On Urysohn’s universal separable metric space*
by
Charles Joiner (Cleveland, Ohio)

1. Introduction. As one of his many acecomplishments, Urysohn [1]
constructed a universal separable metric space U; that is, a separable
metric space U such that any separable metric space can be isometrieally
imbedded in U. The purpose of this paper is two fold. First we present
an alternate and somewhat simpler construction of Urysohn’s space.
Second we show that U satisfies a strong homogeneity condition. Urysohn
showed that U is homogeneous with respect to finite subsets. That is,
if 4= {a,ds,...,an} and B = {by, b, ..., by} are any two subsets of U
each containing » points and if d(a;, a;) = d(b:, b;) whenever 1 < i,j < n,
then there is a distance preserving bijection ¢ from U onto U such that
@(as)=b; for i=1,2,..,n. We shall prove that U is homogeneous
with respect to convergent sequenees. That is, if {Zn}rs1 a0d {Yn}ns1 are
convergent sequences in U such that d(z:, ;) = d(ys, y5), for all positive
integers 7 and j, then there is a distance preserving bijection y from U
onto U such that y(z) = y; for i=1,2,3, .. '

2. Construction of the space U. For each positive integer % define
a bijection ox: N —Qr, where N is the set of positive integers and @z is
the set of all ordered k-tuples (7, 73, ..., 7x) of positive rational numbers.
If oul(t) = (ry, 73y v, 7x), then we define rgq),;= r; 5o that

ox(t) = (Fapm,1s Tartn2y «r 5 Tort),)

for all positive integers k& and ¢.

We are now ready to begin constructing the space itself. First we
will construct a countable metric space U,. This will be done by induction.

Step 1. Include the point z; in the space.

Step 2. We add a point y.; to the space with d(ys1, #1) = Tona-
Rename the point %.; to be z,.

* This work was supported in part by NSF Grant GP-8394. The author wishes
o thank Professor Ky Fan for his encouragement and guidance.
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Suppose we have already carried out step p for all p < k. Suppose
that at the end of step s—1 we had constructed a finite number of points
By, Loy ey Emye In step b we will construct a new point for each non-
empty subset of the set {, %, ..., &y,_,} of all points chosen in previous
steps. Thus we will add 2™?—1 points to the space during step k. The
total number of points to be chosen in the first k steps is

np = 2" Ly —1.

This recursion formula together with #, = 1 determines every ng.

Step k. For each positive integer p < % let 4, be the set of all ordered
i-tuples (@, @, ..., a:) of positive integers satisfying 1<¢<n, and
1<y <a<..<a<np. We shall be concerned primarily with A,_,.
Next we order A4, ; lexicographically. Let o= (a, a5, ..., a;) and o
= (a1, &, ..., ai) be two distinet members of A; ;. We say a< o if
<<t or if =1 and a; < a;j where 1 is the smallest integer such that
a; £ ai .

For each a e Az, we shall add a new point ¥z, to our space. Suppose
o=y, @, ..., &) € Ay is given and for each o' ¢ Ay_y, o' < a, wé have
already added the point ¥z« to the space. We add the point yz. to the
space where

AWy Tai) = Tofrs  for  §=1,2,..,1¢,

and where %% is a positive integer to be defined below.

Before defining nff notice that we have a ¢ 4, whenever 1 < 0 < ay
<..< e <np. Thus we may have aed, for one or more values of
P <k—1. Now, if aed, for some P <k—1 then a point ypi1. was
chosen in step p--1. We want our new point ¥, to differ from Ypt+1,e D
that d(Yiay Tay) # AWpi1e, 2) for at least one 4, 1< ¢<t. This will
be accomplished if we require 5 o2 where d (3414, 7o) — Pa,¢ for
i=1,2,..,% serves to define 42" Thus we let 7 be the smallest
positive integer not used in some preceding step which gives distances
compatible with those already chosen. :

The distances d(yyq, ) for i = 1,2,..,t are the only distances
involving our new peint which we need to be particular about. Thus we
" define all other distances from previously chosen points to Yre D any
way that will yield a metrie. Tt is not difficult to see that this is possible.

By induction it follows that we can add new points Yra tO the space
for each ae.d;_ ;. Suppose this has been done. We rename the points
{Ynalacary t0 be {7, .. where ng is the total number of points
chosen in the first % steps. Which Ya becomes which #; is unimportant.
This completes step & and leaves us ready to begin step k-1 with points
D1y Xy ooy Ty already chosen.
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It follows by induction that we can carry out step » for every positive
integer n. We define U, to be the metric space consisting of all points
constructed in this induction. Since the number of points - constructed
in each step ig finite, U, is countable. The following theorem is crucial
to the study of T,.

THEOREM 1. Let Yy, Yoy -, Ys be a finite number of distinet points of
the space U,. Suppose u,, piy, ..., us are s positive rational numbers which
satisfy the inequalities

(1) pi—pl <A@, y) <pt+p, for 1<i,j<s.

Then there exists a point & of Uq such that d(z, yi) = pi for 1 <i < s.
Proof. Let ¢ be the smallest integer such that y,, 4, ..., ¥, were all
chosen in the first ¢ steps of the construction of U,. Let o3 (1, oy - s fe)
=mn 50 that ui=rom; for i=1,2,..,s.
Jet yi = @y, for i =1,2,...,5 and let a= (o, o, ..., @). For each
k>t we constructed a point yy. satisfying

A(Yras ag) = Toyi, for i=1,2,..,s.
Now by (1), » satisfies the inequalities
M
[Posmyo—Tostma | < A Tags Tay) < Vortny,pt Tesmrg

for 1<p<s and 1< g<s. This implies that nf =n for some %k >>1
since the inequalities tell us that choosing nf to be n is compatible with
all distances chosen in steps preceding step k. For this & we let #— Yra
We have

A(@, Yi) = AYra) L) = Vostni = Tasmi = pe, for i=1,2,..,s,

as desired. O

The proof of the following theorem runs parallel to one given by
Urysohn [1].

THEOREM 2. Suppose Uj is a countable meiric space such that the dis-
tance between any two points is rational. Suppose that Theorem 1 is still
true when U, is replaced by Ug. Then there is a distance preserving bijection
from U, onto Uj.

Proof. Let Up= {a,, @, ...} and recall that U, = {zy, z5, ...}

We now define the bijection ¢: U,—Us. Let ¢(2,) = a;. Suppose
we have already defined ¢ from {zi, 3, ..., #p} onto {a1, a:, ..., an} with
o(zi) = a; and @, = 21, a; = a;. If n is even let 2, be the first point
in the sequence {, @, ..} not in {@1, z2, ..., 2n}. Lt pi= d(xi, ni1)-
Then the hypotheses of Theorem 1 are satisfied for the space Ug with
s=n and y;= a; for ¢ = 1,2, ..,n. Thus there is a point ap:; in Ty
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such that d(af, apr) = ps = &(¥5, &pey) for all 4 =1,2, ..., n. We define
@(Tnrr) = nt1- , . .

If n is odd we reverse the roles of U, and Us. We begin by letting ay,
be the first point in the sequence {ay, Gy, a;, ...} Not in {a1, as, ..., ap}:
Then using Theorem 1 we choose #n4: from U, so that d(zi, a)..)
— d(a}, @py1)- Then we define ¢(@ns1) = ans1.

This defines our function g inductively. It is clear that ¢ preserves
distances and sends U, onto U,. The latter follows from the way we
alternated the roles of U, and U in choosing #p41 and @ny:. O

Urysohn [1] constructed a space which he also called U, in which
the distance between any two points is rational. Urysohn showed that
Theorem 1 is true when his space U, is used instead of ours. Thus by
Theorem 2, Urysohn’s space U, and our space U, are isometric.

Let us compare our construction of U, with that of Urysohn. Both
spaces were constructed inductively with the intention of obtaining
Theorem 1. When we added a point to our space we were interested in
its distanee to the points in some subset of the previously chosen points.
‘When Urysohn added a point to his space he was also interested primarily
in its distance to the points of some subset of the previously chosen points.
However, in his case this subset is always an initial segment of the previ-
onsly chosen points. That is, if the subset contains the nth point chosen
and 0 <k < n, then it also contains the kth point chosen. Since he
specified other distances as well, this fact does not become obvious until
later when he has finished using the distances he defined. I feel that our
construction is shorter, simpler, and makes possible a simpler proof of
Theorem 1 than is the case with Urysohn’s construction.

We let U be the completion of U,. Urysohn showed that U is a uni-
versal separable metric space. That is U contains an isometric image
of every separable metric space.

3. Homogeneity of U with respect to convergent sequences. Urysohn [1]
showed that his space was homogeneous with respect to finite subsets.
That is if 4 and B are two finite subsets of U such that there is an iso-
metry f from A onto B, then f can be extended to an isometry from U
onto itself. Our goal is to extend this result to convergent sequences.
We will need the following theorsm which was proved by Urysohn and
is a consequence of Theorem 1.

THEOREM 3. Let %, %,, ..., 2; be s distinct points of U and suppose
Uy Gyy .oy Us GTE S POSilive real numbers which satisfy the inequalities

lai—o| <d(mi, @) < wtaz,  for 4,j=1,2,..,s.

Then there ewists a point y of U such that d{y, m;) = a Jori=1,2,..,s8
This can be extended to the following result.

©
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THEOREM 4. Let {@}iz1 be a convergeni sequence in Urysohn's space U.
Suppose non-negative real numbers {pi}i= are given so thal

2) lpi— ol < A(@s, 17) < patpg,  for 4,51

Then there is a point p € U so thai d(p, x:) = u; for each i>=1.

- Proof. We will construct a sequence {p:};>: which converges to P.
Choose p, 80 that d(py, %)= py. Let

¥y = SUp|d(py, #:)— il .
=1

Since {#:}i>1 converges we know », is finite. We define n, = 1.

‘We continue by induction. Suppose p;, Py, ..., Pr—1and 7y, Ny, .ovy Hg_y
have been chosen so that each p; is a point of U, each n; is a positive
integer, and the following conditions are satisfied:

Ny < Mg < v < N1

¥ = Sup Id(Pty wi)—,uil N for 1<t k——l;
i>1

A(pe, @) = pi, for 1 <4< nyg;

d(ps, ps) = v, Whenever < s;
and
< 12, for  2<LtE< k1.
If some »; = 0 then let p = p: and by the definition of »; we are
finished. Thus we may assume » > 0 for each positive integer ¢.
Let y be any point of U. Then for any positive integers 7 and j
we have
Ay, ) < Ay, )+ d (@, @) < Ay, @)+ pitps -
Thus,
Ay, o) —m < Ay, o) +ps .
From (2) we have
si— oy < A(@i, @) < Ay, 2+ Ay, ) .
Thus,
wi— Ay, @) < &y, 25)+ g -
Thus we have
|0y, @) — sl < Ay, @)+ py

for any positive integers ¢ and j.
By choosing ¥ = p¢, 1 <#<k—1, we have

(3) vy = SUp |& (P, w0)— wi| < inf(d(ps, 27) + ps)
i>1 izl

for 1 <t << k—1.
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Choose # > np—y 80 that 4,j > nx implies
(i gl < e, B) < wpafd

Choose px 5o that d(px, :) = ui, for 4 <ng, and d(Pr, Ps) = v, for t < k.

‘We will next show that such a choice of pi is possible. By Theorem 3,

we need only show:

(8) |pi— | < s,y 25) < gt g, for 1 <4, § < s

(b) [re—ws| < A(Ps, ps) < ve-tvs, for 1< s, < k=15
and

) 11’:——-,u.¢| pt,mi) ‘vt-{—[lli, for 1<t<k——1 andléiénk.

(a) follows from (2).

Proof of (b). Without loss of generality we assume ¢ < s so0 that
d(pi, ps) = vi > vs. Then (b) becomes |v;—ws] < v < vs-+v5. Since 0 < v,
< »; thig is true.

Proof of (¢). By the definition of »; we know

> |d(pey w)— el > &(pe, @)—pe, for any 7.

Thus, d(ps, x1) < »e+pe as desired.
If v¢ > pa, then by (3), v < d(pe, @)+ pi or Vi— it <
> pi we have |v— ug < d(pe, 25) as desired.
If »: < ps then using the definition of »; we have,

Hiy

a(p¢, 2i). Since

= 10 (Dey Ta)— pal = lua— d(pe, 24| .

Thus, »:2 pi—d(pe, &) O p—ve < A(pe, @1).
|~ < d(ps, x:) as desired. Hence (c) is true.
Having verified (a), (b), and (¢) we know it is possible to choose Pk
satisfying the desired properties.
Next we define

Sinece »; < u; we have

vk = SUp|d(pPr, @1)— il .
i=1

To complete the induction we need only show

< 75-1/2. Recall
that we chose ng so large that

lpi—pgl < d(wi, 27) <vp1/4  whenever iy] =0k .
Since ¢ < ny implies d(pr, 1) = us we Have
ve=sup | (Pr, @) — il .
Fix i > ng;. Assume first that d(Pr, %) > pi. Then,

189k, @) — pa] < 1d(Pry To) + & (s, B)— piy] = it @ (g @0)— ]
< | ftms— i)+ Id(wm-, z)| < ’l’k'—1/4+’l’k_1/4: = v;,,_l/Z .
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Now assume that d{px, x:) < us. We have,
10(Drs @) — il = pai~— A(Dr, @) < [pma - 1o — poog |1 — [A(Dry Tns)
< [ll'nk‘}"fkvl/*]_[l‘ﬂk_ vp-14] = vp4f2 .

Thus in either casé |d(pr, #)— pi] <

— & (T, 1)}

¥5-1/2 and we have

v = Sup |d(pr, Be)— pe) < vr—f2
1>k

as desired. This completes the induetion and shows that we can choose
the sequence {p:}i»: as indicated.

Since lim »; = 0 and d(p:, ps) = »; for i< 8 we know that {pi}is is
a Cauchy sequence. Define p =fl_i)1£ Pi.

Fix k > 1. Since d(p:, 2x) = ux for all 7 large enough so that n; > &
it follows easily that d(p, #x) = ur, for all k> 1. O

DEFINITION. A metric space F is said to be homogencous with respect
to convergent sequences if given any two convergent sequences {Zalnm1
and {Yn}a=1 in F satisfying d(x:, 25) = d(ys, y;) for all positive integers ¢
and j, then there is an isometric transformation ¢ from F onto ¥ such
that ¢(z:) = y; for all positive integers i.

TaeOREM 5. Urysohn’s space U is homogeneous with respect to con-
vergent sequences.

Proof. Let {zu}n=o and {¥n}n>o be two convergent sequences such that

&z, w5) = A(Ys, ¥3)

Let {a,, as, as, ...} be a countable dense subset of U. Suppose points
L_1y L gy eeny Bp 204 Y_1, Y_2, ..., Y_n have been chosen so that

(s, 27) = d(Ys, Y7)

If » is even let @_ny1y be the first member in the sequence {a,, a,, ...}
0ot in {#i}rs—n. Let pui= d(B_@iy, @) for all 4> —n. These u; satisfy
the hypothesis of Theorem 4 for the convergent sequence {yx}r=_n. Thus
by Theorem 4, we choose ¥_41) S0 that

(Y-, Yi) = pi=

If » is odd we reverse the roles of {®i}i=—n and {y}i=—n. Thus we
let ¥_(nin be the first point in the sequence {ay, @5, ...} 00t in {Yi}iz-n-
Then we use Theorem 4 to choose %_(n+1y 50 that

A(—tn11y, B) = A(Y_tuin, Y1)

‘We continue this construction and obtain sequences {...
Toy Byy Byy o} A0 {oy Y2, Y15 Yo, Y1, Y2y -~} SO thab

d(@iy m) = (Y1, Y1) »

for ¢,j=0.

for i,j>=—

Az_mny, @), for iz-—mn.

for i>=-—mn.

y Bozy T~1y
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- for all integers i and j, and so that
{01y @ay o3 C vy Bz, @y By 8y, By o0}
and
{@1y @y o 3 Closy Yooy Yoty Yos Y1y Yoy oo} -
Hence each of the two sets {..., #_s, 2_1, Doy &1y Loy oo} A0 {on) Yoy, Y1,
Yoy Y1y Y2y ---) s dense in U. We now define ¢: U—U by
¢(z)) =y, for any integer .

‘On the other points of U we define ¢ by
p(limz,) = lime(w,)
i->00 i~>00

‘Where {@n;}i>: i any Cauchy sequence taken from {...,z_s, x_q, %y, &y,
Ly, ...} It is easy to see that ¢ is one to one, maps U onto U, and preserves
distances. O

Urysohn [1] gave an example of two bounded isometric subsets A
and B of U with the property that no isometry from 4 onto B can be
extended to an isometry from U onto. itself. By considering countable
dense subsets of A and B we can show that neither Theorem 4 nor
‘Theorem 5 can be extended to arbitrary bounded sequences.
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C-scattered and paracompact spaces*

by
Rastislav Telgarsky (Wroctaw)

0. Introduction. The main problem considered in this paper is the
problem of the topological produet of paracompact spaces (Section 2).
O-scattered spaces, which play an important réle in this problem, are
studied in Section 1 and some strong covering properties of C-scattered
paracompact spaces are proved in Section 3. The results from this paper
were partially announced in [25].

Each topological space considered in this paper is assumed to be
completely regular.

The problem in a general setting reads as follows: what kind of
separation and covering properties are preserved by the Cartesian product
of finitely many spaces?

The Cartesian produet of two normal (even paracompact) spaces
need not be mormal ([11], [19]). But, as J. Dieudonné [1] proved, the
product 8 x T of a paracompact space S and a compact space T is always
paracompact and hence normal. An excellent result of H. Tamano [23]
reads: a completely regular space S is paracompact iff §x 8§ is normal.
K. Morita [13] proved that if § is paracompact and such that each point
has & nbd basis of the cardinality <<m and 7' is an m-compact normal
space, then 8 X7 is normal. This phenomenon appeared earlier also in
the product of two N,-compact spaces, as is explicitly stated in the
following Theorem of C. Ryll-Nardzewski [17]: if § is ®,-compact and
such that each point has a nbd basis of the cardinality <m and T is
m-compact, then §XT is ¥,-compact. An assumption eoncerning the
cardinality of a basis plaiys an essential role also in the Product Theorem
of K. Morita [13]: S is a normal m-paracompact space iff S§x[0,1]™ is

* This is an essential part of my doctoral dissertation finished in June 1969
written under the supervision of Professor Czestaw Ryll-Nardzewski. This work was
supported by the Educational Ministry of the USSR during my doctoral studies at the
Mathematical Institute of the Polish Academy of Sciences, 1967-1970.
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