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STUDIA MATHEMATICA T. XL. (1971)

On singular integrals of functions im I
by

T. WALSH (Princeton)

Abstract. Let K be a kernel of Calderén-Zygmund type on R* and p.v. KxJf
the singular integral of a function f defined by means of it. As a generalization of
results of Titchmarsh for conjugate functions sufficient conditions are given for the
existence of a family of sets D¥ whose measures approach 0 as o tends to oo such that

lim f pv K * f(x)p(x) dx—ff(z) p.v. K*xp(:c)dx

000 RPte~
where K (z) = E(—=z)and f has finite weighted L' norm. Analogous results are obtained
for convolutions. A generalization of the notion of B-integral is used to prove that
if f and p.v. K % f are integrable then the Fourier transform of p.v. K xf equals Kf

The conjugate function f of an integrable function f of period 2= is
defined a.e. by

Flo) = — = Tim (rj (@-+1)— f(z— 1)1 heot §1d.

T g +o o
Let now f, ¢ be periodic and belong to I”(0, 2x) and I*(0,2x) respec-
tively, where 1< p < oo and as usual p’ is the exponent conjugate to p,
i.e., p714-(p")"' = 1. A well known equality of Riesz (see, e.g., [1]p. 568)
asserts

[ fp@)ao = — [ f(z)§ (@) do
o [

If p equals 1, f need no longer be integrable. As a substitute for
Riesz’s equality in the case p = 1 Titchmarsh proved in [17] that if f-
is periodic and integrable then there is a sequence {B,} of subsets of the
interval (0, 2x) whose measures tend to 2z such that ior any integer %

2

lim ff (@)e™ " dp = —zsgnk[ fl@)e *dx.

m=00 i

It was shown more genem]ly by Ulyariov in [18] (see also [1] p. 587T)
that if feL(0, 27), ¢, ¢ «L*(0, 27) then for the same sequence {Em}

(1) Tim f Flayp(@)do = — f f@)¢(@
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A corollary of Titehmarsh’s result is the theorem that if the conjugate
function is integrable then its Fourier series is the conjugate Fourier
series of f. This theorem has been extended to singular integrals of periodic
functions of several variables by Calderén and Zygmund in [7] using the
notion of the so-called B-integral.

The purpose of the present note is to establish a generalization of (1)
to several variables and weighted I” norsam well as analogous results)
for convolutions instead of products (Propositicn 1 and corollaries).
Fina.]ly a modification of the definition of the B-integral applicable to
the non-periodic case will be used to prove a result analogous to that
of Calderén and Zygmund (Proposition 2).

The main concern will be with singular integrals with mixed homo-
geneity in B™. Suppose & = (Ty, g) --+) 8,); ¥ = (Y1, Y2y -+, Yp) 2T€ Points
in R" then define, as usual

n
By = Zi”iﬂi’
=1

Let a denote an n-tuple of real numbers {a;} such that 1 = a; < g, < ...
< a,,. For positive t define the linear transformation " by t*z = (i1, ...
., ¥nz,). The assumption that all the a; are at least 1 implies that

= ol =1}, ol =

2 |

=1

ol = = - @,

(6] = max jof!/s
1<i<n

defines a mefric on B" Clearly [t*»] = #[#] for any ¢ >0.
Let K denote a singular integral kernel with mixed homogeneity
which is locally bounded away from the origin. Specifically suppose

(2) K(@*s) =t1MK(x) for all >0,
3 [ E@ds =0,
1<[r]<2
4) f |K(z—y)—K(z)|de<c, for allyeR® -where ¢,,¢,>0,
zl>eqfvl
(5) K@) <M< oo

for [#] = 1(= max|z;).
I<i<n

For simpliciby it will be assumed that ¢, ¢, > 1. The singular integral
of a function f which is such that (1 [#])~'¥f is integrable is then defined
as the principal value

pvV.Exf(z) = lim fK(HD Y\ (y)dy.

=0 i>e

Weighted I# norms are defined by
Wfllp.a = (f 1f(@)IP (017 da) "
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and L% will denote the space of functions f for which [fllp,« is finite. Tt is
well known that conditions (2)—5) imply

6) Npv.-E+flpe< Apollflpe  for 1<p < oo, —lalfp < a< lalfp’,
where A4, , is some constant depending also on ¢, ¢;, M appearing in {4)
and (5). In fact if a = 0 this becomes a special case of a theorem of Benedek,
Calderén and Panzone (Theorem 3 of [3]) if it is noted that the metrie || ||
used there may be replaced by any metric with mixed homogeneity.
The general case is then a consequence of results of Stein [15] and more
particularly Sadosky [14]. ’

Remark 1. Condition (3) differs in appearance from the correspond-
ing condition 2) on p. 20 of Fabes and Rividre [10] and was chosen for
the sake of simplicity. In [10] & smooth metric with mixed homogeneity o
is used to introduce coordinates p = p(®), " of polar type defined by the
equations # = g(2)*s’, |}#’| = 1. It is then shown that Lebesgue measure
on R™ can be represented as a product measure on (0, co) X 8** by the
formula dz = J(z')ds’ 0 *do where J(z') is infinitely often differen-
tiable on 8" ! and bounded below by a positive number and dz’ denotes
the element of area on S™ . In place of condition (3) they have

[ E@@)J(@)da’ =o0.
I=l=1
It is not hard to see that under condition (2) this is equivalent to (3).

Remark 2. It can be shown that condition (5) can be replaced by
the weaker condition that K be locally in I? away from the origin, where
1/g = 1—lal/lal. ] .

Define the kernel K by K(x) = K(—=). If ¥ is a measurable subset
of B |E| will denote its measure. For greater precision it will be required
to use Lorentz norms. As in [12] for f measurable, set

e = (afe J (7 o)™

where f* denotes the decreasing rearrangement of f on (0, co), and let
fle = 17l

where
- PR
=5 = f sy ds)”,
.0
I”® will denote the space of functions f for which ||f]],, is finite.
The main result is then
ProrosrTioN 1. Suppose K satisfies (4) and (6) and away from the
origin it is locally in LY. Suppose also
fells, @elinL3,

r<L,r<g,r<p.

p.v. K *peLly,


GUEST


164 T. Walsh

where 0 < a< |al,1/g<1—aflal, p< co. Then for o >0 there exists
‘a set D* such that lim ¢|D}| = 0 and if z, denotes the charagteristic function

of the complement ~Dj of D then
(0 lim [y, p-v.E*f(@)p(x)ds = [f@)p~. Exo(z)ds.

Proof. It can be assumed that p is so large that a« < [a|/p’ and also
that f¢ L®,. Otherwise the statement follows from continuity of the sin-
gular integral operators p.v.K *, p.v.ﬁ ®, in L7, IE. Let F(z) = f(=)[2]"
and define F** = F* (-, 1) as above. Then the continuous function F**
ig strictly decreasing. As in [6] p. 91 let § be its inverse. The integrability
of F implies lim ¢f(c) = 0 (write F as the sum of a function in L'nI™

and a function of small Z' norm).

Let I, be a ball in the metric [ ] with center at the origin such that
I, = 0" g(c) (8 is to be determined later). Apply the analogue of the
Riesz lemma in [13] p. 51 to Fy.y , where y.r, denotes the characteristic
function of ~ I,, to obtain a sequence of non-overlapping n-dimensional

intervals {I,}g, with the following properties: If D, = Loj I, the |D,|
< B(o) (see [6] p. 93), =
8 [F@)| <o
and

outside D, a.e.

o< L™ [ f@)[e] " de < 21
Ip~Iy

for k=1,2,3, ...

Furthermore if the sides of I, raised to the power 1/a; ‘are denoted ad
(i=1,...,n) then dPjdP <2 for i,§ =1, ..., n. n
If 7, denotes the radius of I, then &% pg(s) =«¢I=Y1 21l = 2"l or
9) ro = 27M45p ().
Let @, denote the diameter of I; in the metric [ ] then d, = supd® and
. i

< [ [ @afys = 29 |L) <2¥p(0) o
i=1
(10) dy < 26 (o).
Let g(w) =|L/™" [ fx)de for eI, and =f(m);¢~1[l otherwise

E~4o
and define & by f(m)x~1£z) = g(@)+ h{w). For el
l9(@)| (a1 < [2]°|LJ™ [ If(a)ldo

Ip~T,

< sup (/DL [ 1f )iy dy
vely Iy~Iy

< (14 sup [y—o][=] )2 %",
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I, contains a point »* outside I, hence

[#1> ro— [o— *] > ro—d > (27 85— 2) (o)™
hence

(11) lg@) [e] " < (1+2 (@71 6—2) "2 g

50 Suppose

(12) 8> oltnilal

Let I; denote a ball with center at the origin and radius (¢, +1)7,
and Iy a ball with the same center z, say, as I, and radius (o,+1)d; in

the metric [ ]. Put D! = U I} so that [DI[ < (¢, 1) (8% 42" B (o).
Now k=0

[ pv.Exf(@)g(e)de— [f(@) pv. Exg(@)dz

~D§

= [p¥.Ex(z,f)@g(@)do+ [ pv.E*h(z)p(z)do+
~D%

~D;

+ [pv.Exgl@p@)do+ [ (pv.Exg(z)e@)—f(2)pv-K xp(a))d
DY, .

=dJy+ It ot Jy, say.

It can be assumed without loss of generality that |ipll,, . < 1 and also
that 1/¢ = 1—afla]. Let the L'. L% norms of K restricted to the set
{z:1 < [#]< 2}, say, which by assumption are finite be denoted M,, M,
respectively. ¢ will denote a constant not necessarily the same at each
oceurrence whose dependence on a, e.g., may be indicated by the symbol
C(a) at the first occurrence and which may also depend on K. Then
firstly .

i< [ pv-E#(y,f) (2)| 2] do

~I

= [ [ [ E@-uify)dyde

et W<
< [ywl [ [@E@E—y)|dedy
[l [l (e1+1)rg
< G(a)((e,+1) ey ¥ B, f If)] - f (@]~ dw dy
[wl<re [z +)rg
J 1wl ay

isry [vi<rg

<oM, [ |f@lrdy<C
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which tends to zero as o -> co since 7,0 ag o — oo.

<Y [ | [Ee-ph@ iyl
k=1 ~rgof) I
=Y [ | JEe—y—Ea—a)h@ay| @]

= egny

gince
(18) [hy)dy =o0.
Iy
So
A< D [Ih@) [ 1B (@—y)—E(o— )| [0 dody.
k=1 Ip, ~(IgoIf)
Also ' ‘
[ 1K (@e—y)— K(a—u,)|[s]do
~UgeIR)
< [ (E@—a)+IE @—y)) s do+
[xl<[zz)/2

+2°[@]7" [ K (0—y)— E(2— )| do.

. ~Ii
Furthermore [#] < [#,]/2 implies
[o—m]1> (]2, [o—y1> [2— Bl— [B,—y] = [2,][2— 7.
Consequently [#—y]> [2,]/4 provided
(14) [2,] = 4r,,.

Also [#,] > ro— dy,. Hence it is sufficient to assum
= To— . ne 7y > 5d,. Hence by (9
and (10), (14) is satisfied provided e v

(15) : §>10-onal
[— 2] > (6,4 1)7;, implies
=91 > [0 B)— [5— 91> (1 4+ 1— L)1 = oy7,.
Thus
|E (24— y)~ K (— e
» fl . (@0— )| [0] " d

2lal+1 - '
< 2 g1 |E (0—y)| dm+2% 04[5, ]
[zpla< fr—vl<alay]

Novg [-17%eL7* and the I% norm of K (z—y) restricted to the set of all
such that [@,]/4 < [#—y]1< 2[2,] is at most Cla) M [m,] 10 — O(a) M, [z,]°°
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hence the preceding expression is at most equal to
(CM ,4-2%4) [2,]°.

[w] = [y1—ri = [y]— [ ]/4 implies [y] << 5/4[2;]. Thus

W< 0D [yl dy(5/4)"(Mp+e) = € > [1fln)— gyl dy

=11 E=1 1

<0 [If@)liyl=dy (see (11)) ’
DU

and this tends to zero as o — oo since |{D,| — 0. Next

Wl < [ (1pv- K xg(@)| (o] da)"™ - D3P < A, olgly, o | DA
D},

Bt

< 0o glh, o | D51 < O (| D) | flh, e (bY (11))

hence Jy—>0 a8 o - co. Finally
[pv.Exg(@)p(@)ds = [ g(o)p.v. K*gp{o)da
by continuity since geI”,, thus
7 = | [ (g(@)— @) pv. Exg (@ do] < lg—flh, —ulp-7- K *plho,s

(1, - Wbl o) D7 K * Pl

<
<O [ f(@)[&]"d@|p.v. K*glo.—>0 as o> oo.
5D, .

Remark 3. By Remark 2 it follows that Proposition 1 applies to
kernels K satisfying conditions (2)(4) and which are locally in L%,
1/g =1—a/lal.

Remark 4. The proof extends to weight functions «([#]) instead
of [#]™° where w(7) is (almost) decreasing (i.e., there is a constant 0 > 1
such that 7, < 7, implies o(rs) < Co(r,)) and for some o< |a| w(z)z" is
(almost) increasing, if use is made of a result of Chen in [9]:

(16) Ip-v- K *fllp,0 < Ap,0 Iflp, 0

which generalizes (6) and is valid for 1< p < |a|/a.

To obtain substitutes for Riesz’s formula several authors have made
use of generalizations of the Lebesgue integral. One of these is the A-inte-
gral defined as follows. Let the distribution function of & measurable
function h be denoted 2, ie.,

M(o) = Ha: [h(2)] > o}
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Then h is called A-integrable (see [1] p. 585) if
(17) (o) =o0(c™") as o o0

and lim [[h(w)],d» exists where [h()], denotes the function equal to

h(z) for [h(»)] < o and zero otherwise. The limit is denoted (A) Jh()dw.
A result of Ulyanov about conjugate functions (see [17] and [1] p. 387)
may then be extended as follows.

* CoroLraRY 1. If K, f, @ are as in Proposition 1 then (p.v. K *flp
is A-intergrable and :

(A) fp.v.K*f(m)gu(m)dm = ff(m)p.v.i*ga(m)dx.
Proof. Since by [14] there exists A, < co such that

v o * 110 < AGIflh, 0
(17) follows. By Proposition 1 it is sufficient to show that

}En(fx@p.v.lf*f(m)q:(m)dw—f[p.v.K*f(w)cp(as)]de) =0.
Now . .
lim!f[p.v.]f*f(m)qp(a;)]gdw] <lime|D}| = 0.
=00 D;_ o—00

Moreover it B, = {5: |p.v.E*f(z)] ()] > ¢} then
[ 207 B f(2)p (@) — [p.v. K *f(2) p () .| dv
= [ tlpv. Exf(a)p(x)|du
By

<[ 2 0V-E* (7, ) @) |0 (2)] da- [ 1, [pv. Fo#h(a)] o ()] -+
+ [vErg@)lpl)ds = Ji+J,+J,,  say.
E, :

dJ1,J, have been estimated above. The fact that J;->0 is proved
a8 is J;— 0 by use of the fact that |&,| — o(¢™") and [2]*|g(z)] < Co.

Remark 5. It was tacitly assumed that o > 0, if ¢ = 0, I, is to be
deleted from the argument and the estimates simplify. In this case the
kernel need no longer be homogeneous, that is, K need only be locally
integrable away from the origin and only (4) and (6) with a« = 0 need
be satistied.

The preceding remark implies, in particular, that the conclusion
of Proposition 1 applies to Bessel Dotentials of purely imaginary order.
Let f be a tempered distribution. The Bessel potential of complex order z
of f is defined by

(F)" (@) = (L+ o) ~F ().
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Here the Fourier transform is defined by g(z) = [ ™¥p(y)dy for any
test function . It is well known that for feL”, 1 < p < oo, 0 <Rez<<oo
I = G,

where

(18) Gola) = 27" (Dlef2)) [ oIt gy
o

(see, e.g., [11] p. 392). It is also well known that [J°f, < Cp,lIfll, for
1 < p < oo where C,, is bounded for z varying in any bounded subset
of the right half-plane (see Theorems 1, 2 of [4]). Therefore by Theorem 2
of [3] to prove that
. Hsznloo < Gz”ful
with O, bounded on bounded subsets of the right half-plane it is sufficient
to prove that there exists a ¢ > 0 such that for any y<R"
(19) [ 1G(o—y)—G.@)dn < C..
Ll >2fih

The proof of Theorem 4 of [4] shows that

|grad @, (#) < C 6~ ¥iP =17

where C, is locally bounded in the closed right half-plane. This follows
similarly from the representation (18):

{u = Rez),

0

<0, Hmllf gi-TalP it nlatui=2 gy
z
0

0
—@, (2
‘ o, 2 (@)
' 1
< O,jo| et [ gttty =2gy p
o

0
4 suptnE—2 =t qup (¢~ lettit—tz) f gt dg)
i1 i>1 1

< Ol (¢~ o+~ 6 11E) < O ]~ e,
Hence
Gulo—y)— Gy (@)dn < 02"yl [ el e

el >2fl T=1>2f]

<Gyl [ dr < Cliyl [rar<c,

. 2lwl 2
sinee ¢~ << Cr~* for u > 0. Since for fel?, ‘J”f — J®f in I and hence
in measure as #-> 40 in the right half plane it follows that

Ayivg(0) < G |flho™  for fel'nL?
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and since I'NI* is dense in I, J® extends to a continuous operator
J¥, say, from L' to I™, Also if f<I' then

(20) TJUOF — JOF) > J0f i T ag )0

since G, is an approximate identity. With these definitions there holds the
following version of Proposition 1.

COROLLARY 2. If feI', peIPN L™ for some p < oo, JPpeLl™ then there
is a fundtion D} from the interval (0, co) to the set of measurable sets such
that Yim o|D}| = 0 and if y, is as in Proposition 1 then

a—+00 )

(21) lim | y,(@)T*f(@)p(2)dz = [ f(2)T"¢(w)do.

If j""’f 18 locally integrable in an open set then it agrees there with the distri-
bution JUf,

Proof. After the above discussion to prove the first part it only
remains to note that if g, b are as in the proof of Proposition 1 then (19)
holds for purely imaginary # = iz and in-the 'complement of D; = \J Iy,
. . E=1
J*h = Gy*h. To prove the latter assertion let eI Then for 4 >0 Jutiy
= G 450% p tends to Gy, *y locally in I away from the support of y, because
Gursp bends to G, in I'({o: |o] > 8}) for any 8> 0. It follows that J*y
= Gy,*yp away from the support of . Hence if &, denotes the restriction
of the function & to I, J*Ry = G, *}k, outside I,. (13) and (18) imply

[ 6s# byl do < Oy
MI}“c
and hence
Gouxh = Y Gyrby= 3 Tk = J*L  ae.
. i=1 i=1
o« ~
outside | I; by continuity of J®: I} — L,
k=1

The last part of the corollary follows by application of (21) to any
test function in the given open set.

Recall that any of the various singular integral kernels K gives rise
to a tempered distribution, to be denoted p.v. K. It is defined by

(pv.K,9) = pv.Exp(0) ,
where ¢ is any test function and ¢ (#) = ¢(— ). The Fourier transform
of p.v.K will be denoted K. The next corollary gives information about
the relation between p.v.K*f and Kf. As usual I? - L™ will denote the
space of functions f which are sums of functions fi, fain IP and I* respec-
tively. I?-- L™ is normed by

AL+ 17 = it {ifl,+ Ifalo: F = fut-fo}-
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COROLLARY 3. Suppose K is as in Proposition 1 or more generally
is locally integrable in R™ ~ {0} and K is bounded and (4) and therefore
(by [3]) (6) with « = 0 hold. Then for any p < co

(22) lim [sup lim (in IP 4 L) f x,,(y)p.v.K*f(y)s'i”"’dy—ﬁ(m)f(m)]]= 0.

o [vl<r
Proof.

[ @)y Exfly)e =V dy— K (2)f(2)
ful<r

= [n@py.Exh@y)s=vdy— [pv.EKxgy)e=vay+
Dy
+( [ pvErgly)e=rdy— K (@)§()+X (0) (§ (0)— (@)

[¥i<r
3
=) Jim, N+Ju(@), say.
=1

Jl('y "')—>J1('7 o0) in L™ and for &llla;, r

|T1(@, 7)] < |[p-v. K *hyoly < ea[hll; >0 a8 o> oo.

Ja(:y 1) > Ja(s, 00) in L7 and |Jy (@, r)l<Df. p.v. Kxg(y)ldy > 028 00

(see the estimates for the previous J,, J3). By (6) an.d the Ha.usdorff—'
Young theorem, if 2 < p < oo, then [J3(-,7)ll, >0 since p.v.Kxgel?
for 1< p'<2 as geLI'nL™. Also
| o (@)] < 1B llo 1 f~G oo < K o 1B, >0 a8
Remark 6. With the notation (x)* = h(®) if |h{®)| > e, 0 otherwise
and [|gll = max(]glls, gll.) the conclusion can be strengthened to: there
exists a C > 0 such that for any ¢ >0
lim [|exp{C~ligll™ %
i o

x|[ [ 1op.Esf)eerdy—Rai@]||-1]dw = o.

i<r

g —> 00,

It is sufficient to show fhat
lim [ {exp (0 |lgll~ [[/:(, )]}~ L}dz = 0
* 7300
for 1 21,2, 3. For J,, J, this is obvious. As regards J; note that Theo-
rem 2 of [3] giveé A, = Ay, =0(p") in (6) as p|1. Hence by the Haus-
dorff~Young inequality
s (5 Pl < Olp-v. E*glly < Op gl < Op 1l -
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The assertion then follows from the following complementary remark
to [19], II Theorem +.41 applied to J4(-, 7). )

Luyma 1. Let {3, be a family of functions such that ||®,]l, < Op
for all p satisfying p, < p << co and 1@,y > 0 as # — co. Then. for any
e >0

(23) lim [ [exp((260) 7! |@2(z)|)— 1] d = 0.

Proof. Let E,, = {#: [®,(x)] > ¢} then
Ao, (&) = |B, | < e7™P, ],
i [exp( (260) 7 B2 ()]) — 1] dee

Z(Mr D7 SR (11295~ 70)' W+Z = (26)~2 p
hence

limsupf[exp(( e0)™!|@¢ ()| )—1]6!97<2/1 (ph) 1(26)“7’101’ : N>p0)

(23) follows if N is made to approach mflmty.

Corollary 3 implies

CoROLLARY 4. If p.v.K +f is integrable then (p.v. K*f)" =Ef ae.
Hence if K is oommuous except ai the origin (p.v.K*f)" = Kf and f((})

= [ f(x)de

The remaining corollaries deal with convolutions invoiving singular
integrals. .

COROLLARY B. Let f, pel?!, p.v. K *feL' then

(pv.Kxf)sp = pv.E*(f*g) a.e.
Proof. With f = g-+% as above
Lim (3, p.v. K +f) *gp— (0.v. Exf) gl = 0,

lim [z, p.v. E*f—p.v. K+g| = 0,
hence Lm [[(p.v. K+g)*p— (p.v.K+f)*g|| = 0. Also
TG00

(pV.Exg)xp = p.v. K *(gxp)
and limg+p = fxp in I'. Thus lim p.v. K *(g*g) = p.v. K #(f#p) hence

(Pv.Exf)xp = p.V. K*(f*p)
in L', that is, a.e. :
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In what follows attention will be restricted to homogenecous Ternels with
ay = ... = a, =1, for simplicity. In extending Corollary 5 to convolutions
in weighted norms it appears necessary to obtain a norm inequality for
convolutions in weighted norms by interpolation between the fractional
integration theorem in weighted norms and Young’s inequality for
convolutions. This may be of some independent interest. The full
generality of the following discussion is in fact not necessary to prove the
remaining corollaries of Proposition 1.

Define the weighted Lorentz norms Jllpg,a DY

M llge = LT lg

and let IZ7 = {f: [|fllpg,o << o0}. Also let o™ denote the positive part
max (a, 0) of a. A slightly more general version of the fractional integration
theorem in weighted norms given in [16] can then be stated as follows:
The - bilinear opera,tor (f,9) = f*g is bounded from IZ*x L% to
L% if - .
Lg+1jp" = (a+B+9)fn,  atf>0, 0<y<n, atin<1]p,
BTin<1lg, O<u<w
except if 1/p’ = a*/n or 1jg = g% /n in which case it is required that.
1=u="19.

By interpolation between this result and the statement obtained
from it by interchanging p, co(=r) and a, y respectively or by passing
to the adjoint or both and the convolution theorem for I”? spaces
(Theorem 4.10 of [12]) further (quasi-) norm inequalities can be obtained.
That is, the inequality

(24) 1% 9lgo, 6 < Cllfllpualgl,a (€ =C0,7, ¢, a; ..., w))

holds. for some u,v,w provided (1/p,1/r,1/q, ajn,B[n,y/n) iz in the
convex hull in the hyperplane

(25) 1/p+1/r—1jg+ afn+Bin+y/n—1 =0
of RS, of the convex sets determined by -
0L1/p<1, 1fr =0, an+1jp <1, ffn—1/g<0,
aln+Bin=0, 0< yn<1

and the three sets obtained from it by interchanging p and 7, a and ¢
in the preceding inequalities or interchanging 1/p with 1/¢’ provided
L% is a normed space, and u with f, or both as well as the set defmed by

<l/p< l/r <1, 1/p+1/r L,a=f=y=0.

5 — Studia Mathematica XL. 2
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Tt is well known that such a convex hull is again determin;ad by a finite

r of linear inequalities in 1/p, 1/r, ‘l‘lq, afn, Bln, v )
num}I)f\ferpolation between IZY x [ — LY and LM%y I} - LV0-0w
where t =0, w =1 or 0<i<L, ISw o0 Or t‘=l, w = oo (a con-
sequence of Minkowski’s inequality for integrals) gives

where 1/p = (1—#)/r+1/(+"p"),
1/g = @A—=8)[r+1/(r"q%)

(26) S I I ALY
and
1w = 1/(rw)+1[(r'u*), 1lfo= 1/(rw)+1/(r v*),
a=a*fr'y B=p*[r'y y =y*r.
For 1< r< oo the conditions on p*, ¢*, u*, v*, a*, §*, y* become
/g = (a+p+y)n+1jp+1jr—1, a+f>0, 0<y<mnfr,
(28) atn = o™ Jir'n) <1/ p*) = A=) r+1p'—1/p,
Btin = g™ ') < 1jg— (@1 —1t)fr. i e
The latter two relations can be satisfied provided there exists ¢ such that

1—r(1fp'— a* ) < L—t < r(1]g—B* [m)

27

hence if .

atin<lfp’, prm<ilg, o n+pTim<Ljp'+1/g—1)r.
If all three inequa.liﬁes are striet 0 < Ljo* < 1fu* < o0, 0 < 1/w < 1 and
henee from (27) 0 < u < v < oo otherwise u* =1, v* = 0. Thus if o*/n
= 1/p’ ¢t must be zero and w =1, 1ju = 1fr+1/r' =1, v =7. In par-
ticular
(29) IAXI % I7,
it 0<1lg, Bz —az0, fin<1jg—1/r, O<y<m/r. If Brim =1Jq
t must equal 1 and w = oo, % =1, v = oo. If thirdly

atfn<1fp', B*in<1/g, (a*+p*)n =1[p'+1/g—1/r

then 1<u <y, /o< 1fu—1/r.

The following lemma is obtained by further interpolation (cf. 1:,he
proof of Theorem 4.10 of [12]). It clearly does not contain the endpoint
results just stated. But even if these are included (30) below apparently
only gives part of the convex hull referred to above. .

LeMma 2. I X I7 * L% provided (25) and %, v >0, 1jw<1ju-+1/v
(30) 1<p,q,r<oo, afn<lip’, pin<llg, 0< yn< 1),
afn+Bin < 1p'+1jg—1]r.
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Proof. If (30) holds then there exist Dos D1y Po<P < Py, ¢; COITE-
sponding to p; such that (25) and (30) are satisfied for Dis¥s Gy ay By v,
% = 0, 1. Hence by the Marcinkiewicz interpolation theorem for Lorentz
spaces (see, e.g., [12]) and the discussion preceding the lemma

I XLy 1%, w>0.
Also since 1 < r < oo by the same argument
LZXI® 5 I, u>0.
Now the complex methed of interpolation yields Lemma 2 (the spaces

involved are Banach spaces only if % » 0, w1, therefore [8], [12] instead
of [6] may have to be used).

Remark 7. Let ¢ be non-negative and decreasing and f(z) = g(|2])
then

1l = O [ oo+ af® — oy,

provided 1/s =1/r+y/n. It follows that Lemma 2 with f =0 and the
rearrangement theorem of F. Riesz imply Young’s inequality for con-
volutions in I* spaces (i.e. Theorem 4.10 of [12]). (The theorem of F. Riesz
says, in particular, that the radial rearrangement of the convolution of
two non-negative functions is at most equal to the eonvolution of the
radial rearrangements of the functions.)

The desired extension of Corollary 5 to weighted L spaces then is

COROLLARY 6. With the assumpilions and notation of Proposition 1
(restricted to the case @y, = ... = a, = 1) suppose feL'a, peL] where

I<r<oo, a<0, 1/q = (a+B+y)n+1]r,
‘ B<mjg—afr, at+p>0.

Oy < mfr,

Then
lm (y,p.v. K*f)*gp = f*(p.v.K*p) = p.v.E*(f*¢) ae.

This is again proved similarly as Proposition 1 by the observation
that a* = 1/p’ = 0 and by choosing p, > 1 sufficiently close to 1 so that
there exists a §, > such that . .

ljg = (a’i‘ﬁl—’_ y)nt+1/py+1jr—1,
The equality

Bu < mig—nr.

(p-v.Exg)*p = g*(p.v. K *g)
certainly holds if g,¢ are test functions hence by continuity of both
terms of the equalify as functions from IZ1 X L, to Lq_’ﬁ1 (see (6) and
Lemma 2) it must be true for geI?, gel. Hence

(P V. Exf)rp = gk (pv. Kx9)— ((1— 2)pv. E*g)*o+ (1, p.v. E+h)+p.
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By means of (29) and Lemma 2 it follows. S.imila.rly as before that in L%,

gr(p.v. K *¢)— f*(p.v.K+g),

I(l-;;,,)p.v.ff*g) x>0, (gDpV.K*h)xp—0
as ¢ — oo,
Remark 8. The analogous result in case r = oo (fractional inte-

gration) can he proved similarly. Hence if p.v.K*feL', 0 < v < n then
DV H#([774F) = |77 * (p.v. K xf)

(the left hand side is well defined since the linear operator p.v.Kx* is bounded
on I™*). Corollary 5, however, already implies a more general result.

Let f and p.v.K#*f be integrable and gel™ for 1< r<C oo, u > 0.
Then, since L'nI™ is dense in L™ and since both @ —>p*(p.v.Kxf) and
¢ —p.V.K*(p*f) are continuous in L™ Corollary 5 implies @ (p.v. K *f)
= D.v. K *(p*f).

CoroLLARY 7. If in the situation of Corollary 6 one defines

V. E*f(y)].. = [p+v. K *f(y) 1T, g™
then ; ‘
’ lim [p-v.E+fl,o*p = f*(p.vK +g) in I%,.
By corollary 6 it sufflees to show

[ 1@ pv-E*fy)p(- —y )ay— j" Ip- v.Kf* Wloap (-
in L%,. But (p.v. K *f) Zu— [pAv.K*f],,,a—>0 in L}l as follows by replacing
¢(y) by [y|” in the proof of Corollary 1.

The last corollary is amalogeus to the “multiplication formula” for
Fourier transforms.

COROLLARY ‘8. Let' feI', peIPnI* for some p > 1, then

hm_fx,pv Exf(2))¢(0)ds = [ K(2)f(x) ( ) da.

—y)dy -0

The proof is similar if use is made of the fact that
JrvExg@)p@)dn = [(pv.Kxg) (@)p(a)do

since p.v. K*geL’“ (p < 2) and also (p.v. Kxg)" = fi’g

A different proof of Corollary 4 can be based on the following propo-
sition which may be considered as an extension to non- periodic functions
of the theorem that the Fourier B-integral of the singular integral p.v. K=f
equals K f (see [T]). As usual denote the space of continuous functions
of compact support by " (R*

). For any set E, #(E) will denote the °
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subspace consisting of those elements of /# (B™) whose support is contained
in B. #(R") denotes the dual of 2 (R™) consisting of all (Radon-) measures.
A measure is called discrete if its support is discrete, i.e., intersects any
compact set in a finite set of points.

PROPOSITION 2. Suppose K .is locally integrable away from the origin
and satisfies (2), (3), (4) and suppose feL'. Let B be a continuously differ-
entiable funct-io‘n, on B which equals 1 in (0, 3) and vanishes in (1, oo).
Then

(31) lim( lm [p.v.K#ft—-)6 =) du () =

80 "u—B(8[-1)

K ()f(a)

for all w. Here lim
u=-p(4[-1)
to AOLD zceallz/ with respect to the pairing of M (R"y with A (R™) while

the suppori of u remains in an arbitrary bounded se¢i. The imner limit is
a bounded function on R™ with a bound independent of », 8 which tends to
K(a: j(m as ¢ tends to zera.

means limit in L)% as the disorele measure u fends

Proof. Let the net of measures {;} converge weakly to 0 in such
a manner that the supports of the u; are all contained in a compact set A.
It follows by the uniform boundedness theorem that there is €< oo
such that |l (= |u;] (R™)) < C for all i. Let B be another compact set

and set A—B = {#—y: 2ed, yeB}. Then if Fel'(4A— B)
(32) [ F(t—")du,() >0 in L'4—B).

A
For

[ [ Fe—pam@|ay< [P
A A—B

@t lwl<C [|F@)a
B 4-B

~and for Fes (B") (32) holds pointwise in A. Hence by dominated con-

vergence it holds for Fe o (R"), Since 2 (R™) (or rather the set of restrie-
tions of the elements of " (R") to A— B) is dense in I'(4— B) (32) is
valid for FeI'(A— B).

Let ¢ >0, f = f°+f,, where f° is as defined in Remark 6. Define

f((m, t, 6} = p.v. fK(u)ﬂ(ﬁ[u_t])e—ix~udM,
f,eI'n L™ and theréfore
TP B (=g =D BN = [flt—y)pv- Ko=) )

— [f.lt—9)s~ =D R (5, —t, s)at.
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Hence
[pv.Exfli—y)e =D aum)— [ ft—y) TR () 1, 8)dt
= [ D3 K f,(1—y) e~ du (i) — (811]) dt) +-
+ 6TV I x (6O ) (—y)— [ fo(1—y) 6T EN K (@, —1, s)at

3
= ZIl(my?/y ), say.
I=1

Since p.v. K *f,eL” for 1 < p < oo it islocally integrable and so by (32)
for any compact set B ||, (x, -, ) x5l —0 as u — A(S[']) in the described
manner. Next since convolution with ()} is a finite linear combination
of translations

p.v.K*f"*(e“'(')ﬁ) =pv.K* (j"*(ei’”'(')ﬁ)).

Hence as the hypotheses imply that p.v.K * is bounded from L' to I*
(see [3]) )

IZa(5 =5 Pl < ONF* (6= @)l < CUIF I Nl < O] —0.
ﬁss o —> 00,

It will next he proved that

33) Lim X (, 1, 6) = & (a)
8—0

the convergence being uniformly bounded in # and 1.

Let * = o(n"2)""2, where g is the metric with mixed homo-
geneity a referred to in Rematk 1,1i.e., p = 1 on the euclidean unit sphere
8", Since for z<R* 1> 0 )

min(, 2/%) (2) < ¢(4w) < max (1, A1)
it follows that
w0 (@)™ < o(0*) < mo(a) .

¢ and [-] having the same mixed homogeneity are equivalent, i.e., o/[-]
and [-]/p are bounded on ™.

@& = Jlo(w " a) o]t = nllo (v Va) g = r.
Thus
K(a, %, 8) =p.v. f R (w)B(8[u— 1) 6= dy -
[ul<ey[*]
+1/2 K(u)ﬂ(é[u_t]) (e~tmu_ 6—1.”'(”'*‘”)) du
[u]=c, [2*]

=d1(@, ¢, 8)+J,(z, ¢, 8), say.
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Jy = p.v. K (u)[B(8[u—tle=*— B(8[t])] du+

[ul<min (4/3,¢;[2*])
+ f Ew)p(o[u—1t])e ™ qu = Jy+Ju, s .

sjo<lul<ey[=*]

[ 1B @) B(sTu—1])] 6= —1] du+

[u)<efz*]

+ [ B 1B(slu—1D—p(S1tD]du

[u]<4/a

<IBlo [

[ul<eq]2*]

[l <

K@) lo-uldut 8106 [ 1K (u)|[u]du.
[ul<s/e

Furthermore for [#] < ¢;[%*]
5-u] = |[2* 10 [2*]~0u] < Vaol [[2*1e] [0*] 7 [u] < Va (o m)[o*] 7 [u]
since for [¥]1< 1, Iy < VESEI}) AES V';;[y]. Hence

Wl < 0[] [ |K(w)|[wldu+08 [ |E(w)|[w]du< CMy,
[ul<ey[2*] [u]<4/s
where M, is as in the proof of Proposition 1.

Consider next J;.. If 8[{]< 3 then J,, = 0. If 6[t] >3

Wal< [

4/5<ul<e[z*

K (u)] |B(6[u—1]ldu< C 1K (u)| du = O M,

2/3[1< [u]<4/3(1]
hence altogether
(@, 1,90 <C.
On the other hand

Walo,t, ) <12 [ K @)B(3[u—t])— K (u—a¥)p(3u—t—o*])| dut
[u]>eqf=*]
+1/2 8l

(e —Dl=*I<[u]<(e;~ )1z
< [ 1B(lu—t—a*)| K (u)— K (u—a%)|du+
{u]=cy[2*]
+ J
[u}=eifz*]
+0M,log[{o,+1) (¢, —1) 7]
< Ceyt-J' (2,1, 8)+C,

1K ()] du

1B(8[u—1])— B (8[u—it—a*])] | K (w)|du+

where

J' = 1B(6[u—1])— B(S[w—1t—a*])| |K (u)| du.
[u]=¢[=*]
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Let now 4[] < 2, then
< 1Bl 627 f F:¢

¢lx< [ul<3/o(1 -1y~

CEles [

[ul<3/s(i-1/e)~1

()| du
| K ()| [u]dw = .

If on the other hand 6[t] > 2, then

J'<< | K (u)|du<< C.
(ey-1)(2ep) ~ A< [ul<a(er +1)(2ep) ~ 1 A)
This finishes the proof that E (m, 1, 8) is bounded independently
of #,1, 4.

To prove (33) suppose 6 [¢] < }, then

K (5,1, 8)— K (2,0, 8)| —UK(u )[B(8[u—1t])— (5[%])]3-*6%“[
< [IE ()| 18(8Tu—1])— B(8[u))| du
<18 8121 f K (w)| du
1/(26)— [1} < [u) <1/6+1)
<O 7 | K (u)|dw.
1/(a8)<< [u) <5/(49)
Hence
(34) K (2, ¢, 8)—K(z,0,8)] < C5[1] (0[t1 < 1/4).
Let K,(z) = D.v. f K(u ¢™®"du. It is well known that K, tends

boundedly to X as t—> oo (see [3]; [10]). Integration by parts shows

1

= [(—8' ) By (@)t

1/2

K(z,0, 9)

Hence it follows that

(33) lim K (2,0, 8) = K (2)
&0

and so (33) is & consequence of (34) and (35).
Hence finally
Ls(@, -5 Ozl < C1BI|£°l,

for any measurable set B. If ¢ is first chosen sufficiently large it follows
now that :

lim [pv.Exfi—)

o=zt~ _ ()
n—»ﬁ(d[ n au(t) = ff(t——-)g K (s, 1, 8)dt

in s (81) follows from (33).
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If p.v.KxfeL' (32) implies that the iterated limit on the left-hand
side of (31) is (p.v. K *f)". It follows that if p.v. K*fe L*then (p.v. K +f)" ()
= K(z)f(z) for all «. .

Remark 9. It is well known and easy to see that a net of positive
measures {u;} tends weakly to the measure g(8[#])dx if and only if For
any compact set 4,

lim [ du; = [ B(8[2])de.
) i4 4

Remark 10. Corollaries 4 and 5 have been proved for the one-dimen-
sional Hilbert transform by a different method in [2] (Theorems 2.7
and 2.11).
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