e ©
lm STUDIA MATHEMATICA, T. XXXIX. (1971)

Limit and infinite integral of a Mikusinski operator
by
ERNO GESZTELYI (Debrecen)

Introduction. It is well known that the convolution gquotients of
Mikusiviski have a double character. We may regard convolution guotients
ag operators and thus the theory of Mikusinski provides an algebraic
foundation of Heaviside’s operational ecalculus. On the other, convo-
lution quotients may be regarded as generalizations of functions ([2]).
In [9] is shown that every distribution with left-sided bounded carrier
is an operator, but not every operator is a distribution. We may thus
consider Mikusiniski’s convolution quotients as extensions not only of
functions, but also of distributions with left-sided bounded carriers.
In this paper we deal mainly with the function character of the convo-
lution quotients. Therefore, the convolution quotients will be referred
to here mostly as generalized functions and rarely as operators. We shall
denote generalized functions (that is convolution quotients) by symbols
{f(t)}, {g()}, ete. It should be remarked that thiz notation is purely sym-
bolic and, in general, it is not allowed to substitute numbers for the varia-
ble . For example, the Dirac delta function is {§(¢)} =1, where 1 is the
unit element of the field of convolution quotients (i.e. of Mikusiriski
operators). :

By the derivative of order n of the generalized function {f(f)} we
understand the generalized function s"{f()} where s is the differential
operator, i.e. the convolution quotient {1}/{f}. In this case we write

® {0} = "{f )}

. ,
The “indefinite integral” { [ f(r)dv} of the generalized function {f 3
is defined by the equation e

@) { [ =< trp

Thus, for example, { [ 8(v)dr} = {H(t)}, where H(t) =0 if 1 <0
and H(t) =1 if 1= 0. -
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The “ordinary” product {—if(f)} of the generalized function {f(i)}
by the function —7% is defined as follows:

8) {=9 @)} = D{f(0)},

where D{f(t)} is the algebraic derivative of {f(¢)}. For example: {—#4 (1)}
= D1 = {0}. The “ordinary” product {p(f)f(:)} of the generalized func-
tion {f(#)} by a function @(¢) can be defined similarly by means of an
operator transformation commutable with D ([3]). However, we need
here only (3).

The purpose of this paper is to introduce the notions of the limit
and the definite integral for generalized functions (i.e. for Mikusiriski
operators), which are well known in the theory of distributions (see [4], [7]).
In Section 1 we introduce the concept of the limit at oo for generalized
functions. The limit at co will be used in order to define an improper
integral of generalized functions (Section 2).

The last section contains Tauberian theorems in which conclusions
about the existence of the Lebesgue integral of a locally integrable func-
tion are drawn from the existence of the generalized integral with certain
auxiliary conditions.

§ 1. The limit of a generalized function as ¢ - co. Let £ be the set
of all in general complex-valued functions, vanigshed in (— oo, 0) and
integrable in the Lebesgue sense in each finite segment 0 <t < 7. Let
# be the field of Mikusiriski operators. {p(f)}, denotes a funetlon which
iRe)ift>0and 0if £ <O.

THEOREM 1. If f(¥) belongs to & and if
1.1 LEmf(t) = a
. t->00,
exists, then the sequence of fumctions {f(nt)} (n =1,2,...) 48 convergent

. . a .
n M to the function {a}, = 3 Moreover, the sequence of continuous func-

- { ft f(m)dr}

tions

(12) 0a ) = {00}

is convergent to the limit

(1.3) 9@} = = = {at},

uniformly in any finite interval [0, TT().

(*) An analogous theorem is proved by Marjanowié [4]. °
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Proof. Fix ¢ >0 and T >0. Then there is an integer N, so that

(1.4) If(t)—al < ——

. 2T
whenever ¢ > N,.

Since - {|f(t)—al}, ¢ £, there exist functions ¢, (f) and ¢,() such that
(see [6], p. 45)

() [f@)—a| = @)+ @u(f)  for 0<i< Ny,

(i) @:(t) is bounded and integrable in [0, V],
Ny

(iii) [ lea(m)l @z <e.

We extend these functions to (N,, co) such that g,(f) =0 for > N,

and ¢, (t) = |f(¥)—e| for all £ > N,. Thus, in view of (1.4) and (ii), there
is a constant K >0 such that
(1.5) ()] < K
for every te[0, co). Let 0 <t T. I 0 <t< ¢[4K, then, by (i), (iii) and
(1.5),
12
(16) lgat)—g(t)] = | f (o) alr| < [ 1f ) —aldn
e[AK £/4K eJAK
<[ 1em-dar< [ immolat [ lp o)
[} 0 0
oAR . 1 nsf4K
<[ It f lpa(@)]de
LM :
EK-F Zf lpa (o )ldo'< +
Hence
/4K
(1.7) g () —g@®) < [ 1f(ne)—aldr < o2 <

0

for all # > 4 and te[0, /4K I T> 1> 7> s/4K, then

4KN 4KN, =
m>——r>—— =N
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for n >4KN,/¢ = N,. Thus, it follows from (1.4) and (1.7)

t 112y :4 11
0n()—g 0] < [1fnm)—aldr = [ |f(ne)—aldr+ [ |f{nr)—alde
0 0 /4K

& € : & < & + & T
Lot f Yl =
<y Ter\'Tum) ST Ter T
for n > max (4, Ng) = N. This proves the theorem.
Remark. If {f(nt)} - {a},., then

s{f(nt)} - s{a}y = s% = a.

Thus, in virtue of Theorem 1, we have the following staterment: If Imf(s)
exists, then oo
(1.8) limf(3) = lims{f(n?)}.

>0 N->00
In connection with (1.8) we observe that the existence of the limit on
the right, where the limit is understood in the operator sense, does not
imply the existence of the ordinary limit on the left. Just this situation
suggests a generalization of the ordinary concept of the limit.

Before we give the definition of the generalized limit, we make use of
the operator transformation U,. We shall need here certain properties
of this transformation. The proofs of these are given in [3] and [5].

(I) The transformation U, defined for » >0 as follows:

. N_TH o f
U = ¢ ¥ ] = — e €¥.
oD = ot it fee, U (L) B Lk ges
(IT) U,(zy) = U,(x) U,(y) for all o, ye . (Multiplicativity.)
(s . et F gt
(III) U,[R(s)] = R(n) for  R(s) — T

(Ggy -evy Oy Boy + ooy Py &6 NUMbETS).
(IV) If, for any y e #,
lim U, (y) = o

N=>00
exists, then the limit o is always a number.
(V) U,D =n«DU,.
We now turn to the definition of the generalized limit. Let fe#.
Then, by (II) and (III), we have

s{f(h} = —{nf(u)} = Tn(s) V() = Unla).

icm°®
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Suppose that (1.8) holds, then we may write

(1.9) mf(t) = lim U, (sf).

{0

 The expression on the right of (1.9) may have a reason even if f is not

a function or elge if limf(¢) does not exist.

100
Definition 1. Let {f({)} =f be any generalized function such
that the limit lim U, (sf) = a exists. The number a will be called the

=00

limit of the gemeralized funciion f(t) as t — co and will be denoted by

(1.10) Limf(t) = lim U, (sf).

{00 N~>00
The principal properties of the generalized limit are summarized
in the following theorem in which {f(#)}, {g(?)}e .#.
TuroREM 2. (i) Limf(t), if i ewists, is unique.
00
(il) If f(t)e £ and Himf(t) = a then Limf(f) = .
00

t—c0

(i) If Limjf(t) and Limg(t) ewist, then
00

t-00

Lim [f(#)+¢(#)] = Limf(s)4- Limg ().
t-+00 t—00 100

(iv) If Limf(t) ewists, then
t+00

Limif(f) = ALinf(t)

t>00 {0

for each number 2. )

The proof of (ii) follows immediately from Theorem 1. The proof
of the remaining properties is very simple and will be omitted here. )
‘ Several examples will be given to illustrate some further properties
of the generalized limit.

Exampim 1. If  # 0 (o is a number), limsinet does not exist in

#->00

the ordinary sense. However Limsinot = 0. In fact
>0 -

. 8 .
Limsin ot = lim T, [s{sinet},] = ln —{nsinont}, =0
t—c0 n->00 nroo W

in consequence of

¢
1 . 1— coswnt}
. {sinont}, = {f sinonvds) .

nw
0
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ExAvPLE 2. Limeoswt = 0 (v 5 0); indeed, in view of (III),

=00

s 2
SR oy
lim U, [s{cos wt},] ~th —] =lim ——'— =0.
n—>00 +002 noeo [ S z
=) +of
n
BxAverz 3, Limé = 0, indeed,
{->00
8
Lime' = lim U, [s{¢}, ] = lim Un( g ) —lim—" —o.
{00 N0 n—>c0 s—1 N->00 i 1
n

ExAMPLE 4. Limi fails to exist. Indeed,
=0

U,ls{t},]1 = U,[{1};] = {n},
does not converge in the operator sense.

Examrre 5. The sequence of the operators

Ty{6}) = U [s T

l a
. ] = (a+1)T, (—) = T(at+1) =
s s 8
diverges obviously provided o > 0. Therefore Limi* does not exist for
a>0. e

ExaMpLE 6. To show that L1m1n(t+1 ) fails to exist. Suppose, on

the Contrajly, that

as m — oo, where a is necessarily a number. Hence, by the continuity
of the algebraic derivation,

o,

In order to obtain a contradiction observe that’

L {———1 } 0 0
= >0 =
w \t+1/nl s a=%

(1.11) U ls{n(t-+1)},] =

D(a) =0.

icm
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in consequence of (1.11), and thus

R e R T s

as n - oco. Thig proves the statement.

§ 2. Infinite integral of a generalized function.
DeriNIrIoN 2. Let {f(f)} be any generahzed function. If Lim f flz

{00 —00

exists, then we say that the infinite integral f f(z)dv exists and,

.1) J f7)dv = Lim ff

Applying (2) and (1.10), we may write (2.1) in the form

(2.2) [ flz)dr = Im T, (f).

As an immediate consequence of the Definition 2 we have

oo

[Uf@+g@ld = [ f@d+ [ g(v)ds,

—00

j?ﬂf(r)dr =2 ff(f)dr

128

¥
for each complex number A provided that the integrals in sense of Defi-

nition 2 exist.

Since ”{u(#)} = {u(t+1)} holds for all u(¢)eU (see [5]) it iz natural

the following definition.:

DEFINITION 3. By the shifted generalized fumction {f(i+2)} of the

generalized function {f(f)} we understand the generalized function

{FE+2)} = {f (1)}

then

o

J fx)ax

~-00

[ fe+ i =

for each Ae(—

00, co).

TEHEOREM 3. Let {f({)} be any generalized function. If [ f(v)dv ewists,
-~00
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A
Proof. Since lime® = 1, it follows from the multiplicativity of
U, that e '

0

[ fe+rar = ]im Un(e“f) = lim[Un(e‘s) U,.()]

~00

—hme” th ) _th (f) = ff(r)dr,

n—>00

which proves the theorem.

Let ., denote the set of all generalized functions f = p/ge 4, where
P,qe¥ and g does not vanish identically in any right neighbourhood
of 0. It can be verified that every generalized function {f(f)}e.# has
a shifted generalized function {f(t— A)} by sufficient large 1 >0 such
that {f(t— 1)} e #,. Thus, in consequence of Theorem 3, we may restrict
ourselves to the integrals of generalized functions of the set #,.

Let {f(f)} be a generalized function of .#, which is integrable in
the sense of Definition 2. We shall use, in this case, the notation

[ f@a = [ floy.

THEOREM 4. If f(t) belongs to & and if the improper Lebesgue integral
[ f(z)dv emists, then
0

o 1
2.3) - ‘ Df flxyde = Iigl of flx)dr

This theorem follows immediately from Theorem 2 (ii).
’i‘he following examples show that [f(r)dv may exist in the sense
) 0

of Definition 2 even though it fails to converge in the ordinary sense.

@ 1
ExamPLE 1. { sinwrdr = — (o 5 0). For,

0 w
1 . 1 . t sin wnt AN 11
Gtomon. = smons, =L - (1) 22

as n — oo,

ExawmpiE 2. [coswrdr = 0 (o 5= 0). Indeed,
0
1 1—cosont
EE Un{COS (ut}+ = {T}+ =0

as n — oo,
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ExAMPLE 3. f ldv fails to exist. In fact, U,({l},) = {n}, di-
verges.

ExampLE 4. The integral of the delta function exists and

o

[ d(@)dr =1.

0

Since the unit element of .# is the delta function and 1e M, we have

[ 8(x)dr =1m U, ({5(5)}) = Lm U, (1) = lim1 = 1.
[ o0

N0 n—co
ExAmMpIE 5. [edv = —1.
Proof. ¢
fe'drwlimU({e‘})—limU( ! — lim — 1
pose T T e M\5—1) e sfn—1

0

§ 3. Tauberian theorems. In this paragraph we will prove some
theorems. Several of these theorems involve “Tauberian” inferences from
the integrability in the sense of Definition 2 to the existence of the
Lebesgue or improper Lebesgue integral, subject to auxiliary condi-
tiona.

We shall be concerned mainly with improper Lebesgue integral
defined for f(f)e.# by the ordinary limit

i LS
(3.1) lim [ f(z)dz = [ f(z)dx
P00y 0
In this case f(#) is referred to, simply, as integrable in [0, co). Integra-

bility in [0, co) in the sense of Lebesgue demands more, then (3.1). f(2)
is said to be, in this case, Lebesgue integrable in [0, oo). If

i 0
(3.2) Lim f f@)de = [ f(r)ar
t00 § 8

exists, then f(¢) is called integrable in the operator sense.

‘We will first introduce a necessary condition for f() to be integrable
in [0, co).

THEOREM 5. If f(t) is integrable in [0, co), then

(33) %Un(f):‘{fm f@ i,


GUEST


128 E. Gesztelyi
as n — co. That is, the sequence of the continuous Sfumctions
ftf-ﬂf(%a)dudr (n=12..)
00
converges uniformly in each finite interval [0, T] to the function At, where
A = ff(-r) dv is the improper Lebesgue integral of f(1).
§ /

Proof. The ordinary limit imF () = 4 exists for the continuous
i =00

tunction F(t) = [f(r)dr. Then, in virtue of Theorem 1,

%Z—Un( )= { f of azf(na)dadr}+ - { oft F(nr)dr}+:; (A}, (0> o).

Remark 1. This theorem asserts somewhat more than Theorem 4.
In general a sequence of operators a,e . is said to be convergent to the
operator ae.#, it there exists a sequence of continuous functions g,< %
(n =1,2,...) such that (%)

(A) 4 3g #0  (n—> o)
(B) S Gp Oy, 0ae%  (n=1,2,...),
(© Gutyp g0 (n > ).
Thus Theorem 5 states that, under assumption of the integrability,
it is possible to choose g, = {f}. = s—]; ‘

Remark 2. The Examples 1 and 2 of § 2 show that (3.3) is not
a sufficient condition for f(¢) to be integrable in [0, co),

'We shall need the following definition:

DEFINITION 4. Let a, ¢ 4 (n =1, 2,...) be a sequence of oi)e_ra.tors.
We say that the convergence of the sequence a, is provable by the sequence
of continuous functions ¢,e% (n = 1,2, ...) if the properties (A), (B) and
(C) are fulfilled. -

THEOREM 6. If f(f) belongs to £ and f(t) > 0 for all t and if

1
FS‘{ Un(f) = {At}+

as n — oo, then f(t) is Lebesgue integrable in {0, oo) and holds

A = ff(-r)dr.

(%) The symbol f, =z f is to be understood that the sequence of functions f,
converges to f uniformly in every finite interval [0, ] a8 n — oo.

@ © _
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This result follows, in an obvioﬁs way, from the following more
general theorem: .

. THEOREM 7. Let f(i) be a non-negative function of L. If the convergence
of U,(f) (n =1,2,...) is provable by a sequence of non-negative continuous
functions g, of €, then f(t) is Lebesgue integrable in [0, co) and holds

lim T, (f) = fmf(rjdr.

Proof. Let 4 = Lm U,(f). Then, necessarily, 4 is anumber (prop-

n—oc
erty (IV) of U,). Since the convergence of U, (f) is provable by ¢, > 0,
‘we have '

(3.4) € 29=0 (g%, ¢ 20 in [0, o)),
(3.5) G Un(f) 3 4g  (n— ).

(3.5) can be written in the following form.

. i nt
(3.6) f ¢, (i—7)nf (n7)dz = f 0 (t—— %) F(o)do = Aq(1).

Since ¢,(t) =0ift <0, (3.6) can, be written in the form

3.7) f a0, (t—— —;—)f(a)dq 3 Agll) (n > o).

0
Let #* >0 be any point such that ¢(i*) > 0. Then it follows from
(3.4) that

.5 o 17~ ) 110 > 0700
for every fixed o> 0 as n — co. Furthermore, by hypothesis
n (t*— %) fe)>0
for all ¢ > 0. It follows from (3.7) that
5.9) T (r— ) 1o > 44)  (n 0.
o
Thus the assumptions of the Fatou lemma are satisfied ([6]). Consequerntly,

q(t")f(o) is Lebesgue integrable in [0, oo). ,
Thus, considering that g(t*) # 0, f(o) is Lebesgue integrable too. Then,

in virtue of Theorem 4, A4 = lim U,{f) = [ f(r)dv, and the proof of the-
theorem is completed. e 0

. Studia Mathematica XXXIX.2 2
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It is an elementary fact that Limi*f(f) = 0 (fe#), is sufficient for
t>o0

f(?)- to be integrable in [0, co) provided « >1. Obviously, the condi-
tion .

(3.10) Lm#f(t) =0 (fed)

tro0
already does not imply the integrability of f(t) in [0, co).

However the following well known Tauberian theorem holds
(11, [8]):

THEOREM T.-If f(i) belongs to & and if the integral

0

P(p) = [ f(x)e v

0

converges for p >0, then the conditions -

lim F(p) = 4, lmif@) =
>0+ t—o0 .
imply
= [f@)ir =
0

‘We prove now a slinghtly similar result.
TaEOREM 8. If f(f) belongs to £, then the conditions

%Un(f):;At (1 — o0),
(3.11)
limitf(t) =
tso0
imply
3.12 = r
| (3.12) }fguff off(r)dr.

Proof. Integration by parts gives

it nr

U(f) fff oladr—tff da——f of(5)do.

Thus, by hypothesis,

i nt

quw~%J¢mwzm (> oo).

0

(3.13)

Consequently, for each & >0 and each T >0 there is an integer

icm°

®

Limit. and infinile integral of a Mikusiiski operalor 131
N = N(e, T) so that
ni 1 nl :
(3.14) tf f(a)da-——-f af(a)da—At} <e
n
[\ [1]

whenever n >N and te[0, T').
Let T>2 and let 1 <¢t<T. Then ,

ni
(3.15) a—%‘f of(a)ﬂla——At < % <

for > Nsand 1<i<T. Let z >N+1. If n = [2], where [z] is the

greatest integer < =, then, obviously, n =[2] > N. If ¢ = z/[x], then
2 [2]+1

— <<

[#] [#]

<2<T.

=

Thus, from (3.15), we get

(3.16) U?f(a)da——:j f o'f(tr)do'—Ai <s

for # > N+1 = N,. It follows from (3.10) that
1 x
lim f of(a)dcr -

Thus, it follows from (3 16) that ].lm f flo)de = A, so that the resulb is
established.

‘We wish to obtain in the sequel the same eonclumon ag far as possible
by weaker additional conditions. The condition (3.10) is not necessary

for f(t) to be integrable in [0, co). Namely [ f{r)dr may exist in the Lebes-
0
gue sense even if limf(#) does not exist. The next theorem shows that
0

the situation is different in the case of the generalized limit and genera-
lized integral. )

THEOREM 9. The necessary condition for the gemeralized fumction f (1)
to be integrable in (— oo, oo) in the operator sense is that

(3.17) Lim#f(#) = 0.

t—o0
Proof. Since ff(r)dr —-th (f) = a is a number, it follows, by
the continuity of the a.lgebra,m derlva,tlon, that

DU, (f) >D(a) =0 (1 —> o0).
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Hence, by the property (V) of U, using the definition (3) of the ordinary
product, we get

Limf(t) = lim U, [s {f()}] = lim - U, [~ D(f)]

{00 00

= —11111—nDU (f) = —slimDU,(f) =0,

oo n—>00

and the theorem is proved.

We see, by virtue of this theorem, that we cannot obtain a genera-
lization of Theorem 8 supposing (3.17) ingtead of (3.10). The condition
© (3.17) is too weak, sinee (3.17) is not any restriction under thechypothesis
(3.11).

The condition (3.17) is equivalent to

(3.18) Lm U, [s{tf(t)}] = 0.

In the following theorem we shall suppose

(3.19) -;— U [s{f@ 30 (n > )

instead of (3.10). The condition (3.19) is weaker than (3.10), but stronger
than (3.18). In this case also the condition (3.11) may be relaxed somewhat.
‘We note that (3.19) is expressible in the form

nt

1 1 1
& Dol 01 = - forfta} = | IECLEL

‘We introduce first the following definition:
+ DerFINITION 5. Let
P(f) = agFayt+ ... +a,t™
be any polynomial, where the coefficients a, are numbers. Let T >0
The real number |ay|+ |o;| T+ ... + |a,|T™ is called the norm of P(t
in the interval [0, T and will be denoted by
POl = lag |+ laa] T4 ...+ |a| T™
TrworEM 10. Let f(t) be a function of & such that

(n — bo).

. nt
(3.20) % Df of(c)do = 0

Let the convergence of U,(f) = {nf(nt)} (n = 1,2, ..

.\, be provable by
a sequence of polynomials P, (). If for each T >0 there is a positive num-

icm°
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ber K (T) depending only on T so that

(3.21) {M < K(T)

@ |

Sor each integer n >0, then f(I) is iniegrable in [0, o) and
1
lim [ f(z)dr = lim T, ().
=003 n->00

We need the following lemma:
LemyA 1. Let the positive constant M be such that

- nt
1
(3.22) t;;f of(cr)ddl <M
’ [
for some n >0 and for all 0 <t<< T. Then

| &P (1)
&

nt nt
(3.23) l f P(t—%) f(o)do—Pi) f flo)do| < M

T

for any polynomial P(t) whenever 1[0, T'].

Proof. Suppose first that P(f) = #*, where & is a non—nega,tlve inte-
ger. Since

nt s

{ f (t«—g) a)da}' { f i r)knf(nr)dr} #3 Ualf) = —zx Uall)
‘ nt
ft [ srae) = e ]
we obtain (3.23) for P(f) = & from

620) | TN~ (=22 [ ST, ‘ < M < METH

‘We prove (3.24) by induction. Obviously, (3.24) holds for & = 0. Suppose

that (3.24) holds for % > 0. Since ¢ > 0, it follows from (3.24) that

(k1) M1 1 DEH [s U"(f)” < Mt

(8.25) |~z Un(f)—s——DU N—=

For the sake of brevity, set

m =< D0, = {- %ft of (@) da}.
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Thus, we get from (3.25) and (3.22), that

k
f“ﬁ T (f)—

Ww“[muﬂ

< M+ U%(t— o) b dr| < Mt 4 DI = M (h+ )% < M (k+1)T*
[1]

Thus (3.24) is proved. Multiplied both sides of (3.24) with |a,| and summa-
rized with respect to &, we obtain (3.23) and the lemma is proved.

We now pass to the proof-of Theorem 10. Let P, (1) (n =1,2,...)
be a sequence of polynomials having the property (3.21) so that the con-
vergence of U,(f) is provable by the sequence of P,. Then there exists
a function g of ¥ such that g # 0 and

(3.26) P,(t)xg() . (n—> o).
Furthermore .
(3.27) P}y Un(f) {ag @)}y - (v = 00),

where a = lim U,(f).

N0 '
We need to show that for each &> 0 there is a number N = N (¢)
g0 that .

(%) - [a—ff(a)dc\ <e
) o

whenever z > N.

Since ¢ is continuous in [0, co) and g¢(f) # 0, there is an interval
0 <t, <1<t such that g(¢) # 0 whenever te[t,,?,]. We may assume,
without restriction, that g(f) > 0 for ie[t,,?,]. Else get —P, instead of
P, . Let m be a pogitive number such that ) '
(3.28) 0<m <g(t)

. - )
- for t; <t< t,. Let &* > 0 be any number such that

. . 1 )
(3.29) 0 < ox2tlal <e
; ) m— e*
Choose a T >, and let 0 <t < 7. In view of (3.20) there is a number N 1
so that .
lf#ud a
— g
w) T 2K (T)
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whenever #n > N, and 0 <<
to (3.21), we have

T. Then, in virtue of Lemma 1, according

nd

w
1 _9 _
@30 | f P, (t——) () do—Pa() of (o) do

0

|

dPp,
|
In view of (3.27) there is a number N, so that
o o
)—‘fpn(t—;;) floyda| <
0

whenever # > N, and 0 <
(3.30) and (3.31), we have

&*

) { e*
<.
r 2

*

(3.31) -

t< T. Let n>max (N, Ny) = N,. Then, by

(3.32) ]ag ff(a dcrl < g

for all n > N, and te[0, T].
Let N, be a number so that

(3.33) [Pr(®)—g(0)] < e*

for all » >N, and te[0, T]. The existence of such number follows from

(3.26). 7 .
Consequently, by (3.28) and (3.29), we have

(3.34) - 0 < m—e* < g{t)—e* < P,()

for all » > N, and , < t<1,. It follows from (3.33) that
(8.35) | - aP, (1) —ag ()] < lale

for each m > N, and te[0, T]. Let n >max(N,, N,) = N;. Then (3.32)
and (3.35) 1mp1y that
(3.36) ]  ()— P, ( t)f £( a)du] < e*dlal e

for all n > N; and te[0, T]. If we let t, <t < t,, we obtain from (3.34),

. (3.36) and (3.29) that

+1al€* e*+|afe* <s

m—e*

(3.37)

a-f 1 a)du\ <

for all » > N; and ¢, <t <1, Letb

(3.38)

2 1

1747
N =ma,x(tzl\75<, tut) and > N.
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Since, in view of (3.38),

2@ _ ht t—1
ity

Lty

there is an integer #, such that

(3.39) 2 << 2.
tﬂ t].
‘Thus, by (3.38), we have
© N
(3.40) Ne > — >— = N;.
. L2

It follows from (3.39) that t, = x/n,e[t, ?,]. Consequently (3.37) holds

for n = n, and t =1, that is (*) holds for all z > N. The theorem is
proved. .
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Sequence spaces and interpolation problems
for anmalytic functions

by
A. X. SNYDER (Bethlehem, Penn.)

'§1. INTRODUCTION

1.1. DEFINITION. Let w = {z,} be & sequence of distinet points
in the disk D = {z: |2] < 1} with [z, - 1. For 1< p < oo let H” be the
usual Hardy class of analytic functions on D with boundary values in
I7. Let H?(w) = {{f(2,)}: f e H"}.

The purpose of the present work is three-fold. First, an examina-
tion of the sequence space structure of H? (w) is given. Then in the confext
of general FK spaces some results, many of which were suggested by
properties of H”(w), are considered. In particular the conull property
of FK spaces is examined. (See [6] and [10] for previous work on the
conull property. J. Sember in [4] studied the conull property in its
relation to variation matrices.) Finally, it is shown that there exists
a sequence w such that H®(w) contains all bounded sequences and H™ (w)
does mnot, answering & natural question on interpolation by analytic
functions.

In § 3 it is shown that H?(w) is & BK space. If p < oo, then HF (w)
has the AD property. If 1 <p < co, then the coordinate projections
are fundamental in H? (w)*, but H'(w)" is not separable. :

In § 4 H? (w) is considered in the context of the conull, conservative,
coercive, and wedge properties, and in terms of three new sequence space
properties. In particular, it is shown that H” (w), for 1 < p < oo, iy conull
if and only if H? (w) contains every sequence of bounded variation. The
fact that HP (w) may be coregular for p < co shows that Theorem 6 of
[6] fails in the context of non-conservative spaces. (Recently, J. Sember
has anpounced an essentially different example of this failure. See 4.12
for an outline of some of his results.)

Let 8" denote the sequence &f = 0 for k # mn, &y = 1. It is shown
in § 5 that {6} is a basis for H? (w), p < oo, if and only if 2w = {z,} is an
interpolating sequence. ' :
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