly as in Section 2, except that we do not have to worry about
group structure.

11*
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let ng e Fo(Ts) be the class of the identity map of T,. Tet ¢ e F(X) be
represented by f: X —T,. Then f= (Fyf)(n), so that £ = (Ff ) [75] wheré
[5] €« T is represented by 7. This proves (i).

To ;;’;'erify (ii), we have

R
Yl‘l'»Tﬁl

Yy—T B2
gz

where a; e F(¥;) is represented by g Fo(¥i), i =1, 2. We may find 7,
and maps vi: Tp—T5, i=1, 2, such that 0L = vagsfs, since (Ff)(a,)
= (Ff,)(ap). Then F(vigs)[ng] = as, i = 1,2, and the lemma is proved.
Such a functor ¥ we may describe as Jy-provepresentable [3].

LA -19 If h is a representable cohomology theory with finitely-
generated  coefficients, then the functor W' ; Zy): T s is Jy-pro-
representable, where Jy, J; are as in Theorem 4.1 and pel.

Proof. Let 2" be represented by My, h"(X) = [X, M,]. Now (see [9])

R'(X; Zp) = A" XALz), Lp= LZp

S0 () that " ; Zp) is represented by Mf;L: Qn- We may assume Q,
]-(-o?nee‘red (replacing it by its universal cover if necessary) since J
consists of 1-connected spaces. Then 1

Tl @) = mipa( Mps; Zyx)
and we have the universal coefficient sequence

(4.10) 0=z g Mnss) ® Zpr —7i(Qn) —Tor (ni+3(jl[n+4)’ pr:) 0.

Sinee the ];Eomotlol.)y groups of M,., are finitely-generated, it follows
that z{@n) is a finite group belonging to C, and hence to Cp. It follows
as for Example 3.12 that we may find a homology decomposition

L C gl
of Q. with each Q¥ a finite complex belongi i
finitn dmensiomal D onging to Cp. Thus, X being

WAX; Zp) = [X, Qu] = Um[X, ], Q™ ¢,

and the lemma iz proved.
() If & is & finitely-generated abelian gr,

oup,

nected, HYLG) = G, HYLG) =0, i = 4. growe

By H we understand, here and thro
cohomology with integer coefficients.

then the polyhedron L& is 1-con-

lfghout this section, ordinary (cellular) reduced
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Lemma 4.11. Let Jy, Jy, h be as in Theorem 4.1, and let
F = h{ ; Zp=)lJ, .

Then the Kan extension of F to Jy is h( ; Zpw).
Proof. Given a functor S: JoF° —s, let us also write § for its re-

striction S, to J¢™ and § = Kan&§ for the Kan estension of S, to J1™.

(We could also write S(X)=LmS(Y), for f: X =T, Yeldy.)
¥
Set Zpr = 3 Z; it follows from the universal coefficient theorem,
DeEP
(see [9]), that

(£.12) h{ ;Zpr) = (—Bph{ 3 Zpt) .
ne

Put Fr= h( ; Zpr), Frp= h{ ; Z;x), so that

Fr= @& Fip,
1i

and
Fr = Kan(Fr) = Kan( @Fip) = ©Kan(Frp) = @Frp, by Lemmas
? ’ ? 4.8 and 1.9,
= F.
Finally represent Zp~ as the direct limit (union) of the inclusions
(4.13) Zps—>Zps > ... = Zper>Lprss > ... '

Then, (Theorem 418 of [2]), *(X; Zpw)= limi(X; Zpr), so that
k

F(X) = imF(Y) = limlimFy(¥) = imlimFx(¥) = ImFp(X) = F(X) ,
7 7yor ¥ 7 F
and the lemma is proved.
Proof of Theorem 4.1. The proof is now virtually immediate.
By Lemma 4.5, there is a natural equivalence

B e KT 5 Zp)

of cohomology theories defined on J,. The Kan extensions of these
theories are therefore also naturally equivalent. But Lemma 4.11 asserts
that the Kan extension of A" 7Y ; Zp=) to J, is again ™Y ; Zpee). This
proves (4.2). )

Remark. The requirement that k be representable is not, in faet,
a limitation on the scope of Theorem +.1. Forif A is a cohomology theory
with finitely-generated coefficients, then its restriction to the category
of 1-connected finite CW-complexes is certainly representable. If this
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representable theory is called &', then % and »’ may, of course, not coincide
over the whole of J;; and Theorem 4.1 enables us to infer that (X
= "X Zpeo).

We now introduce two variants of Theorem 4.1.

THEOREM 4.14. Let & be a representable cohomology theory, lei hy be dts
resiriction to the category of 1-connected Jinite CW-complexes belonging
to Cp and let by be the Kan extension of hy to the category of 1-connected finite
complexes. Then (4.2) holds.

Notice that, compared with Theorem 4.1, we have removed a re-
striction from &, but imposed a restriction on J1. Let us write J, for this
new version of J; thus J, is the category of 1-connected finite CW-com-
plexes. It is plain from a serutiny of the proof of Theorem 4.1 that the
only lemma requiring amendment in order to prove Theorem 4.14 ig
Lemma 4.9. Thus we must prove

Leyva 4.9 If his a representable cohomology theory, then the Junctor -

Y5 Zpe): TP s s Jo-provepresentable, where J, is as in Theorem 4.1
and J, is as above, p ¢ P.

We base the proof of this lemma, on the following general proposition
concerning Serre classes.

ProposiTIoN 115, Let C be a Serre class and let f: X —+Q be a map
of a finile 1-connected C'VY- complex X into a CW- complex § belonging to C.
Then f may be factoved up to homotopy as

Xy .9
where Y is a finite CW- complex belonging to C.

Proof. Suppose 7(X) e C,i<m, m>2 Then if 4 — kerf,: mn(X)
(@), 4 is a finitely-generated abelian group and we may attach
{(m—+1)-cells ¢, to X, corresponding to each generator y of a given gener-
ating set for 4, by a map in the elass y. Let X,, = X u (e,) result. Then
X is finite and f extends to Jfm: Xm—Q. Moreover T Xon) = 7m( X)[4
and foe: n(Xp) —2m(Q) is a monomorphism. Thus w,(X,) « C. We may
Droceed inductively in this way and eventually arrive at a factorization

(4.16) - Lx, 2

where X belongs to € and is finite in each dimension. Thus the homology

sections of X are finite complexes belonging to C and, since X is finite,
i factors (up to homotopy) through some homology section ¥ of Y.
Thus we obtain the required factorization by restricting the domain
of fi and the range of i in (4.16) to this homology section ¥.

©
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Proof of Lemma 4.9. We proceed as in the proof of Lemma 1.9,
obtaining a 1-connected CW-complex @, in C, such that

WX; Zpe) =X, Qu].

i
Thus to prove thelemma. we must show that every homotopy class X —>Qs
may be factored as

XY 15Qn, Yeldo,

and, second, that given two factorizations

Y,
7N
(4.17) >4 s

e

we may embed (4.17) in a commutative diagram-

I
}/ NS
(4.18) X Y EQu, Yeld.

N4
T,

Now the first assertion follows immediately from Plrop»ositif)n ;1115];(12(;
i d ; v take the donble mapping ¢}

it remains to prove the second. We 15[1&} uble P .y

:Jfrg and g,; this amounts to replacing ¢, anti g, by coflbratlondui(égs;:;ns

andlthen taking the union Z of Y, and ¥, with X amalgamate ].mmOtop;.

then further suppose that v, 0, = 0.0, as.ma,ps. (and not merely as

classes) so that we have a commutative diagram

T,
0},7r }11{\\:1
v
X/ 7z '!‘—"?Qu

N

N4
g!\:L lug/v:
Y,

By Van Kampen’s Theorem Z is 1-connected and it ijs Ce#t;?]{(lg;\-fl?lll;:;
lems we may apply Proposition +.15 to w': Z @y and ux;m: Iizr,m;m e
the existenee: of a diagram (4.18). This completes the proof o

and with it Theorem +.14.
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The second variant of Theorem 4.1 is concerned with ordinary co-
homology H. We now take oJ, to be the category of 1-connected CW-com-
plexes whose homology groups are finite groups in Cp and J; to be the
category of 1-connected CW-complexes. It was already observed in [5]
that the Kan extension, from J, to J;, of any cohomology theory is again
a cohomology theory. We prove

THEOREM 4.19. If k, is the Kan extension of H from Jy to J,, where
Jy,Jy are as in the paragraph above, then

R(X) = H'{(X; Zp)

the latter group being taken in the sense of [9].

"Notice that, compared with Theorem 4.1 we have greatly restricted &,
but we have also greatly enlarged J, and J, by allowing infinite-dimensional
complexes.

Proof of Theorem 4.19. The argument is substantially easier

than that of Theorem 4.1. H*(Y) e Cp if ¥ ¢|J,| and the analogue of
Lemma 4.5 continues to hold,

YY) = B"(Y;Zp), Yeldyf
The analogue of Lemma 4.9 is the stronger, but trivial, statement that
HY ;Zp) is jn-represental)le, since the BEilenberg-MacLane complex
K (Zpe,n)i3in J,. The rest of the argument holds and the theorem follows.

Remarks. (i) Notice that although H"( ; Zpw) has its usual meaning
in Jy, it does not have its usual meaning in J;. For if the homology groups
of . are not of finite type, then C*(X)®Zpe and Hom (C.(X), Zp=} are
not cochain-equivalent. The cohomology groups of the former cochain
complex enter into the statement of Theorem 4.19; those of the latter
are the usual cohomology groups of X with values in Zpw.

(ii) We may elaborate Theorem 4.19 by looking to see what happens
if we replace H by H( ; @). If @ is a torsion group and G = GpDGp
where GpeCp and P’ is the set of primes complementary to P, then it
is not difficult to see that the Kan extension of H( ; @) is H( ; Gp),
where again the latter has to be understood in the sense of [9].

(iif) With regard to Theorem 1.1, 414 or 4.19, the result implies,
of course, a natural transformation

w: X5 Zpo) 1" (X)

of eohomology theories on J, which is an equivalence on J,. This natural
transformation  is nothing other than the composite

(£.20) "N Zpm) —Tor (1'(X), Zp=) ~Tor (K"(X), Q)

(X)) RZ = KY(X) .
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The intermediate terms in (4.20) are not cohomology theories, but they
admit suspension isomorphisms. The arrows are all compatible with
suspension and hence the composite is a natural transformation of co-
homology theories. Of course, if X ¢ J,}, then each arrow in (4.20) is an
isomorphism.
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