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INTRODUCTION

The paper consists of two parts. Tn the first part the problem of
the construction of a continuous tensor product of Hilbert spaces is con-
gidered. There are two natural ways to approach this problem.

The first way is by defining in a given Hilbert space $ the so- -called
tensor structure, i. e., by assigning to every partition of a certain Boolean
algebra a unitary mapping from % onto an infinite (incomplete) tensor
product of Hilbert. spaces [8]. The notion of tensor structure appears
in a different form in a paper by Araki and Woods [1]. The authors have
found the general model for tensor structures. They show that in the
most interesting case of a non-atomic Boolean algebra (the “continuous”
case) the Hilbert space is in & natura al way isomorphic to an exponential
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Hilbert space in such a way that the tensor structure of § corresponds
to a certain natural tensor structure in the exponential Hilbert space.

The other way is to construct a continuous tensor product of Hilbert
spaces when a family of Hilbert spaces ($,)..x labelled by elements of
a space X with measure y is given. The construction is similar to the one
applied by von Neumann in the case of an infinite tensor produect of
Hilbert spaces [8].

One chooses a set of families (b,),.x; HoeH,, and defines the scalar
product as a continuous product of numbers of the form (hy | f);)@m (the
continuous product of values of a function is defined by the integration
of the logarithm of that function; some assumptions about the function
are made to ensure the correctness of the definition).

Constructions of the above type have been developed by Guichardet
[3] and Streater [9]. A problem that arises at the very beginning is the
positive-definiteness of the scalar product in the continuous tensor prod-
uet. This problem is considered in the first part of the present paper.

It is easy to show an example where the form used for the detinition
of the scalar produet in the continuous tensor product of Hilbert spaces
is not positive-definite. The example given in the present paper is prob-
ably well-known but has not been published. Dubin and Streater [2]
show an example but in a very complicated form.

The converse example, i.e., where the scalar product is positive-
definite, is shown, by Streater [9] and Guichardet [3]. The spaces $, used
in this case are exponential Hilbert spaces and the families (b,),.x are
chosen according to that structure. This turns out to be the only possi-
ble example. This is the point of Theorem 1. If the set of families used for
the construction is wide enough, then one can define in the continuous
tensor product a tensor structure. This makes it possible to apply the
Araki-Woods theorem.

We see that the two approaches give the same result. An analogous
situation arises when the direct integral is considered. The first approach
corresponds to assigning the decomposition of a given Hilbert space into
@& direct sum to any partition of a Boolean algebra. This leads to the
choice of a commutative family of projectors. The other approach corre-
‘sponds to the construction of a direct integral of Hilbert spaces (meagur-
able vector fields are chosen, one defines a scalar product and so on).

The two approaches are connected by the spectral Theorem of von
Neumann.

The second part of the present paper is devoted to product opera-
tors. Araki and Woods have found the general form of product operators
of a given tensor structure. From the theorem which. they have obtained
it follows that & product operator can be decomposed in a certain sense
into a continuous product of operators. The problem arises how to con-
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struct eigenfunctions of a product operator. In the case of a product of
two Hilbert spaces a similar problem (for operators of the form 4,81,
+I,04,) has been considered by K. Maurin and L. Maurin [7]. The
authors show that the generalized eigenfunctions of such operators can
be constructed as tensor products of the generalized eigenfunctions of
the operators 4, and 4,. In the case of the continuous tensor product
a result of that type cannot be expected even if all the operators consid-
ered have discrete spectra. The role of vectors of the form uew is played
in the case of a non-atomic tensor structure by so-called product vectors.
It iz quite easy to check that two product vectors are never ortho-
gonal, and thus they cannot be eigenvectors of the same Hermitian
operator.

Theorem 2 of the present paper shows a method of constructing
the eigenfunctionals of a product operator 4 from the eigenfunctionals
of the operators A, which are factors in the decomposition of A into
a continuous product. It is not known, however, what connection there
is between the functionals obtained in this way with the functionals
giving the decomposition of the Hilbert space into a direct integral [6].

The construction uses the fact that in the case of the continumous
tensor product § = 5@{&5;’)” the space $ and all the spaces §, are exponen-

tial Hilbert spaces (§ = %, §, = eP=). It is assumed that in the space
H a nuclear space & is embedded and that & satisfies some conditions
that allow us to define spaces @, c H, which are also nuclear. The next
step is to construct a space ¢” ¢ ¢ which is also a nuclear space. The
eigenfunctionals menticned above belong to the spaces (¢°) and (%),
respectively. The spaces (6”¢) can be embedded in a natural way into
(¢*)’, and thus to the eigenfunctionals of A, correspond some functionals
on ¢* which turn out to be eigenfunctionals of A. Their products with
respect to a certain bilinear operation defined in (6°) are also eigenfunc-
tionals of 4, This bilinear operation is generated in (¢®) = ¢® by the
operation of addition in &'.

The set of functionals obtained in this way is quite large. It is shown
that it separates the vectors of ¢® (Theorem 3).

The assumption of nuclearity of @ is not used in the proofs of The-
orems 2 and 3; it would be sufficient to assume that the topology of &
iy generated by a family of sealar products (@ is a projective limit of
Hilbert spaces). The nuclearity of @ is assumed because some conclusions
implied by it (e. g., the nuclearity of ¢ and ¢”z) can be useful if one wants
to find eigenfunctionals giving the decomposition of a Hilbert space
into a direct integral.

The author would like to thank to Prof. K. Maurin for his kind inter-
est in this work.
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I. Continuous tensor product of Hilbert spaces

1. DEFINITIONS AND FORMULATION OF THE PROBLEM

1.1. Conginuous family of Hilbert spaces. Let X be a topological
space, (Ha)eer — o family of Hilbert spaces, and I' — a family of mappings
b(-): Xoz->D(w)e®, such that:

1° for each By, heel” (By(-) | Bal-))g() it & continuous function on X.

2° for each weX the set {h(w):Hel'} spans the space $,.

Definition. A continuous family of Hilbert spaces iz a triplet
satisfying conditions 1° and 2°.

1.2. Continuous tensor product of Hilbert spaces. Let X be a locally
compact space countable at infinity, and u a Radon measure on X. We
assume that the following conditions are fulfilled:

(a) Bach compact connected component of X is simply connected,
and arcwise connected, and its measure is an integer.

(b) The one-point compaetiﬁcatién of each non-compact connected
component of X iz simply connected and arcwise connected.

(¢) Bach connected component of X is open and closed.

Let us define on X a continuous family of Hilbert spaces I" and an
element QeI” such that '

3° (Q(r)] (@) = 1 for each z¢X,
4° for each hel’, h(2) = Q(z) except for a compact set,

5° A /\(b1(m)!ba($)) #* 0.
B.hgel” aeX

Orn the set I'xI' we define the following function:
(B 1Be) : = exp ( [ Infp (@)/a(@)) dp).
X

. The‘ qopd.iti'ons satisfied by X, u and I' imply the correctness of
tl}ls definition if one takes that branch of the logarithm for which
;xir;]n(bl(m)]bz(m)) =0 in the Alexandrov compactification of X.

The function defined above has a Hermitian symmetry. It can be
ea.ztended to a Hermitian form defined on the space of formal linear com-
bma.f:ions of elements of I' with complex coefficients. If that form is
positive, then by using a standard procedure one can construct a Hiibert
space from the space of linear combinations of elements of I. We shall

denote that space by %75,.
. X

_ Defini’_oi.on. We say that a continuous tensor product is positive
if the Hermitian form defined above is positive.
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A continuous tensor product is not always positive. One can see

‘that from, the following counterexample.

Let X = [0,1], let u be Lebesgue measure on X, §, = C*, and I'
the set of functions of the form (1, f()), where (1,7(#))e €% f>0 and
coptinuous.

The positivity of the continuous tensor product is the same as the
positivity of the Hermitian matrix

@z = (b; | By)

for any choice of h,el', ¢ =1,2,..., 7. .
Let §, = (1, 0) and let h, and b, be functions from I' which approx-
imate sufficiently enough the functions:

. 1,0), w<i,
h.(z) =
1,1), =>4,
1,0 v<3
b;(m) - ( b )’ 2
1,2), ==>i.
Then
i, 1, 1
a; ~ |1, 1/5, V3.
1, V3, Vs

But det(a;) < —0.04 <0, whence (a;) is not positive.

The aim of the first part of the present paper is to find sufficient
conditions for the positivity of a continuous tensor product. We shall
begin with an important example.

1.3. Exponentjal Hilbert space.

Definition. An exponential Hilbert space is a triple (H, %, o)),
where H and ¢ are separable Hilbert spaces and ¢ is a mapping H — ¢~
that has the following properties:

(a) (€] €)e™ = exp(hy | ha)m,

(b) {¢": heH} spans the space e7.

The following lemmas state some elementary properties of exponen-
tial Hilbert spaces which will be useful later. A

LEMMA 1.3.1. The mapping € is a homeomorphism between H and
its image in e%.

Proof. Let h,— he; then (e'n|e*) - (6™|¢") for each heH and |||
— |le™]); hence ™ — ¢"%. Conversely, let ¢'» —¢"; then, for any heH,
(6" |6") = exp (h,|h) — exp(ho| k), and because the sequence h, is bounded
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([]c;"n” = exp(in}uhn]{)), we can choose a subsequence f,, such that

(hnl|h)—>(h0|h)+2k-rci (ke N depends on h).

But (hy|2h) — (ho| Ah)+ 2 Mered.

If one takes » non-real or irrational 2, Ak is an integer only if k = 0.
We see that from each subsequence of h, one can choose a subgequence
convergent to fig, 50 hy — hg- )

Lemma 1.3.2 (see [1]). The space e is isomorphic to the direct sum

HeHeoHyo ...,

where H, = (QH)? (the subspace of (QH)" spanned by the wvectors
hehe...eh, he H;H, = C*).
The mapping e takes the form
(®h)"
1/" Val

(U denotes the unitary operator giving the above isomorphism).
Proof. It is easy to see that (Ue"|Ud") = exp(hy|h,) and that
o0

Ue = 14ht —= -|-

the vectors Us", heH, span the space @H,. We see that U preserves
n=0

the scalar product and transforms a total set onto a total set, and so U
is unitary.
Levma 1.3.3. Let H, Hy be two Hilbert spaces; then a continuous linear

operator A :H,— H;||A| <1 generaltes a wunique continuous mapping
et: ™1 o7 such that ¢ e = 1M,

Proof. If ¢ exists, then it is unique, because it 1s deflned on & total
set in e, From Lemma 1.3.2 it follows that ¢4 @ (®4)" and so we
get |le*| = sup J4|* =1.

n=0,1,2,...
o Now we shall construct an example of a continuous tensor product
% $,- Let § = ¥ %4 and let x be a Radon measure on X. We take

I ={"):h(-)e0,(X)} and identify the space $, with the space ¢
spanned by the vectors ¢M®; ¢l h(w)eCr. Az Q we take e°.
I is easy to see that conditions 1°-5° are fulfilled and the scalar prod-

uct in ®5,, is the same as the scalar produet in § (I" can be considered
a8 a subset of §), and so it is positive. Moreover, I'is & total set in 9,

and so we have a natural isomorphism § ~ ®5,,.
. X

icm
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We shall show that under some additional assumptions this is the
rae

only possible situation when a continuous tensor product ®$, is positive.
X

In the proof we make use of a theorem of Araki and Woods [1] in a modi-
fied form, using the notion of a tensor structure.

1.4. Tensor structures.

Definition. We say that in a Hilbert space $ a tensor strueture
over a Boolean c-algebra B is defined if to each countable partition
B = V,B, (B being the maximal element of B) a unitary operator Uz,
is assigned:

(g,
Ugy : H— ‘?5-’%’ dim§z, >1.

The tensor product denotes here the incomplete tensor product
space of v. Neumann determined by the sequence of vectors (hg,), [8].

We assume the associativity of the mapping (B;)—> U(Bi) in the
following form: :

For each subpartition B; = VB, there exist (unique) unitary ope-

i .

rators
(hBy;gij)
UB{,(B,;,) 1551—’ ;@ 55Bii

such that
Uy = ( ‘? Upy ) © Usys
in particular (hp,) ~ (®hBi’Bﬁ) in the sense of v. Neumann.

EXAMPLE. We shall begin with a lemma about exponential Hilbert
spaces. ’ }
- 0
LEMMA 1.4.1. Let § = 67 be an exponential Hilbert space ond H = Q@ H,;
; i=1
then the mapping

%)
$26" > @6 e @i (0, denoting zero in H,),
i i

fod
where T = X'h;, h;eH;, can be extended to a unitary operator
i=1 :
%)

U: S)—>®e

Proof. The niapping e — @ehi preserves the scalar product and

trangforms a total set onto a total set.
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Now if § =67 is an exponentla,l Hilbert space and H = f H,du,

then to each partition X = UX (disjoint union of mea.sura.ble sets)
=1

corresponds the 1somorphlsmH @HX ,HX = f H,du, and, by Lemma
)

1.4.1, the isomorphism § = ®e These 1somorph1sms define in § a ten-

sor structure over the Boolean algebra of (measure classes of) measurable
subsets of X.

Definition. A vector heH is called a product vector of & given tensor
structure in H if under each of the izomorphismg U(B_i) of that structure
it becomes a vector of the form @bi y b €D

ExawrLe. The product vectors of the tensor structure defined above
are vectors of the form h = ¢ heH.

THEOREM (Araki-Woods). Suppose we are given in the Hilbert space
$ a tensor siructure over a non-atomic Boolean o-algebra B such that its
product vectors span . Than there exists an isomorphism

U: 96", where H = [ H,du
X

and B is isomorphic to the Boolean algebra of classes of measurable sets
in X, the tensor structure in § is isomorphic to the one in & defined in the
Ezample. The product vectors become vectors of the form ce®, heH.

2. A NECESSARY CONDITION FOR THE POSITIVITY
OF A CONTINUOUS TENSOR PRODUCT

Definition. A family I'" which defines a continuous family of Hil-
bert spaces satisfying conditions 1°-5° ix called equi-contractible if for
each pair by, h; of elements of I' there exists a mapping:

9: [0,1]X X ~ E(Jf)a;
with the properties:

@) Ag(E 2)eSy;

(b) g(1, @) =By (@), 9(0, ®) = by (®);
(e) the functlon [0, 1]1x Xs (t @) > (g (t, ©) [h(@))g,
each hel” and different from zero;

(d) for each pair K < 0, K being compact and @ open sets in X,
there exists a function y: X — [0, 1];

is continuous for

vIe =1, #lzo=
such that the mapping X > g(y(), #} is an element of I

icm
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(e) if Bo(x)

= h, (o) for.some z, then

bl(w

Remark. The existence of an equi-contractible fa.m.lly I' on X implies
some restrictions for the topology of X.

We shall assume that X is normal.

LemmA 2.1. Let I' be equi-coniraciible and let hel. Then the choice of
the bramch of In(by(-)1H(-))g 50) determines the choice of the branch of

In(g(-, )IH(- ))g,() on [0,1[ XX, ond |[Ing|)te (I)(w));,(z)i is bounded on
[0,1]x X.

Proof. The connected components of X are arcwise and simply
connected, and so are the components of [0,1]x X. From condition
(c) it follows that ln(g (t, ) |I)(m))§x can be defined on [0,1]x X as a con-
tinuous function of (¢, ). Condition. (b) allows us to fix the branch. The.
boundedness follows from conditions (d) and (e) because b, () = By(w)
= ¢(t, ) = h{z) = Q(x) except for a compact set.

Novr we are going to formulate the condition for the positivity of

To simplify the calculations we
(#)|h(z)) =1 {for each

g(t, @) = for all ¢e[0,1].

r,e
the continunous tensor product ?5,.

may assume without loss of generality that (Q
hel.

TeroREM 1. Let X be a metrisable locally compact space and u @ non-
atomic Radon measure on X, ond let X, p fulfil conditions (a)-(¢) of page 310
Let (X, ($,), I') be a continuous family of Hilbert spaces such that I'is equi-

o
contractible. Let the continuous tensor product ?5,5 be positive.
Then
1°. There exists an isomorphism
[Hodn

rnQ
U: (§ $H,— 65

such that the image of I" contains only vectors of the form ", he [H du.
x
2° For almost every weX there ewist 1somorphisms
U,: §,— 6

such that for heI' Uh(x) is a vector of the form 6"z, where Uh = €.
Proof. Let Z be a measurable subset of X. Let K, be compact and
0, — open sets such that K, c Z, K, c 0, and u(Z—K,) < ¢, u(0,—K,)
< & Toany hel' we assign an element h,el” such that b.ix, = hlg, and
holx_o, = Qlx_0, The assumption of equi-contractibility of I' implies the


GUEST


316 K. Napidrkowski

existence of such p, (one should take h; =D, h, = 2) and permits such
a choice of §, and of a branch of the logarithm that In(p,(2)|h' (=) = 0
for #eX— 0, and [ln(h,(#)|p’ (#))| is uniformly bounded (in ) for each
el
LEMMA 2.2. There ewisis a strong limit Xmb, if h, are chosen as deseribed
&0

above.
Proof. Let §'el. Then

(5.15")= exp [ In(h.(a)[D’ (@) du)
(A
= oxp( [InfB(@)H'@)du+ [ Wfp.@)]y @)d)
K! @‘—~Ks

=exp( [Ip@) b @)du— [ W@ (@)du+
z R Z-K,

+ [ mi.(@)0b @) du)-
0 K,
But |[In(p,(«)|y’ (x))| is bounded (independently on ¢); hence

[ m{p.(2) @)du = 0 and fm o)) dp > 0.

0K,

The strong convergence follows from the fact that lim [j,|| = ][hmf),ﬂ
(analogous calculations).

Let us denote hmf)z by b, and the subspace of ®$5x spanned by
the vectors §z, I)eP by $Hz. We are now gomg to define a tensor struc-
r,Q
ture in 5{@ e
Let X = |J X, be a countable partition of X.
=1

LevmA 2.3. Let B, ' eI Then the sequences of vectors (x)is and
(I)x‘)i 1 satisfy the condition

2} I(bx,bx,) — 1] < oo

=1

Proof. Let us compute the scalar product
Oxbix) = m (x| biexy) = imexp ( [ 1n 5(a) 9. (=) du)
N £ B> ‘Xi

= limexp( fln(l)(fi?)l[)' () du—
0 % .

~ ] mp@y @)aut+ [ @) (e)du).

X;~K, XK,

Continuous tensor products 31

But the last two integrals converge to zero as - 0; hence
(bx,lbx,) = exp( [In(h(@)[B’ (o)) ds
X3
and

[] 6xbx) —exp( [ (b)Y (@)du) = GIp)-
i=1 ) Ux;

1

Since the infinite produet is convergent, the sum _Z’[ (bx, ]bx) 1]
i also convergent.

COROLLARY. Vectors of the form ®I)X yhel, belong to the incomplete
(2x7)
tensor product space ®1$5X,.
€]

LEMMA 2.4. Vectors ®I)x y Del'y span the space 5‘5}:
Proof. "It suffices to show- that each vector ® B %, )@ ® th),
b’ el can be approximated by vectors of the form ®I)X, ,hel. Let us take

compact sets (K7, and open sets (0,)%, such that K, = X;, K, < 0,,
0; N 0; =@ for i #j (we have assumed the space X to be normal) and
(X, —K) <& u(0;— K;) <e.
We shall construct such a function I),e]“ that

b, &; = IJ |Ki and I)e|x—uwi = ‘QIX“U%'

We take, in the condition of equi-contractibility of I, h, = 2, b, =%
K =K,, ©® = 0, and we get a function b such that I)" & = I)‘ |z, and
5 x-0, = Rlx_0q,-

- For the next step we take §, =5, =0, K = K,, 0 = 0, and
obtain a function §* satisfying the conditions

I)Z, IKI =I)IIK1: I)ZI]K2 = I)zlxgy })2’ Ix—wluwz = Q]X—mluwz-

After n steps we get the desired function p,.

From this construction and Lemma 2.1 it follows that, for any I)ef'
In(5.(-)5(:)) can be bounded by a continuous function which has
a compa.ct support and does not depend on & A calculation analogous
to that applied in the proof of Lemma 2.2 shows that if e—0, then

b. "(®f)xm =® Lx,).
LevMA 2.5. The ma.ppmg I) »—>®I)X can be (umiquely) extonded to

a unttary ope’mtor U(X )¢ ® st—> ® SjX The operators U(X) define & ten-

sor structure in ® 55x
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Proof. From the proof of Lemma 2.3 it follows that the mapping
, QXi)
Ié}sf,X: Ish ®I)Xie(® Hx, preserves the scalar product, and from
X 7 i K

Lemma 2.4 we know that it maps a total set onto a total set, and so it
can be extended to a unitary operator. The fulfilment of the associativity
condition is obvious.

LeMMA 2.6. Vectors hel' are product vectors of the tensor structure

in ;g’a”ssz defined in Lemma 2.5.

Proof. The lemma follows immediately from Lemma 2.5.

Now we can make use of the Araki-Woods theorem. As a result,
we get part 1° of Theorem 1 and, moreover, we know that the tensor
structure constructed in Lemmas 2.3-2.5 under the izomorphism U of

the Araki-Woods theorem becomes the canonical tensor structure in
[ Hyu
¢ (i.e. such as the one defined in the Example).

Now we have to prove part 2° of Theorem 1.

Let us take a countable subset I', = I' such that vectors hel, span
the space ®3§$ and for w-almost every x vectors, h(w), hel', span $,.

The existence of such a subset follows from the assumption that X is
countable at infinity and metric.
From part 1° of Theorem 1 we know that to the vectors hel’, corre-

JH i
spond e*eeX  , and from the correspondence of the tensor structures

JHdn

ra N v .
in ?52: and in e* we obtain for each measurable subset Z < X:

_ (%I = exp ( [ In (5 (2)15 () )d/z) (6°21672) — exp( [ (| 1L) du).
zZ

This lmphes that
[ @) 5 @) au = [ (6518 du+2miin(2)
Z z :

and

f[ln(bl ) (@) — (1 #)1au = n(2).

i

We obtain in this way an integrable function, the integral of which,
ta.ken over any measurable set Z, is an integer n(Z).

LEMmA 2.7. Let f be such am integrable function that, for any measur-
able set Z, f fdp = n(Z) is an integer and let u be a non-atomic measure ;

then f = 0 p-almost everywhere.

icm°
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Proof. Let us assume that there exists an interval [a, 8], b > a > 0,
such that ,u,(f“l([a, b1)) > 0. Since the measure x is non-atomie, one can
divide the set f~([a, b]) into a finite number of measurable parts Z,
such that u(Z;) <1/b. Then

1
0< [fap<supf-u(Z)<b > =1,
Z; z; b

bub zf fdu should be an integer, and so ffd,u =0and [ fdp=0.

= Ha,b])
On the other hand,

_int fu(f ([ 0]) > o

j u{f (4, 5) >0
~*([a,b])

0= [ fip>
7 1(a,b))

‘We have a contradiction: 0 > 0.
From Lemma 2.7 we get

(b*(2) 1B () = exp (K| RL)

Since I', is countable, one can take a set X' with full measure such

for u-almost all weX.

that
(b*(2) b (@) = exp (hi|A)

The set (b(#))2; spans §, for u-almost all zeX and the set (A1),
spans H, for u-almost a,ll zeX (this follows from the observation that
if a set (6" )1_1 spans €7, then the set (A2, spans H, whence the sets
(Bi)2, span H, for w-almost all z¢X). Taking the intersection of sets
with full measure, we obtain the isomorphisms

U,: $.— %=  for p-almost all weX

with property U,h(z) = é"=, where hel and Uh = ¢* (U being the iso-
morphism from part 1° of Theorem 1). The proof is eomplete

for arbitrary 4,j and #¢X’.

3. AN APPLICATION OF THEOREM 1

Theorem 1 can be applied to the theory of continunous tensor products
of Banach #*-algebras. That theory has been developed by Guichardet in
[31, [4], [6]. We adopt some of the notation used there but to avoid con-
fusion with the notation used in present paper we must change some
of the symbols A continuous family of Banach algebras will be denoted
bY (Wy)pexs I') (instead of ((A;)r, I'). Elements of algebras 2, will be
denoted by f,, ¢, b, instead of =;, v;, #;.

Let ((Uy)ex f) be a continuous family of Banach *-algebras and
(Pr)nex @ family of states on 2, such that the function x> (%(fx)—l)
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belongs to Gy (X) for each family (f,),.x el It is possible to define a func-
tional &¢, on ®U,.

The problem is to find the conditions undel which, for the family
(Pr)oex, the functional &g, is a state on &UA,.

Guichardet has shown [4] that if @ ¢, is a state, then one can construct
a positive tensor product of Hilbert spaces as follows.

Let N, denote the left ideal of U, formed of elements f, such that
@u(fof.)= 0, and let §, be the Hilbert space formed from /N, by comple-
tion. Let L, be the canonical mapping from 2, into'$,, let 2, = L,e,
(the unity of UA,) and let I' be the family of functions (L,f;)z.x, where
(fz)zeer’ T in general does not define a continuous family of Hilbert
spaces because conditions 2° and 5° are not always fulfilled. These conditions
are not necessary for the construction of the continuous tensor product
of Hilbert spaces; it suffices to extend the definition of scalar product
in I'x I' by putting (b, [h.) = 0 if, for some =, (bl(m)lbg(w)) =0. I Q¢,

L9 .
is a state on ®U,, then the continuous tensor produch %Q{m is positive.

From Theorem 1 we get the following criterion for the functiona-
&p, to be a state.

PROPOSITION. Lét (¢,),x be a family of states on N, such that condil
tions 2° and 5° are fulfilled. Let I' be equi-contraciible.

Then ®¢, is a state if and only if for almost all x<X there ewist iso-
morphisms U,: §, — 6% such that

Uw({mem (fz)xcxef}) < {oghx; hyeH,, CECI}.

II. Product operators

1. THE OPERATION @

Let us have an exponential Hilbert space (H, 6%, ¢*). From Lemma

I. 1.3.2 it follows that we can consider ¥ as a direct sum
" = C'eHe(®H) e

and the mapping ¢') has the form
heh (@)

+ it —=
Var Yl
Let hee”; then h = 3'b;, b;eH; =

i=1

& =14n4—
(® H); and let

6,
={I)56H. \é/i\m),]‘[ <-2—,}.

icm
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We define

hot: = ]/( (5:8%) B, %eD,
k—oH—jK

where (b;e ),
space (QH)™ (i. e. symmetrization).

LeMMa 1.1 If D, TeD, then the sum in the definition of ho ¥ is conver-

gent.
Proof.
worr =| 3 3 /(8 (oenf - 3] > wskl/ (FJweraf
= 2 Py V08 et oot
< ;‘ 2 Y41 BICRENRAIRE BN
We use the inequalities
VG =36+
- and
[((55® F—i)sl (B5@ Te—g)e)| < 11(Dr® Fe—o)s I 11(B; ® F—s)sll < 1B Tl | (B2 Tyl

<
< Cy G[ Gﬁ O; _ 0%0? .
Sgf 2kt gl ok g%

We get

et < 37 23 (8 () %

k=0 ij=
00 oo
~ C}-C} 3
Y k2 =G0} Y o5 < oo
k=0 k=0

LemMA 1.2, The operation © has the following propertws
1° (potle’) = (Ble"): (Ele"),

2° gMo gl = ghthe,

3° @ is bilinear (but mot continuous).

denotes the pmj‘ection of hef¢(QH Yo (@H)
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Proof. The bilinearity of the operation e follows from its definition.

Let us calculate

- b
Botleh) = > M ]l/ﬁl(;) (Beet sl (@1

k=0 it+j=k

1

1
(we use the equality— = ——=——=—7=—; ¢ = k—1)
vV ViV g Y
i Vit Vit V(g

\ 1
:2 2 ‘m(@i@ff)sl(@h)k)

k=0 itj=k

‘We may omit the sign of symmetrisation because (@h)* is
symmetric. We use the equality (®h)* = (®h)! @ (@h).

_ Ve gicen)
‘% Vit 1__20—7;;-‘ = (Ble")-(E|e").

To prove 2° we compute
(1O e"]d") = (M1]d") (¢"] ")
= exp ((hy|h)+(hyl )] = (eM1+™2]e"),
Vectors of the form &* heH, form a total set; hence
FOe = Mt

2. EXPONENTIAL GELFAND TRIPLETS

.2.1. Exponential nuclear space. Let @ = H be a nuclear space embed-
ded in a Hilbert space H. We shall construct a nuclear space ¢® < 6,
L(?t us flenote by &, the pre-Hilbert space formed from & by a continuous
Hilbertian seminorm p,. The scalar product corresponding to p, will
be denoted by (-]-),. Let us take in ¢Z the subset congisting of vectors
,,e¢’ @<®P, and denote its linear hull by e®. In e_""we take the weakest topol-
ogy satis?ying the condition that the mappings ;3—> 6% (defined. by
the _glappmgs @ — @,) are continuous. By ¢ we denote the completion
of ¢”.
.’..I.‘he spa.o; ¢ can be considered as a subset of eZ. From the decom-
position. of ¢ (Lemma I. 1.3.2) we get the decomposition:

f= sz,,; fee®,  foe(@O) < (QH),

icm
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and the components f, satisfy the condition

D pr(f)E < oo,

where p” denotes the Hilbertian seminorm in (Q @,); generated by p..
The topology in ¢® is generated by seminorms e’= defined as follows:

&re(f): = (j (G

where p, is a continuous Hilbertian seminorm in &.

Remark. To construct the topology in ¢® we take all continuous
Hilbertian seminorms in @, not only a fundamental family. This is neces-
sary, because for equivalent seminorms p, and p, the seminorms ¢”= and
P8 are, in general, not equivalent. Similaxly, p,-3 p, does mot imply
é’s-3 ¢°# (but from Lemma I. 1.3.3 we have p, < py = 62 &8),

Levma 2.1.1. If @ s o nuclear space, then 6® is also muclear.

Proof. Let p, < ps. Then

(@l9)a = (0| des¥)s;  © e, ApeL(Dy).
The nuclearity of the space @ means that for each p, there exigts
a p, such that Tr(4,s) < co. Multiplying p,; by & constant, we can get
Tr(4,) <1. Since €=< ¢'s, we have
(f19)e%= = (f|Busg)e™;
From the decomposition of ¢” and definition of é?= we have

f, gee®y BzeL(6®F).

Tr (Bog) < LT (Ap) o (T2 (Agg)) 14 .. < o0

This means that e® is nuclear.

Remark. The embedding @ = H is not necessary for the construc-
tion of €%, but it simplifies some notation and gives at the same time
the construction of a Gelfand triplet ¢ = 67 < (%)

TEMMA 2.1.2. Let £e®'; then the functional & defined on e by

G, %-Zf,—) f =;§fm

where fee®, fe(@ON, & = fote ... 0 Le(RO)y, is linear and conti-
NUOUS.

Proof. If £ iz continuous with respect to the seminorm p,, then
o is continuous with respect to the seminorm 6%, The linearity of ¢ is
obvious.

Studia Mathematica XXXIX,3 7
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If the strong topology of the space @’ is also generated by Hilber-
tian seminorms, then one can construct a space e in the same way as
¢” was constructed from @. The spaces ¢® and (¢®)’ are, in general, not
isomorphic.

Exavpie. Let @ = C!. Then the continuous Hilbertian seminorms
are P,(p) = a-lpl; pC, a> 0. The elements of the space ¢® can be
represented by sequences (,)Y; z,e(® CYT = C! such that

oo
2(!%]'0‘")2 < oo for each a>>0
n=>0
and
12

&2((@,) = ( Y (- ay)
n=0Q
This means that the elements of (¢°)’ can be represented by sequences
(¥,)° such that :

W, < o™ for some a>0

and

oo
@)y @)y = D) B
. n=0

We see that the elements of ¢® are fast decreasing sequences whereas
the elements of (¢%) are slowly increasing sequences.

The spaces @ and @’ are in this case isomorphic; hence, ¢® and ¢*
are isomorphic. Combining these facts, we see that even if ¢* and (e®)
were isomorphic, the isomorphism would not be generated by the formula
of Lemma 2.1.2.

- Let !D'_pa denote the Hilbert space conjugate to @,, considered as
a subset of @', and let 6” P« denote an analogous subset of (¢%)'.

Leyma 2.1.3. Let Pa<Pp. Then 6" P = e¢"pﬂ, and for arbitrary

06”12 the following inequalities are fulfilled:

0 b ,
”Q“”(*zpﬁ)"<—2—n7 where e = Z Ons Qne( ®@_,,a)g-

n=0

Proof. The sequence lonll~py» is square summable, whence it is
bounded. Let [lo,ll_, Jn < C. But

c
lonll(—pn = 2””9«1”(-217/,)”: o
From Lemmas 1.1 and 2.1.3 it follows that in the space (¢®) one
can, fieﬁne the operation © by the same formula as in Lemma 1.1. If

®_ @ ,
pee 1"&, gee P8, then ge vee” ~Pr, where p,>p, and P, > ps. The
operation © is defined for every pair ¢, o of elements of (6%)'.

whence [lg,l(~apym <

icm
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Lemma 2.1.4. The operation © has the following properties:

1° © 4s bilinear and continuous on (&%) X (¢%)';
20 if ped, then :

{6%, goo) = (&%, p>{e% o).

Proof. The lemma follows immediately from Lemmas 1.1, 1.2 and
2.1.3.

2.2. Continuous family of Gelfand triplets. Let § =e¥ be an exponen-
tial Hilbert space and H = [H,du, X, u being a space with measure. We
X

denote ¢z by §,. Let ® « H be a nuclear space whose elements are
functions on X with values in H,. We assume that for each h,eH, the
functional

Ehz: D39 > <{g, fha): = (‘P(m)\hw)ﬂx

is continuous (i. e., belongs to @),

For each weH the mapping 6,: D> ¢ > ¢(2)eH, is weakly continu-
ous, and by the closed graph theorem it is strongly confinuous. Let
3 < ¢® be the set of vectors ¢, pe®. We define a mapping:

- . e > " P e,

This mapping can be (uniquely) extended to a linear continuous

" mapping ¢® — $,. We shall denote the extension by e’z. The possibility

of constructing that extension follows from the fact that each £ <@’ defines
a functional é*<(6®)’ (see Lemma 2.1.2).

Let @, be the image (in H,) of @ under the mapping J,. We take
in @, the topology induced by that mapping. Then @, is & nueclear space
as a quotient space of @.

By using the mapping ¢°z, we obtain in the same way the space (6%),.
It is eagy to see that (¢%), = e¢™=. We have got two families of Gelfand
triplets:

b,cH,c @, €*cH,c (e%=),
and the triplets:
ScHcd, 6 c$cl(e.

3. PRODUCT OPERATORS

Definition. An operator AeL($) is called a product operator of
a given tensor structure in § if for each isomorphism of that structure
Uxy: $~ ®9Hx, the operator U(Xi)AU(‘Xli) has the form ?AX*‘
T
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. In each space §, let 4,eL($,) be an operator such that A, ({¢": heH,})
< {e": hyeH,}. If for each heH the vector field (hy,)uex defined by 4,6,
= ", belongs to H and the mapping & +>¢™ can be extended to a linear
operator AeL(9), then we say that 4 is a continuous p_x:oduct‘ of the
family (4,) and write 4 = [] 4,.

&
It is easy to see that A is a product operator of the canonical tensor
[Hodp ’

structure in § = ¢X . From the results of Araki and Woods it follows

JHydp
that for each product operator A eL(e*

) one can find a family (4,)
such that A = [J4,, 4, eL(e%=).

Let us take a product operator A such that Ae® < ¢®, 4 is conti-
nuous on ¢® and there exists & family (4,) such that A4 — [14, and

z
A,6% < 6%, and A, are continuous on ¢%. Since 4 transforms product
vectors into product vectors, it preserves the set {¢%: pe®} and A, pre-
serve the sets {¢°@: (@)@, ). '

Problem. How to construct the eigenfunctionals of the operator
A from the eigenfunctionals of the operators 4, ¢

Luwwa 3.1. Let e, c(6%) be an eigenfunctional of A, . Then the fun-
ctional e, defined as ’

gmaf =< Ba:n>: = <6%“fy Oz,
is an eigenfunctional of A.
Proof. Let f = ¢%, pe®. Then
J{D

CAfy ez = e (Af), 6,0 = {(Af) (o), €5
= <Axof(”o)z 3x0> = le,_.o {f(@o)y ga:o> = {f, Ewo>‘]'6wo'

The vectors f = e” span the space ¢®, whence
AT,y ey = D (f, ey

. THEC;REM 3 Let A be a product operator such that Ae® c %, its restrio-
tion A:e® ¢ mw continuous and there ewists & family (4,) such that
4 = ]I'[Az,Ame =< 6% and A,:e®c—> 6% are comtinuous mappings. Let

for each fee®.

(€28)im1,...,n be the eigenfunciionals of A,
Then the fumctional

a1 @ o8 @ : i o0
0820 ... ognes”,  where &l = eioe ™
is an eigenfunctional of the operator A. '

Proof. The theorem follows immediately from Lemma 2.1.4 and
Lemma 3.1. The eigenvalue is in this cagse the product of the eigenvalues
of 4. corresponding to the eigenfu,nctiona.ls*e;ti‘.

..«
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Remark. The set of eigenvalues of 4 has the property that if 1, 4,
are eigenvalues of A, then 4;-1, is also an eigenvalue of A. Because the
points @; are not necessarily different, each A, has the same property.
Nevertheless, since the whole construction depends on the choice of the
space @, we cannot conclude that the spectra of A and 4, have the same
property.

THEOREM 3. Let the assumptions of Theorem 2 be fulfilled. Then the
functionals o ... exn separate the vectors of e”.

Proof. Let fee®. Then f = Yf.,f, (D).
n=0

Since the elements of ¢ are functions on X with values in H,, the
elements of (® D) can be considered as functions on (XX XX ... X X)
with values in H, ®H,e...0H, . The condition (f, s> =0 for an
arbitrary functional ! gives fo =0, f; =0, f (2, ,...,2) =0 for every
weX. From the condition (f, ejle2> =0 we get more complicated
relations, which imply f, = 0. Taking the conditions (f, ezles2o ...
coogky =0 for k=1,...,m, we get f, =0 for k< m; hence, if
(fyeoego...ogny =0 for every collection of functionals e, then

f=0.
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