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is a weak* exposed point of U, then o' o®, 8 @ weak™ exposed point
of Ugr. : .

Proof. Since o is a weak® exposed point of Uy, we can find zeH,
|zl =1, such that {y: lly'll =% (@) =1} = {¢'}. Let feX satisfy the
hypotheses above. Define H = {p: @(f) = ol =1} If y'oD,eH, then
<1 and ¥/(f@) =1, so |f@) =1. Hence, P, = £P, and f(i)
= +f(s) = +@ Thus, y'(2) = £1, 50 y' = --o'. Hence, the only
extreme point of H is a'0®D;.

Again, since H is the weak* closed convex hull of ext(H), H
= {#'0Dg}.

COROLLARY 2.3. Let A be o subspace of O(8) and X = A®,0 (or
A&,E). If there is a function in A that peaks at s relative to A and if »' is
o weak® emposed point of Uy, then w0 Dy is a weak® exposed point of Ux..

Proof. Let zeH, ||| = 1. Let geA peaks at s relative to A. Then
f =g-x satisties the hypotheses of theorem 2.2, ¢.e. d.
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On positive functionals
on. a group algebra multiplicative on a subalgebra

by

A. HULANICKI (Wroctaw)

This paper was motivated by two independent facts. One, observed
by Thoma [13], was that if @ is a discrete group in which every element
has finitely many conjugates and 3 is the center of the I-group algebra
of @, then a class-function which defines a multiplicative functional on 3
is positive-definite because 3 is symmetric. The other fact, observed’
by M. Moskovitz (oral communication), was that if & is a loeally compact
group, K a compact subgroup of &, then any bounded K-spherical function
on @ is positive-definite, if L,(G) is symmetrie.

Of course, if L,(G) is symmetric, then any Banach *-subalgebra
of it is symmetric. Thus if one knows that L, (&) is symmetric, one can
establish the positive-definiteness of certain functions by means of the
facts revealed above. However, to decide whether I,(6) is symmetric
may be difficult even for such simple groups as the groups of motions
(cf. [1]). The aim of this note is to propose a property which resembles
symmetry of a Banach *-algebra and which, on one hand, is much easier
to prove for L, (@) for a large and natural (cf. [2], [5], [8], [9], and [147)
class of locally compaet groups G and, on the other hand, implies the
positiveness of multiplicative functionals on a *-subalgebra of IL;(&)
in which the functions with compact support are dense.

This will lead to two theorems in section 4, one of which asserts
that if G is [FC~], then the set of extreme positive-definite, normalized
class functions is equal to the set of the multiplicative functionals on
the center of L,(G). Under a more restrictive assumption a similar
result has been recently obtained on another way by H. Kaniuth.
The other implies e. g. that the spherical functions on a group which
is an extension of a nilpotent group by a compact group are positive-
definite.

The paper is organized as follows. Section 1 is devoted to a theorem
on Banach *-algebras and the crucial property (A) which imples that
multiplicative functionals are positive. In section 2 we turn to group
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algebras and we find a condition (C) on a group which implies that the
*-gubalgebras of functions with compact support satisfy (A). Section 8 is
devoted to locally compact groups for which (C) is satisfied. Finally,
in section 4, we give applications of theorems of the preceeding sections
to the proof of the facts mentioned above. ’

The author wishes to thank C. Ryll-Nardzewski for several helpful

remarks. .

1. Banach *-algebras. Let A be a Banach *-algebra with the unit ¢

and the cone of positive elements
P = {Zajwp w4}

Tet § denote the set of positive normalized functionals on (4, P, e}
equipped with the *-weak topology and let 08 denote the set of extreme
points of §.

The following theorem is well-known and easy to prove (cf.e. g.
[6] and [107): ‘

TEEOREM 1.1 If A is & commutative Banach *-algebra, the

98 =AM N 8,

where AN denotes the set of homomorphisms of A onto complex numbers.
We impose a condition on a Banach *-algebra which implies that
every multiplicative functional is positive, i. e. that 88 = A%,
TuroroM 1.2. Let A, be a *-subalgebra of a Banach *-algebra A con-
taining the unit element and not mecessarily closed in A. Suppose that for
a *-representation T of A into the bounded operators in o Hilberl space we
have

(A) ) = |T,] = Lm (@™ = v(@) for a* =z in A,

Then any multiplicative functional on A takes real non-negative
values on Ay NP,

Proof. Let yed, N P. Then there is a sequence {w,} of elements
of the form
Iy = Zi”fn%m Biped,
convergent to ¥ in the norm. Then, clearly, {#,} is convergent to y in
the norm A, since A(z) < ||| for #* = @ in A. Let A* denote the completion
of A in the norm 2. Then A4*is a (*-algebra and, consequently, Sp ¥

is real, non-negative and, as such, it does not separate the plane. There-
fore (cf. e. g. [11], p. 36), if 4, is the *-algebra generated by y and the
unit, then

Spay = 8p,y>0.
v

icm
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But 4, is commutative and so » is subadditive on 4, and, since
A, = 4, by assumption; »(z) = A(w) for #* = » in 4,. Moreover, sinc
v(%) = »(2%) and A(x) = A(z%), we have :

v(w+ i) <v(@)+v(2) = A(2)+A(2) < 24 (21 i2) < dv(z+1ir),
which shows that the norms » and 2 are equivalent on A,. Conse-
quently
Z;} = Z‘Ju
whence we infer that sz,y is real non-negative.
v

If 5 is & multiplicative functional on AV, then, of course, it is multi-
plicative on All'll and, as such, it is continuous with respect to ». Hence
§ defines a homomorphism of Z;, into complex numbers and, by Gel-
fand’s theorem,

<, > 513'172; =0,
which completes the proof. ’

2. A condition on a locally compact group. Let @ be a locally compact
group and let | M| denote the right invariant Haar measure of the set M.
Let 4™ = {ay,..., a,: a;eAd}.

CoxprrroN (C). For any compact set A in G and any ¢ > 1

4™ = o(c")

‘We note first that if G satisfies (C), then @ is unimodular, (c¢f. [2]).

In fact, if for a g in @ and a compact set 4 of positive measure such
that geA we have |Ag| = 4(g)l4l, then |4 > [4g"!| = [4[4(9)"7,
which shows that G does not satisfy (C), if only 4(g) > 1 for a g in &

Let A denote the I,(&) algebra with the unit element ¢ adjoined
to it, if @ is not discrete. Let, further,

4, = {ae+x: aeC, z in I(G) n L,(G) and compact support}.

Finally, let & — L, be the left regular representation of 4 on I,(G)
and let A(x) = |L,|-

TEBOREM 2.1. If G satisfies condition (C), then

(2.1) v(z) = A(x)
for o =@ in A,.

Proof. We mnote first that in case G is not discrete it is sufficient
to prove (2.1) for #* — win 4, = A, 0 L;(6) only. In fact, 4} is a C*-alge-
bra without unit and so

as n —> oo.

Az) = max{SpZ; 7} = max{S; Z{w}'
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Thus
AMae+ ) = max{SpElae—l—x} = ma;x{a—i—Spj,,w}
0 1

= sup {a+ 2" (M): MeM,} =v(ae+ x),
where M, is the space of maximal ideals of the *-algebra generated by z.
We then fix an element = o* with compaet support A in L,(@). Then,
for n> 2, .

o™ = [ la"| < 14"} o,
An
< A2 (@) ol
Consequently,
o (@) < Hmf[jalfy™ (|A"2)H"- 20 () = A(w).
N~>00

This, in view of the fact that »(») > A(#) is always valid for » = &*,
completes the proof.

CorOLLARY 2.1. Let B be a Banach *-subalgebra comtaining the unit
of the group. algebra A of a group which satisfies condition (C). If the elements
ag-+x with suppx compact form a dense subset of B, then any multipli-
cative functional on B is positive.

3. Groups which satisfy condition (C). Condition (C) has been already
invastigated by severial authors, especially for discrete groups, cf. [2],
[5], [6], [7], and [14]. The following simple fact (noticed by Emerson
and Greenleaf) provides an easy way of proving that Abelian and nil-
potent groups satisty (C).

THEOREM 3.1. Suppose that for every finite subset T of a locally com-
pact group G we have

card (™) = o(c")

Then G satisfies condition (C).

In fact, if 4 is an open set with compact closure, then there is a finite
set F such that A4 c 44 c FA. Hence 4" c F*'4 and so |47
< card (F™1) |4].

COROLLARY 3.1. If G is & locally compact nilpotent group, then G satis-
fies condition (C).

- A locally compact group G is called an [FO~ ]-group, if for every
g in & the set g% = {h1gh: he@} has compact closure.

It follows from the work of Gressev and Moskowitz [3] that [F0~]-
groups satisfy condition (O). It is also an immediate consequence of the
structure theorem of [F('-]-groups due to Robertson [12] which. depends
on [3] and the following trivial theorem:

. THEBOREM 3.2. If G is an extension of a compact group by a group which
satisfies condition (O), then G satisfies condition (C).

for every ¢ > 1.

icm
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TeEEOREM 3.3 (L. Robertson). & is an [FC~]-group, if and only if
G contains a normal compact subgroup K such that G[K = V X D, where
V is a vector group and D is discrete and [FO~].

THEOREM 3.4. Let G be a separable (*) locally compact group, H a normal
subgroup of G such that G[H = K is compact and H satisfies condition
(C). Then G satisfies condition (C).

Proof. We start with a few well-known and easy to prove facts.

Let # be the natural projection @ - @/H = K.

(i) There is a compact set ¢ in @ such that #(C) = K and the unit
element of @ belongs to C.

(ii) There exists a Borel one-to-one function 6: K — ¢ such that
6(K) is Borel and =,0(k) =k for k in K.

(iii) If M is a Borel subset of H, then §(K)M is Borel in @ and

[0(K) Mg = |Mla,

where |-|g and |-|; denote the Haar measure in G and H, respectively.
(iv) For any compact subset 4 of H and a compact set ¢ in @
A =|JglAgc H

geC
is compact.
Now let A be a compact set in . We have

A=AnJOEH=U 0F(H n 6(k)4)
keK

kK

(3.1)
e U 0(B)(H NG 4) = §(E)4,,
kK

where 4, = H n 01 A. Clearly, 4, is compact. We have
0 (k)20 (k) 0(k,) eC~CC N H < B,
where B is a compact subset of H containing 0~'00 n H and the unit
of the group. Consequently, )
(3.2) 0(%) 0(ky) = 8(kyky)b - with b in B.

By (3.1), we have
A" < (0(K) A"

Thus, if g belonges to A", then for some @y, ..., Gyedoy kiy -.ny BpeX
we have
(3.3) g = 0(k)ay... 0(k)a, = (k) ... 8(F,)alt-"Cn), gl

(1) This is assumed for simplicity sake. Since only subsets of compact sets play
role in the proof, it is sufficient to know that & is first countable and the general case
reduces to this because any locally compact group contains a compact normal sub-
group N such that G/ is first countable.

Studia Mathematica XXXVII, z. 2 5
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Tn virtue of (3.2), we define by, ..., byy in B by
0(%;) 0 (Rjpae- ) = 0(s . Fp)b;, J=21,...,n—L
_Then
O(k;) o O(ky) = 0(F; - p) bybyyy oo by_y-
If
0 = afl+rf), o § =1, m—1,
then a;cA§. By (3.3), we have
g =0{F ... bp)by ... b,y @l Falyee b, alfnla,
= Oy or )by e Dy @20l a0y ay,
= 0%y ..r To)DyaiDy s . by 1Oy 10y € O(K) (BAS’)”.
Consequently,
A" < 6(K)(BAS)y
and .
[A"g < |(BAS)"|g = o(c")  for any ¢>1,
because BAS is compact and H satisties condition (O).
4 Applications. [FC~]-groups. Let G be an [FC‘]-g’roup. For
a function # on @ we denote by «’ the function
o/ (h) =»(g" hg), heG.

Let A be the group algebra of ¢ and. let 3 be the center of A. It is
easy to verify that 3 consists of the elements ae+w of A such that o/ = &
for all g in G. '

LevuA 4.1. A Unear functional t on A satisfies

(4.1) (oy, 8y = {yz, ty  for all m,y in A
if and only if for weL,(G) we have
42) - & = [rpalpdy and ¥ =7 for all geG.

Proof. Trivial.

Let T denote the set of normalized. positive functionals on. A which
satisfy (4.1). Then, clearly, the v in (4.2) is a continuous positive-definite
function constant on conjugacy classes. T is a convex and w*-compact
subset of the dual space A’ of A. Let 9T denote the set of extreme points
of T,

THEOREM 4.1. There is a linear homeomorphism =™ of 3’ into A’ such
that

a*(3") =0T ’
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where 3" denotes the subset of 3’ consisting of multiplicative (non-zero)
functionals on 3.

Proof. We define a projection
7w A>3,

by “averaging over the conjugacy classes”.

Let m be an invariant mean on L (&). It follows immediately from
theorem 3.2 and [4] that such a mean exists; an independent proof of
this fact can be found also in [7]. For an « in A let F be a linear functional
on A’ defined by

E ) =mla, ), fedA'.

F ig continuous in *-weak topology of A’ beacause for a fixed  the
set {2#%: geG} is weakly conditionally compact and me(g) is a limit of
g

Zo;p(g;) with ;>0 and Zg = 1. Consequently, {F,f> = {=(=), >
for a m(x) e A. Clearly, = is the required projection and, since (z(z*=z), f)
= m{(#°)*s", f), we have w(z*w)eP.

g

Let
73 =>4

be the natural embedding of 3 into A. Then mon = id3. If »* and * are
the adjoined mappings of » and 7, respectively, then

(4.3) a3 - A

is & monomorphism and
R Y

is the restriction of a functional on A4 to 3. We have
(4.4) tex* (3') if and only if t satisfies (4.1).
In fact, if ¢ = «*s and z<L,(G) we have
W, @y = <ty a7y = (s, ma® Ty = (8, ) =t ).
On the other hand, if (¥, s) = <,z for a ¢ in A" and = in L,(@),
then
'ty 2y = (n¥t, wa) = G, 7wy = G, qgw") = '{r]n(t"“‘ @y = (&, o),

whence ¢ = n* (7*t).
By (4.3) we see that »” maps the set § of positive normalized fun-
ctionals on 3 onto 7. Since z* is linear and one-to-one, a* (88) = oT.
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By Theorem 1.1, 08 = 7" 0T consists of functionals which are multipli-
cative on 3 and positive. But, clearly, the set

30 = {as-+we3: aeC, suppw is compact}

is dense in 3, so, by Corollary 2.1, any multiplicative functional on. 3 is
positive, that is 3 = 88, which completes the proof of theorem. 4.1.

Spherical functions. Let G be a locally compact group, K a compact
subgroup of G. Let L, (K\G/K) be the Banach *algebra of L, functions
bi-invariant with respect to K, i. e. weL,(E\G/K) implies

2(k'gk') =w(g) for K, k<K and geG.

By a K-spherical bounded function on @ we mean a confinuous bounded
bi-invariant function ¢ on G such that

e = a,p, Where a,cC.

Clearly,
@ —>ay

is an IL,-continuous multiplicative functional on IL,(K\G/K). A spherical
function is called normalized if p(e) = 1, where ¢ denotes the unit efement
of the group. For a bounded normalized spherical function we have

a, = Jo(e(t)dt = <z, 07,

THEOREM 4.2. If G satisfies condition (O), then any spherical bounded
wormalized function 1is positive-definite.
Proof. If

A, = {ae+m we L (ENG[E) 0 L(E\G/K), supps compact},
then for any bounded normalized spherical function ¢ the functional

ae+ = a+<w, ¢}

is a multiplicative (eontinuo_us) funectional on Zo. By Corollary 2.1, such
a functional is positive on 4, = L, (E\G/K). We define a positive pro-
jection
m A -4,
by
w(ae+a) = ao+ [ w('gh”)dk'dl’" .
K
An argument very similar to the one used in the proof of Theorem

4.1 shows that ¢ = #*p for any bounded normalized spherical function,
which proves that ¢ is positive-definite.
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