o,-metric spaces and o,-proximities

by
Frederick W. Stevenson (Tucson, Arizona)

§ 1. Introduction. Let o, denote the uth infinite initial ordinal and
let §, denote this ordinal when considered as a cardinal number. An
w,-metric ¢ on a set X is a generalization of the ordinary concept of
a metric in which the range of ¢ rather than being the non-negative reals,
consists of the non-negative elements of an arbitrary linearly ordered
abelian group of character w,. Shu-Tang [6] established necessary and
sufficient conditions for the w,-metrizability of a topological space and
Stevenson and Thron [8] gave necessary and sufficient conditions for
the w,-metrizability of a uniform space. In § 2 we provide necessary and
sufficient conditions for the w,-metrizability of a proximity space.

An w,-metric ¢ on X naturally induces a uniformity, U, a topology,
Ty, and a proximity relation J,, on X. The uniformity U, satisfies the
property that the intersection of a family of entourages of cardinality
< ¥, Is an entourage. Such uniformities we shall call w,-uniformities.
Similarly the topology G, satisties the property that the intersection
of a family of open sets of cardinality < %, is an open set. Sueh topo-
logical spaces are called o,-additive spaces and have been studied by
Sikorski [7] and Shu-Tang [6]. The proximity relation o, satisfies the
property that if the union of a family of sets of cardinality < %, is near
a given set 4 then at least on member of the family is near 4. Such
proximities, called w,-proximities, are examined in § 3.

§ 2. w,-metrizability of a proximity space. The metrizability of a pro-
ximity space has been characterized by Bfremovie [2], Efremovic and
Svare [3], and Leader [4]. It is Leader’s characterization which we shall
generalize here.

TreoREM (Leader [4]). For any prowimilty space (X, 0) the following
three conditions are equivalent:

(i) (X, 8) is metrizable.

(i) There exists a sequence {Cn} of admissible coverings with Cnis
a refinement of C, such that ASB iff for every n there exists D e Cq such
that DA %@ and D~ B #+ Q.
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(ili) There exists a sequence {U,} of admissible symmetric entourages
with Uns1C Uy such that ASB iff AXB~ Uy, =0 for ail n.

The following definitions explain the terms above. A set PC ¥ XX
is compressed iff P is infinite and A 6B for every pair of subsets 4 and B
of X where 4 x B ~ P is infinite. A covering C of X is admissible iff for
every compressed set P there exists (x, y) « P and O ¢C such that z,ye(.
An entourage U is a subset of X x X' containing the diagonal; an entourage
U is admissible ift U~ P = @ for every compressed set P.

As might be expected the generalization of this theorem extends
to an arbitrary regular cardinal number those concepts above which
are based on countability. The proof that we offer here is not, however,
a generalization of Leader’s proof. The extended theorem is preceded
by some auxiliary definitions and three lemmata.

DEFINITION 2.1. Let o, be a regular cardinal number, let {Ze! a < wy}
and {y.: a<w,} be wy-sequences, let X = {z,, 4.0 a< .} and let
C= {Ck: k e I} be a cover of X. The cover is said to be permissible with
Tespect 10 g, ya iff ., y. ¢ Cx for all o< w, and ke K and for every
wﬁ.-subsequence {Z f< w,} of {z} and Wi f< wu} of {y} there
exists at least one k ¢ K, < o, and y < w, such that Zigy Y, € Ok.

Leywma 2.2. No pair of wu-sequences has a finite permissible cover.

Proof. We proceed by induction on the cardinality of the cover.
Cleaxly if C has one element it could not be permissible with respect to
any sequences {z.} and {y.}. Suppose the lemma is true for covers with »
members. Suppose also that there exists a Pair of w,-sequences {u,}
and {y.} and a permissible cover € — {01y .oy Cry1). We complete the
proof by deriving a contradiction.

First we note that for at least one of the members C;, the set A
= {a: @, € Cy} has a complement of cardinality x,. If this were not true
it would follow that for all k — 1,...,n+1 there would exist Ve <
suc}.:L that if y > 3 then 2, € Cg. Thus it would be impossible for y, tg
be in any member of the cover for g > max{y,, vees Vny1}e ’

) Secondly we note that C;, contains elements Ya also, but those y,
wl‘nch occur in only O and no other member of the cover are of cardiil—
ality <z,. To see thig Suppose that there exists g subsequence {y,,:
@< w,} C 0y such that each Yi; occurs only in (. Then there exi:;‘gs
? lf; such that Tig and ¥4, € O for some B,y < o, }DTow sinee y;, € O, it
d?ctoi:;. that 4, ¢ Cy, 50 j #4,. Thus we have Yiy € 05 %= O4y & contra-

) Now we delete from @, those ordinals in 4 along with those sub-
seripts @ such that y. e (), and Ya ¢ C; for j 4. Using -the two facts

noted above ¢ see that the g et of rdinal; it I, is of
abov W Set oI O na.
‘ als Tem&lmng y call 3.
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Consider the w,-sequences {z:: eI} and {y:: i eI}. Clearly they
are eovered by €' = {(q, ..., Ci—1, Ciy11, ..., Cuyr}. Furthermore this cover
is permissible. To see this let {w;,} and {y;,} be w,-subsequences of {x;}
and {y:} respectively. Now they are also w,-subsequences of the original
w,-sequences {#,} and {y.} and hence there exists k, §, and y such that
Tigy Yiy € Or. Now Cx # Oy, because xy, ¢ Cy. Also it is clear that a; and
yi¢ Cj for any 7 eI and j=1,...,n41. Thus the cover €’ is permissible
and has » elements contradicting the induetion hypothesis as promised.

Levmma 2.3. If {x.} and {y.} are w.-sequences and C= {Cy, ..., Oy}
is a cover of {Ta,¥Ya: @< w,} such that s, y.¢ C; for all o< w, and
1< j < n, then there exists an w,-subsequence {x;,} of {x.} and {y:,} of {Ya}
such that no member of the cover coniains elements of both subsequences.

Proof. This follows direetly from lemma 2.2.

DEFINITION 2.4. Let (X, §) be a proximity space and let be a regular
cardinal number.

(i) A set PC XXX is w,-compressed iff P has cardinality >N, and
A48 for every pair of subsets 4 and B of X such that 4'x B ~ P has
cardinality =8,.

(ii) A covering € of X is an w,-admissible covering iff for every

" w,-compressed set P there exists (&, ) € P and € € Csuch that # and y € C.

(i) A diagonal sef K is a subset of X x X containing the diagonal.
(We save “entourage” for its familiar usage as a member of a uniformity
on X.)

(iv) A diagonal set K is an w,-admissible diagonal set iff K ~ P = @
for every w,-compressed set P.

Lenmvia 2.5, Let (X, 8) be a proximity space and let {Ko: a < w,} be
a family of w,-admissible diagonal sets such that Kz C K, for a < g and
such that A0B iff AxB K, 50 for all e < w,. Then for each a < w,
there exists § < w, such that Ko Kz C K,.

Proof. Suppose that this theorem iz not true. Then there exists
ay < @, such that K, K, ¢ K, for all a< w,. It follows that there
exists m,-sequences {Xo}, {¥a}, and {z,} such that (2., ¥o) € Ko, (Ya, %) € Ka,
and (@a, 22) ¢ Ko, for all a < w,.

Let AL be the totally bounded uniformity on X generated by 6. Now
a member U €U is generated by a finite cover €= {(y, ..., C»} Wwhere
Ci is such that 032 B; and {B,, ..., Bs} is a cover of X. (Here 3 is the
order relation associated with ¢ defined as follows: 4 3 B iff X~A44B).
Now U= {(r, y): 2,y e C; for some ¢ =1,..,n}

First we show that if U ¢ U then there exists f < w, such that if
a> p, then (a4, %) ¢ U. Suppose that this is not true. Then we have
U e U: such that for each a < o, there exists g > a such that (@, y3) ¢ U.
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It follows that there exists an w,-subsequence {z;,} of
of {yz} such that (2, y;,) ¢ U. Thus by lemma 2.3 éhge exis{fsa }axih Xjud;{,zz}
sequence {z,} of {z;} and {,} of {y;,} such that (@, ¥} ¢ U for aﬁ '
< w,. But this statement is contradicted by the' following a,rgum};glz
Clearly {z,} and {,} are also w,-subsequences of {@a} and {y.} respectivel -
Now (2, 9,) ¢ K, for all a < w, since for every o there exists y > q a,n{i
we have (,,¥,) e K,C K,. Thus 45B where A— {z,: y < w,}, and
B = {y,: y < w,}. It follows that there .exists yand ¥ <o sugﬁ that
(@y, yg) € 1‘711 This contradietion establishes our original staten‘;ent
Secondly we show that P = {(#ay 22): < )} i - press
set. Let ¢ and D be subsets of X such ,thz)h‘o ¢ ><_Di PS i:J I:)fcz’;rglci)illjifj bfd
Thus‘there exists w,-subsequences {z;} and {255} of {x} and {zi ;g
spectively such that (z;,, 2ig) € OXD for all B < w,. Let T e U be ;iven
and let V € U such that ¥ o V'C U. Then by the statement shown above
there emsts' £y such that if ¢ > g, then (22, ¥o) € V. Similarly there exists
such that if a > y, then (Yay 2:) € V. Now for i > max {;90 Yo} We hmzjg
(f,-ﬁ, Yig) €V and (yy,, ?i5) € ¥V and hence (@45, 2) € U. Thus U’(C?) nD#0
Since U was arbitrary it follows that ¢6D. o
Finally we may conclude that Koy P i
O admissible diagonal set. Thus there ey;istos y i :)- que];le:g;’: ?a: K:o) lesKan
dThl.s contradicts the fact that (e, 2.) ¢ Ky, for all Z < wy, Which? 31;,711 beg;
ﬂj:;nt irio ion]?_ the negation of the theorem. This contradiction establishes

THEOREM 2.6. For any proximit G
itions e apuinciens p Y space (X, 6) the following three con-

(i) (X, 0) s w,-metrizable.

it g:)alszeﬁe erists an  w,-sequence {Ca} of wu-admissible coverings
! efinement of C; for B < u such that Ao B iff for every a there
exists D € Cy such that D ~ A FO0 and DA B % !
d{ago(:(x‘; i]tz:r;i;m';;s Ca;( a}.-nsequence {H.) of w,-admissible symmetric
oty ol g Jor § < a such that A6B iff AXB K, #0
_ Proof. The equivalence of (i) and (iii)
shall concentrate on the equivalence of (
Suppose (iii) is true. Then it f

( is straight forward so we
1) and (iii) here.
oo S ollows from lemma 2.5 that {K.} is
gfhg::dimrli? umforfmty. For'thermore this base is linearly ordere{zd az}md
overe oy S Cleatly this uniformity is compactible with 6. Now
» metiia(});rlgl (Sg;ce Wlths a linearly ordered base of cardinality: Ny I8
Dy orem Stevens N -
w,-metrizable. ’ fuson and Thron (8]) so (X,0) is
Suppose that (X,5) is w, )

X i -metrizable. i i
which induces 6 on ¥ we f e. Letting ¢ be an w,-metric

ave 46B iff lub{g(a, b): a ed,beB}=0.

©

icm

w,-metric spaces and w,-provimities 175

We may assume that the range of g is D, (see [8]) the set of w,-sequences
of zeros and omes. Let 1, be the w,-sequence which is zeros for all terms
except the ath term (which is 1). Letting U, = {(%,¥): o(#,y) < L.}
it is easily shown that U, is a symmetric diagonal set. Furthermore 46 B
iff AXB U, # 0@ for all ¢ < w,. It remains to show that Ui, is an
w,-admissible set, i.e. Uy, n P 3 @ for all w,-compressed sets P. Suppose
that U, NP = O for some oy < w, and some set PC X x X. Now let

A={x:o(x,y) =1, for somey} and B={y: o(x,y) =14 for some 2}.

Now AXB=XxXX~U, 2 P. If P has cardinality <, then P is not
w,-compressed. If P has cardinality >, then 4 xB ~ P is of cardinal-
ity >w, also. But 46B because 4 XB ~ Uy, = O. Therefore P is not
w,-compressed. Therefore we conclude that Uy, » P 3 O for all w,-com-
pressed sets P.

COROLLARY 2.7. Let 6 be a proximity relation on X. If there exists an
w,-sequence {K.} of w,-admissible symmetric diegonal sets with K, CEKp
for p < a such that A6 B iff A »B ~ K, = O for all a then é admiis a largest
(finest) compatible uniformity on X.

Prootf. This follows from theorem 2.6; the faet that an w,-metrie
space is a uniform space with a linearly ordered base; and the result of
Alfsen and Njastad [1] that a uniform space with linearly ordered base
admits a largest uniformity.

§ 3. w,-proximities. An o, -metric on X induces a special fype of
uniformity, proximity, and topology on X.

DerixiTIoN 3.1, (i) A topology B is called w,-additive iff [ {G4:
GieB,ielteB where |I] <, (we use |I] to denote the cardinality of
the set I).

(ii) A uniformity W on X is called an w,-uniformity i ) {Us:
UieUW, i el} el where I} <N, :

(iii) A proximity relation 6 on X is called an w,-proximity iff
481 1 {By: i eI} implies that 46B; for at least one ¢ e I where I] < N,.

THEOREM 3.2. If 6 is an w,-prozimity relation on X then the associated
relation € satisfies the following property: if A€ By for oll iel then
A€ {Bi: i eI} where I <N,

TmeoREM 3.3. (i) If o is an w,-metric on X then U, is an w,-uii-
ormity, b, is an w,-proximity, and G, is an w,-additive topology.

(ii) If W is an w,-uniformity on X then éar is an w,-prorimity re-
lation.

(iti) If 6 is an w,-prozimity relation on X then By is an w,-additive
topology.

The proofs of Theorems 3.2 and 3.3 are straight forward.
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A major theorem in the theory of proximity spaces assures the
existence of a unique totally bounded uniformity compatible with a given
proximity relation. This theorem can be generalized as follows: for every
w,-proximity relation there exists a unique w,-bounded, w,- uniformity
compatible with 4. The proof may be accomplished by simply generaliziné
the proof of the original theorem (i.e. w, = w,) as given, for example,
in Thron [9]. Therefore we shall merely supply the appropriate definition
and theorems.

DeFINIrioN 3.4. A uniform space (X, W) is w,-bounded iff for
every U e U there exists a set 4 of cardinality <, such that U(4)= X.
(X, W) is strictly w,-bounded iff 4 is the least ordinal number for which
(X, W) is w,-bounded.

TarorEM 3.5. Let (X, 0) be an w,-prozimily space. Then the family
of all sets of the form |J{dixdy ieI} where < 8, 4:3 B;, and
I {Be: iel}=X is a base for a strictly w,-bounded, w,-uniformity U
on X. Furthermore dqy, = 6. ’

THEOREM 3.6. If (X, ) is a stricily w,-bounded, w,-uwiform space
then ‘U‘e% C ..

THEOREM 8.7. If 6 is an o,-prowimity relation on X then there exisis
one and only one strictly w,-bounded, wu-uniformity on X compatible with 5.

.N ow if 6 is an w,-proximity relation it is necessarily an w,-proximity
relation for 0 < » << u. Thus we may generalize theorems 3.5, 3.6, and 3.7
as follows: o

THEOREM 3.8. If 6 is an w,- prozimity relation on X then there exists
one and only one strictly w,-bounded, o,-uniformity on X compatible with
for 0 < v < u. This uniformity has as its base the family of all sets of the
Jorm {_{dixAds: i eI} where i} <%, 412 By, and U{Biiel} = X.

We shall denote these strictly w,-bounded, o,-uniformities by W,.

) The question naturally arises whether there is ever more than one
strictly  w,-bounded uniformity on X compatible with §. Reed and
T]n’o_n [5] have shown that if there exists one strictly w,-bounded uni-
.fornnty compatible with & then there exists infinitely maf;ly uniformities
in every class of strictly w,-hounded uniformities on (X, 8) for 0 < » <
If 6 is an o, -Proximity then more can be said, ’ ="

THEOREM 3.9. If 6 is an wu-proximity relation X then there exists

a s‘m‘vt‘ly (Zecrqzsz’ng sequence of wuniformities between W, and W, each of
which is a strietly o,-bounded uniformity compatible with & where 0 < o
<< v u. -

» X}-‘r({ of. C.‘Drollary 2.}.1 of [5] says that if U, and U, are uniformities
on f&:lth 7111fferent striet bounds and U, C U, then there is a strietly
decreasing sequence of uniformities between U, and U, and these uni-

©
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formities can all be chosen to have the same strict bound as W,. This
combined with theorem 3.7 and the fact that if » <’ then AU, C W,
establishes the result.

The totally bounded uniformity compatible with a proximity re-
Iation 6 is unique and hence naturally it is the largest and smallest member
of the class of w,-bounded uniformities compatible with 4. In [5] it is
shown that if 4 > 0 there is no minimal (and therefore no least) member
of the class of strictly w,-Dbounded uniformities on ¢ (corollary 2.1.5).
However if ¢ admits an w,-bounded uniformity then for all » < u the
class of strictly o,-bounded uniformities admits a largest member
(corollary 2.1.4). If 6 is an w,-proximity relation then we may characterize
these largest elements; they are, in fact, the strietly o,-bounded, ®,-uni-
formities U, described in theorem 3.8.

THEOREM 3.10. If 6 is an w,-proximity relation on X and v < p then
U, DV for any strictly o,-bounded uniformity U on (X, 6).

Proof. Let U bhe a strictly o,-bounded uniformity on (X, 6), let V
be an arbitrary entourage of U and let W be a symmetric entourage
of U such that Woe W e WeWCT. Since U is w,-bounded there exists
a set 4 of cardinality <, such that W(d)= X, ie. {J{W(s): ved}
= X. Now clearly W(z)C W{W(x)) so [ {W(W(x)xXW(W(x): zed}
€U, since 4 is of cardimality <x,. But J{W(W(@))xW(W(x):
z ¢ A} CT by the following argument. I (a, b) ¢ { {W (W (2)) x W (W (@)}
then a ¢ W(W(z)) and b e W(W(x)} for some x e A. Thus (a,z) e Wo W
and (b, r) € W e W. Therefore since W (and hence W o W) is symmetric
we have (a,b) e W:=W-W-WCT.

We conclude that Ve, and since ¥ was an arbitrary member .
of U it follows that U C U,.

If 6 is an w,-proximity relation on X and X admits no non w,-bounded
uniformities then U, is naturally the largest uniformity ecompatible
with 4. This occurs, for example, if AU, has a linearly ordered base of
cardinality ®,.

There are, of course, classes of strietly w,-bounded uniformities
whose largest members are not w,-uniformities. For example, the pro-
ximity relation § induced by an ordinary metric d on the real line admits
a largest uniformity. This uniformity is the metric uniformity and it
is the largest member of the class of w;-bounded uniformities, however
& is an o,-proximity relation.
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A normal space X for which XxI is not normal

by
Mary Ellen Rudin (Madison, ‘Wisc.)

The purpose of this paper is to construct (without using any set
theoretic conditions beyond the axiom of choice) a normal Hausdorff
space X whose Cartesian product with the closed unit interval I is met
normal. Such a space is often called a Dowker space. The question of the
existence of sueh a space is an old and natural one [3].

Tn 1951, C. H. Dowker [4] proved that a normal Hausdorff space
is not countably paracompact if and only if its Cartesian product with T is
not normal. Other interesting equivalences are given by C. H. Dowker
and M. Katstov in [4] and [8], and one is a useful tool for constructing
a Dowker space. M. Katétov [8] proved there is no perfeetly normal
Dowker space and B. J. Ball [1] proved there is no linear Dowker space.

In [10] I proved that the existence of a Souslin line implies the
existence of a Dowker space. And, more recently, I observed that almost
the same proof yields: if z is a regular cardinal which is not the successor
of a singular cardinal, then the existence of a Souslin tree of cardinality »
implies the existence of a Dowker space. The existence of a Souslin line
and Souslin trees of these cardinalities has been proved consistent with
the usual axioms of set theory ([13], [11], [7h.

I am indebted to N. Howes [6] for the idea that a singular cardinal
might be useful in constructing a Dowker space. Howes also introduced
me to the example of A. Misfenko given in [9] which I was able to prove
is not normal. But successive moditication of this example led me to the
Dowker space X described below.

1. The definition of X and some notation will be given. We use the usual
convention that an ordinal A is the set of all ordinals less than A. An
ordinal y is cofinal [5] with A if there is a subset I" of 1 order isomorphic
with y such that « < 2 implies there is a f e I" such that a < B. Let ef(4)
denote the smallest ordinal cofinal with .

‘Let N denote the set of all positive integers.

Let F = {f: N>l f(n) <oy for all nelN}.

Let X = |feF] TieN such that o, < cf(f(n)) < o; for all n e N}.
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