icm°®

STUDIA MATHEMATICA T. XL. (1971)

Range of operators and regularity of solutions
by

W.SLOWIKOWSKI {Aarhus)

Abstract, In the paper there are given necessary and sufficient conditions for
a linear operator P to have its adjoint surjective. In Theorem 7.2 the conditions are
expressed by use of the notion of good location of the image. In the background lies
the notion of strongly good location which is pretty complicated. However, Theorem
6.1 states that under certain natural assumptions which are almost always met in
practice, the notion of strongly good location is equivalent to that of good location
which is much simpler and very intuitive. In Theorem 8.1 there is discussed a certain
basic phenomenon accompanying the surjectivity of the adjoint. This phenomenon
is explained in Theorems 9.1 and 9.2 by way of the global behaviour of the funetions
of order of distribution which are defined on the set of all compacts of the underlying
space.

0. Introduction. It was the results of [2] which opened a wide field
for more of less general investigations of the range of operators in spaces
of distributions and other spaces of a similar structure, e.g. [15].

Need for some general approach seems to be quite obvious and still
only partly fulfilled (Cf. [14]). In [9] a first attempt has been made to
describe the most important case concerning the range of operators of
restriction of functionals to fixed subspaces (Cf. also [6]). Subsequently
preliminary investigations of the general case appeared in [10] and most
crucial points were outlined in [11] and [12].

This paper is in a sense a continuation of [9] aiming to simplify,
systematizé and generalize some results of [9] explaining in the two last
sections interesting situations which arised in consequence of attacking
the main problem.

This paper is not a continuation of [9] in the sense that it does not
require the knowledge of [9] to understand its content. Also the notation
in this paper has been considerably changed.

The present publication exposes only part of the results contained
in [10]. The rest of it, sketched also in [12], shall be published separat-
ely [137].

1. Preliminary definitions, Given a linear space W and a convex
subset B of W, B shall be called a ball if it is absolutely convex and

B ={weLy: |ollz<1},
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where Ly < W denotes the linear space spanned by B and |||z denotes
Minkowski’s funetional induced by B. Hence (Lg, |]z) will denote the
seminormed space with B as the unit ball. A ball B is said to be complete
it the space (Lg, [p) is complete. Given a linear subset I = W we say

that a ball B is adequate for L if L nLgis dense in (Ly, ||-|z). If W is pro- -

vided with a locally eonvex topology », we shall consider polars.

(LnB)° ={weW: lwa| <1 for =zeLNB},

where T’ denotes the dual of (W, ).

Given linear spaces W;, ¢ =1, 2, we say that P is a linear mapping
from W, to W,if in W, there is fixed a linear subset Dp called the domain
of P such that P is a linear W,-valued mapping defined on Dp. If W,
and W, are provided with topolegies »; and v, respectively, we call P
densely defined if Dp is dense in (W 1, 71) In the case of a densely defined.
nlapplng P we define the adjoint P’ from W, to W, settmg for zeDp
and ' W,

(P'a'yw = o' (Po)
and

Dp = {#' eW,: P’ is continnous in (Dpy 91)}
and then putting for 2’ ¢ Dp

P'y" = the continuous extension of P’z
over the whole (W, »,).

Given a locally convex space (W, ») with the adjoint W', we write
for the closure of zero element

O(W,9) = {ocW: w's =0 for all w' W),

Given topological spaces (W,, ), i = 1,2, we shall write

(Wi, v) < (Wa, vs)

if W, is contained in W, and the identical injection of W, into W, is
continuous.
If both (W, »,) are locally convex and Wy, W, are contained in the

same linear space we define the operation “roof” setting
(W) A (W, 1’2) = (W, +Way v A v3),

where », A v, is the finest topology of W, W, such that (Wiy vy A ws)
< (Wi w) for i =1, 2.

The operation “roof” is also called the operation of inductive limit.
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2. (2% )-classes. A set of halls £ contained in the same linear space L
is said to be a semi pre-(2F)-class if

(i) There exists a sequence {B,}, B, ¢ B, ., for n = 1,2, ...., which
is cofinal with £ with respeet to the upward directed inclusion.
(ii) Given Be £ and {z,} c L with {,—,} = Lg, lim|jz,— 2,/ = 0.

If for some Ceé, {#,} = Ly and im |z, ll = 0, then all z, are in Lp and
limlz, iz = 0.

(iii} Define - )

) = U Lg.

Bet

If a ball B in L, is absorbed by a ball from & and B fulfils (ii), then Be¢
(i.e. £ is saturated).

Given a semi pre-(2%)-class £, any sequence {B,} = £ such that
every ball from £ is absorbed by some B,, is called a generating sequence
of &; £ is said to be complete if all balls from £ are complete and then &
is called a semi (2% )-class.

The following is an immediate consequence of (ii).

(ii") If for weLyp, Beé, there is |z = 0, then for every Ce& it must
be zeLy and |lo)l; = 0.

It is clear that in the case of semi (2#)-classes, (ii) follows from (ii).
We write

) = {zeLs: Jwllg =0 for some Cef},

and we call & a pre-(2% )-class iff 0(&) consists only of zero. Complete
pre-(2 )-classes are called (2Z)-classes. Given a semi pre-(2#)-class
and a linear subset I = L;, we define new pre-(2#)-classes

Lng={LnB: Beg}, LA&={LAB: Be&},

where ZAB denotes the closure of LnB in (g, ||z); L is said to be
closed in & if LN = LN& Given L < L, closed in &, we define

£/L = {B|L: Be&},

where B/L denotes the unit ball in (L, [lz)/L. It is clear that £/L is
again a semi pre-(2F)-class and L,/ L = L,;. Hence, in particular,
£/0(8) is always a pre-(%4F)-class. Given a semi pre-(2¥)-class & and
a subspace L of L, we call L dense in £ if there exists in & a cofinal sequence
of balls each of them adequate for L (cf. [4]).

Given a semi pre-(2)-class &, we denote by ¢ the inductive topology
induced on L, by & Even in the case when ¢ is a (2F)-class this topology
need not be Hausdorff.

Given semi pre-(2%)-classes &, and &,, we write & <&, if L£1:> Ly,
and if to every B,e£, there corresponds Bje<f, such that B, c B;.
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' Consider a locally convex (not necessarily Hausdorff) space (X, 7).
A semi pre-(2F)-class is said to be a p-component of (X, 7) if X is dense
in £ and (L;, 1) < (X, 7). In particular, a semi pre-(2%)-class £ consti-
tutes a p-component of the space (L, ¢).

Given semi pre-(2#)-classes &;, ¢ = 1,2, and a linear mapping P
of a subspace Dp = L inbo Ly, P is said to be continuous from &, to ¢,

if to every Byc&; there corresponds B,e&, such that P(DpnB;) < B,.

A semi (.@5? )-class & is said to be reflemive iff there exists a cofinal
{B,} < £ consisting of adequate balls such that the spaces (Lg , |Ilz)
factorized by 0{Lg,, [llz,) are reflexive Banach spaces. " "

3. (#)-classes. According to the definition given in [7] a sequence
{(Vus IIla)} of seminormed spaces is called a pre-(F)-sequence if (V,,,|-[,)

< (Vasry Mlney) and supfiell, = 0 for ze (M V,, implies # = 0. The functions
n n=1l

_ el /(L [ill)

1 otherwise, |,

for zV,,,

2n ()

provide 2 translation invariant metric function 9‘(:1;‘,_@)“ L
00 .
2(@) = > 27"g,(a),
. n=l1

making out of ¥ an additive topological group. If this group i
we call {V,,, ['ll,)} an (F)-sequence. v Ee gromp s complete
) We define a pre-(#)-class (g) a8 & pair consisting of a translation
mvamam? metric function ¢ defined over a linear space [o] such that
there exists a countable set of balls (1) in [¢] providing a basis of neigh-
bourhoods of zero in ([p], o), and the family L, of all clopen (%) linear
subspaces of ([¢], ¢). It is easy to see that for every ball B = [p] which
constitutes & neighbourhood of zero in ([g], o), Ls belongs to L,. Con-
versely, every LeL, is itself an absorbing ball B which is a neighboiuhood
of zere in ([¢], p). '

Given a basis of neighbourhoods of zero in consisti -
quence of balls {B,} such that B, > B,,, for n([=9}1’ ,92), v {(Lnf (?f]]-?]l SE)3}
constitutes a pre-(#)-sequence which provides the metric equivalg;m tg"g
Such pre-(F)-sequences shall be called generating sequences for (o). '

A pre-(.?’)-class shall be called an (#)-class iff the cofresponding
topological group is coraplete.

) We shall consider pre-(#)-classes (p,) and (02) equivalent if there

exists an Lequnng such that (L, ;) and (L, g,) are the same topolo-

(;) Ilialls are here meafm as defined in Section 0, not as balls with respect to o.
(%) Notice that open linear subspaces are automatically closed.

- ©
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gical groups. Clearly for equivalent (g,) and (g,) the spaces [g,] and [0a)
are generally different.

Given pre-(#)-classes {g,), ¢ = 1, 2, we say that T is a linear mapping
from (g,) to (g,) if there is fixed a domain Dy which is a subspace of [g,]
and T is a linear transformation of Dy into [g,]; T is said to be continuous
(respectively, open, nearly open, closed) if T' is eontinuous (respectively
open, neaily open, closed) as mapping from ([g.]; 1) to ([osl, 02); T is
said to be surjective if to every Lje<L, there corresponds LyeL,, such
that T(L,nDyg) > Ly; T is said to be nearly surjective if to every Lyel,
there corresponds LyeL,, such that T(L,NDy) is dense in (Ly, 0.)-

Given a pre-(#)-class (o) and a linear subspace W of some of Lek,
we define a new pre-(F)-class (W) which we obtain by restricting the
metric function ¢ to W and then getting L., = {VaW: Vel,}; the
subspace W is said to be closed in (p) iff all WV, VeL,, are closed.
Tt is easy to see that in the case when (g) is an (F)-class and W is closed
in (g), (Wno) is an (&)-class as well.

It (V, o) is a locally convex metric space, then we can look upon
it as on a pre-(F)-class (g), where L, consists of only one element V.

4. Polar (F)-classes. Given a semi pre-(25)-class & and a linear
subspace X L, dense in &, we define the dual (#)-class (gF) of £ with
respect to X, taking the algebraic dual X* of X and providing it with
a translation invariant metrization g; of the following convergence.

{w} tends to zero if for every adequate ball Bef almost all , belong
to the polar of XnB in X*.

Then we assign to L all clopen linear subspaces of (X*, ob).

Suppose in the sequel that X is provided with 2 locally convex topol-
ogy 7 and that £ is a p-component of (X, 7). Then ‘we define the polar
pre-(F)-class (¢f) of & by providing the dual X’ of (X, 7) with a trans-
lation invariant metrization ¢f of the following convergence:

{2} tends to zero if for every adequate ball B almost all , belong

to (XnB)°.

Then we assign to L0 all clopen linear subspaces of (X', of). It is
clear that (of) is generated by any pre-(# )-sequence {(Lix~p,0» Illx~z, u)cp)},
whete {B,}, B, < B, forms a generating sequence of £&. We have

() = (X'ngp)

and if (X, 7) is barreled, all the sequences of functionals from X’, which
are pointwise convergent, have their limits again in X' which makes (0%)
complete.
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Looking for & as for a p-component of (L, ;) we can see that itg
polar pre-(F)-class identifies with the (#)-space (L, o), where L; denotes
the adjoint to (L, i) and o; denotes the topology of uniform convergence
on balls from &,

5. Swongly good location and openmess. Given a locally convex
(X, 7) and its p-components & < & < &, a linear subset U7 of X ig said
to be strongly well located in X with respect to £, < £, < & if the following
condition holds (ef. [9], p. 213, [10], p. 5.7 and [11], p. 110).

(Ao) To every adequate ball B,e&, there corresponds an adequate
ball B,eé,, B, > B,, such that to every & >0 every Byef,
and every #’ eIy, vanishing on Un B, there corresponds &' eX’
bounded on XNB, and vanishing on UnB, such that
lots— #allp, < &, Where zpely, denotes the extension of the
restriction: of »' to X NLg, and zl’g denotes the restriction
of 2’ to Lg,.

Consider a barreled space (Y, o) with a p-component { and a barreled
space (X, ) with p-components £, < &,. Lot in the sequel P be a contin-
wous linear mapping with arguments in Y and values in X.

TrEOREM 5.1. (Cf. [9], Prop. 5.4 and [101, Prop. 5.3.) If for a p-com-
ponent &, < & the image PY s strongly well located in X with respect to
S <& < &, P ois nearly surjective from (68) 1o (ef), P emists and is
continuous from &, to ¢ and P is continuous from ¢ to &,, then P is open
From (of) o (of).

Proof. From Proposition 12 of [71 16 follows that it is sufficient to
‘prove that P’ is nearly open from () to (gf), i.e. that

(NO) ‘To every adequate hall B,e&, there corresponds an adequate

ball €y such that for every ¥ «(YnC° every adequate ball
Cel and every ¢>0 there corresponds 2" eDp N (XN B,y)°
such that “y'——P'm'ﬂ(ynmo < ;

Furthermore, P’ is nearly surjective from (08) to (of) iff

(NS) To every adequate ball B, £, there eorrespond§ an adequate

ball C,ef such that for every y'eLip,co, every adequate
ball Cef and every ¢ >0 there corresponds m'eDP,ﬂL(YHB)o
such that |y — P’z y, 00 < o. -

Take an adequate ball Be&; and adjust an adequate ball B e,
B, > B,, to fulfil the requirements of (A,). Subsequently, adjust el

job B, such that.(NS) holds. Due to the continuity of P~! we can choose 0,
In such a way that

(*) PgeB; implies wc}e,
for all P.z:sLBl.

icm

ERange of operators ) ' 18y

Fix § > &> 0 and an adequate ball Cef. Given y'¢(¥ N 0;)° we apply
(N8) and find w'eDp N Lx.p,0 such that fly'— P u'ljy .o < . Denoting
by ||| the sup norm of »' in (PY N Ly, iz we have from (*)

'l < i“P"u’”(r’ncl)o

and denoting by 2’ eLj the norm preserving exte;nsion of the restriction
of u’ to (PY)NnLg , we obtain

HZ'HEI < i”P"u’“(yhcl)o
so that denoting by 2, the restriction of 2’ to Ly, we have
”zfzﬂiag < }lz'H}al < i”P,’“’”(yncl)O < %(]iy'*P'“IH(ynn,)O‘f“ ”yl”(fncl)c <43

Writing u,, for the restriction of ' to X MLy , we notice that 2'—
—ull).EL.lBl vanishes on PYnLp . By virtue of the continuity of P we
can find B,e&, such that PC < B,, and then applying (A,) we find v’ X’
bounded on XN B, and vanishing on PYN B, such that

”(z],z" uy,z) - ”(2”2?2 <zs,

where wy, vjeLp, denote the extensions of the restrictions to X NLg,
of w' and o' respectively. Since P( < B,, we have HP'v'H(yhmo =0
and setting
¥ =u'+v,

we obtain

Iy —P @ zacyo <1 —P'wllgncyo+ 1P 0 ljgncyo <
and

2 llxnmao < o= (ta— wp)ll, + lizialln, < e+ l2hlls, < 1

and thus (NO) holds and the Proposition follows. .

Consider a locally convex space (X, v} and & p-component & of (X, 7).
We say that & admits (D) if the following condition holds (ef. [9], p. 216).

(D) Given Beé, there exists an adequate C<£, € o B, such that the

set of extensions to functionals from Ly of the restrictions to
XLy of functionals from X’ which are bounded on Xn( is
dense in (g, ||lp)- :

I (X,7) is an (#F)-space in the sense of [1], then every p-com-
ponent of (X, 7) admits (D).

Take a densty defined P from (Y, o) to (¥, 1).

THEOREM 5.2. (Cf. [9], Prop. 5.5.) If & admits (D), P is continuous -
Jrom Cto & and P’ is surjestive from (922) to-(ef), then the image PDyp is
strongly well located in X with respect to &, < & < &, for every p-component
£ 0 <é 1 ’ :

6 — Studia Mathematica XL. 2
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Proof. Notice at first that by virtue of Theorem 3 of [7], P’ being
surjective must be open, i.e.

(O) To every adéquate ball Bye&, there corresponds an adequate
ball O;el such that for every y'e¢(¥Yn(,)° there corresponds
@' eDp. 0 (X NB,)° such that y' = P'a'.

Fix Byeé, and assign €, to B, according to (O). Since Dj is dense
in ¢, €, can be chosen adequate for Dp. By continuity of P we can find
B¢, B, o B,, such that PO, = B,. Take an arbitrary ¢ >0 and 2’ eLp
vanishing on (PDP)HLBI. By virtue of (D) we can find %' <X’ such that
ey — 25, < %=, where 4y eLp denotes the extension of the restriction
of 4’ %0 XNnLp . We have for gc0,nDp |u'Pa| = |u'Pr—2' Pa| < flgg,—
—#/|[p, < 3¢ 80 that ||Pw'|pcyo < 3e. Applying (O) we can find v’<(}e)
(DN (XNB,)°) such that P'w’ =P'v'. ° :

Setting 2’ =u’—1’, we have

lleta— @iallz, < N wialls, + lvjallz, < ' — uplls + de <

and since »" vanishes on PDj, it also vanishes on Lg,N(PDp) for every
p-component &, and every By<£,. The Proposition is proved.- .

Given an (£#)space (X, ) (¢f. [1] for the definition), apcom

ponent £ of (X, ) is 3aid to be not overrnnming (X, 7) if to every Beé
there corresponds Ce&, € > B, and o linear subspace Z of X which is
& Fréchet space under the topology induced by = such that X NLyc Z
and that [|-{l¢ is continuous in (XN Lg, 7) (cf. [10], p. N3 and [9], p. 108).

We shall write briefly “(Z, g)e(#)” instead of “(Z, o) is a Fréchet
space”.

Consider a pair (¥, o), (X, 7) of (%%)-spaces and a linear continuous
mapping P from (¥, o) to (X, 7). Let ¢ and £, be p-components of (¥, o)
and (X, 7), respectively. We shall say that P! is A-continuous from &,
to [ if P is one-to-one and if the following condition holds.

(M) To every Beé, there corresponds a € e such that to every (U, #)
&(#), (U,9)> (X, 7) there can be assigned (Vy9)e(F), (V,»)
2 (¥,0), in such a way that P~' maps PYN(Lz+U) into
Lg+V and is continuous from (g, || |z) A (T, 9) to (Lg, || lo)A
ALV, 2).
PROPOSITION 5.1(%) If P~ is A -continuous from £ to ¢ and T does
not overrun (¥, o), then P’ is nearly surjective from (68) to {gf).
Proof. Take Beé, and adjust 0l according to (M). Fix any Ceg,
¢ >0, and adjust (Z, g)<(#), (Z,0)> (¥, 0) such that LynY < Z.

) E. Simonsen pointed out a mistake in the proof of Theorem 5.1 of [9]. The v

present Proposition substitutes the wrong Theorem
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Subsequently, take (U, #)e(F), (U, ) = (X, ©) with PZ < U and assign
(V,0)e(#), (3,0 =V, >(¥,0) according to (M). For y'eLg o0
y' P~ is continuous in (Lg, || liz) A (U, #) and admits continuous exten-
gion ' over Lg+ U. Take the extension £ X' of Zy. Since yeL;nY
implies # = PyeU, we have y'y = y'P™' = &z = 2Py and thus [ly'—
—P'#'fzngo = 0, and the Proposition follows.

ThEOREM 5.3. Fix additional p-components &, and & of (X, 7). If PY
is strongly well located in X with respect io &, < &; < &a, P71 is A-continuous
from &; to [ and P is continuous from &, fo L, then P’ is open from (9?2) o
(e9)- ,

Proof. It follows directly from Theorem 5.1 and Proposition 5.1.

Remark. The openness of P’ from (Q%) to (pf) implies A-continuity
of P from &, to {. The proof of this is postponed till the next paper.

6. Good location. Consider a linear locally convex space (X, ) and
its p-components &, < &, < &,.
A linear subset U < X is said to be well located in X with respect
to £, < & < &, if the following condifion holds. (Cf. [9], p. 207, [10],
p. 5.1 and [11], p. 110).
(ACO) To every adequate ball B,e&, there corresponds an adequate
ball B;eé&, such that for every adequate ball B,e&, we have

() Ly, (UnLy)" = (UnLy)",

where the closures ~ are taken subsequently in (Lsg,, [Mz,)A
A(X,7) and (Lg); IFlg,)- ,

ProrosrTION 6.1. (Cf. [9], Prop. 5.3, L.) Given p-components & < &,
< & of (X, 1), every linear subsel stromgly well located in X with respect
to & < & < & 15 well located in X with respect fo &, < &y < &, as well.

Proof. Suppose (A,) is satisfied and (ACC) does not hold. Hence,
there exists an adequate B;e &, such that (*) does not hold for any adequate
Bietr. Pub (M, m) < (Lg,, Flls) A (X, 7).

Assign to such a B, an adequate B <&, such that all the requirements
of (4,) are fulfilled. Since negation of (*) produces By &, and zye Ly N(UN
NnZLg)” such that 2, none(UnLg)~, we can produce 2’ <Ly vanishing
on UnLg, such that 2’2z, = |l4is,- Clearly; |l2,llp, must be positive. Using
(Ag), we produce ' <X’ vanishing on UnLg, [#,—2,lk<}. Setting
for y =2+, zelp,, zeX, 'y Em&z—l—m’m, we have ye<' M,, and thus
¥'% =0 which means that @z, = 0. But 2z, = [2lls, and |s2,—
—2,%| < 3|4z, which is contradictory.

PrOPOSITION 6.2. (Cf. [9], Prop. 5.3, II, and [10], Prop. 5.5.) Given
p-components £y < & < & of (X, 7). If & is reflewive, then every linear
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subset U = X well located in X with respect to & < & < &, is strongly well
located with respect to &y < & < &, as well.

Proof. Assume that the second component is reflexive and that
(ACC) holds. Take an adequate ball Byef,. Due to the reflexivity of the
component we can at once assume that (Lg,, |lz,)/ K, where K = 0(Ly,,
Iilz,), is & reflexive gpace. Assign an adequate ball B, to B, according
to (ACC). Then (A,) amounts to the statement that given Bjef,, the
subspace

V,= {w{._,_ EL%2: W'EL(XnBz)O: 2'( Ul’\LBo) = {0}},
iy dense with respect to l]-[]};ﬂ4 in the subspace
Vs ={z{ZeL§2: z'engl, z'(Ur\LBl) = {0}}.

Due to the reflexitivity of (Lg,, [I{z,) /K it is sufficient to show
that Vis weak* dense, i.e. that if for zeLy all functionals from V, vanish
on z, then all functionals from V, vanish on z as well. The space V', consists
of the restriction to Ly, of funetionals from :

Vy ={a'eM,: 5 (UnLg) = {0}};

where. (M, ps) = {Lg,, ls,) A (X, v)/ Hence we have to prove that if
* for zeLp, all functionals from V7" vanish on 2, then all functionals from V,

vanish on z as well. The first part means that z<(UnLp)~ where the
closure ~ is taken in (M, u,) and the second part amounts to ze(UNLg )~
where the closure ~ is taken in (Lg,, [-|l5,) so that we arrive to the inclu-
sion (*), and the Proposition follows.

THEOREM 6.1. Given a locally conver space (X, ©) and its p-components
& < & < &, If & is reflewive, then every linear subsel of X s strongly
well located in X with respect 1o £, < & << &, iff it s well located in X with
respect to £y < & < &

Proof. This amounts to putting together the two previously proved
propositions.

7. Epimorphisms of spaces with bases of p-components. Given a linear
space Y and a family 4 of (#)-classes such that for every () e4 the elements
from L, are linear subsets of ¥. We say that 4 overwhelms in Y if to
every second category metrie space (M, d) and a transformation T of
a linear subspace Z of ¥ onto M there corresponds ( o) e such that T(ZNL)
are of the second category in (M, @) for all LeL,.

In [5] and [8] the notion of overwhelming families has been thoroughly
discussed and numerous examples have been provided.

A family = ot semi pre-(2#)-spaces is said to be unified if all the
spaces Lg, £e 5, are subspaces of the same linear space.
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Given a barreled space (X, 7). A unified family = of p-components
of (X, ) is said to be a basis of p-components for (X, 7) if to every &,
£,¢ 5 there corresponds &e 5 with &, & < & (i.e. 5 is directed by the
relation < and if every continuous seminorm in (X, 7) admits the con-
tinuous extension to (L, 1) for some £e &; a basis Z is called a strong
basis if the family

= {(ef): £ 5}

of the polar (#)-classes of the components from 5 overwhelms in the
adjoint X' to (X, v) and if all £e5 admit (D).

Every (%% )-space in the sense of [1] admits a strong basis of p-com-
ponents. .

Consider two barreled spaces (X, 1), 1 = 1, 2, (X4, v;) being Haus-
dorff, and a densely defined linear mapping P from X, to X,. Let P’
denote the adjoint of P.

TaeorREM T7.1. If (X,, 7,) admils a strong basis of p-components =,
and P' is an epimorphism, i.e.

P'Dp =Xy,
then P is one-to-one, to every p-component &, of (X,, v,) there corresponds
a p-component &, =, such that P’ is open from (08) to (951) and P~*
is continuous from &, to £;. .

Proof. If Pz =0 for some weX,, then for every xeX; we have
@@ = (P'2y)2 = 2,(Pz) =0 80 that » = 0. Take an arbitrary &,. Sirice 29
overwhelms, we can find &,¢ Z, such that P’ (LN Dp. ) is of the second cate-
gory in (X7, Q?l) for every Le Qo The mapping P’ is easily verified to be

complete-closed from (X, QEZ) in (X3, 05 2) and thus applying Theorem 2
of [7], we find that it must be open. Hence, given B,e&,;, there exists
B, ¢Z such that P'{Dp N (B.NX,)°) o (Byn X,)°. Ta.king {Y.} € Dp with
{Pyn} bounded in (Lg,, |-lz,), we find that for every a7 L; we have a;lyn
= (P' &)y, = @5(Py,) bounded so that {¥.} must be bounded in (Lg,) Ilz,) B,)-
This concludes the proof of the Theorem.

THEOREM 7.2. Consider a barreled Hausdorff space (X, 1,) with a basis
Z, of p-components, a barreled space (X,, t,) with & strong basis 2, of reflevive
p-components and a linear continuous mapping P of (X, ;) into (X,,1,).

In order that P’ X, = X, it is necessary and sufficient that the follo-
wing conditions be saiisfied.

a. P is one-to-one and to every (e =, there corresponds £e .5, such
that P! is continuous from & to ¢ and that P’ is nearly surjective from
(ef) to ().

b. To every & e &, there corresponds &,e 5,, & <
is well located in X, for every &, < &,.

&, such that PX,
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Proof. If a. and b. hold, then to sufficiently fine [ 5; we can assign
& < & < & from 5, in snch a way that Theorem 5.1 and Proposition 5.1
can be applied. Since it holds for every £e 5 and 5; form a basis, it must
be P'X, = X;. _ .

The necessity of a. follows directly from Theorem 7.1. To verify
the necessity of b. fix an arbitrary £,¢ &3 and consider U = PX,. Given
u' <U’, we find that «'PeX; and since P’ is an epimorphism, there exists
o'« X, such that u'P = P'v’. Hence, the operation I' of the restriction
of functionals from X, to U constitutes an epimorphism of X, onto U’
Applying Theorem 7.1 for P =1I, we find £,¢ 5, such that I’ is open
from (of) to (03.;), and then from Theorems 5.2 and 6.1 we obtain
the good location of PX, and the Theorem holds.

TeEeoREM 7.3. Consider a densely defined linear mapping P from
a locally convex space (Y, o) to a barreled space (X, 7) and let (o') be an
(F)-dlass such that (', ¢) > (¥, o(X', X)) for some L'<L,. Assume that
(X, 1) admits a strong basis of p-components E. If for some L' eL,,

P'Dp ol

then there exists &< E such that P is open from (o) 1o (¢'). .

Proof. The Theorem i a trivial ¢onsequence of Theorem 1 of [8]
with T defined as the restriction of P’ to P'~*L'. The assumed continuity
of the imbedding of (L', p') into (¥, o(X’, ¥)) guarantees that 7 is
closed in the sense required in Theorem 1 of [8].

COROLLARY 7.1. Comsider a barreled space (X, ) with a strong basis
of p-components Z. If (¢') is an (F)-class such thai (L', ¢') > (X, o(X’, X)),
then there emisls £< & such that the identical injection from (o') to (o9) is
continuous. .

Proof. In Theorem 7.3, put (X, 7) = (¥, o) and let I be the identical .

. mapping of ¥ onto X. Then P is the identical mapping of X' onto X’
so thaf the condition P'X' = ¥"> L' of Theorem 7.3 is satisfied. Hence
we can find &< 5 'such that P’ is open from (o) to (¢’) and thus P'~? is
continuous from (') to (¢f). And since P'~* is also the identical mapping
of X" onto X', the Corollary follows.

.8. Regularities assigned to p-components. Given a linear space X
and a ball ¢ in X. A functional «'eX* is said to be C-regular if

le'lco £ sup{lz’a): 20} < oo.

If (X, 7) is alocally convex space, then we denote by Lo the subspace
of X' consisting of all functionals of regularity C. ’

Givqn a p-component & of (X, 7), the class LL,? contains all spaces
L x0, Be£. We call L9 the class of regularities assigned to &.
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Functionals from the intersection

NLg & N
H LeL ~

s

of all spaces from LQ? shall be called Z-infinitely regular.
We know from Part 4 of this paper that while spaces from Lg? can be
given only a group topology, the space nLQ? is always a Fréchet space.

TEEOREM 8.1. Consider a linear mapping T from the dual X' of a barre-

led space (X, 1) to a dual ¥’ of a barreled space (¥, 7). Suppose that T is

weak® sequentially closed and that (X, 1) admits a strong basis of P-compon-
ents 5. If T maps its domain onto Y, then to every p-component ¢ of (¥, o)
there corresponds a p-component ¢ e 5 such that to every B <& there corresponds
C & such that given C-regular y' <Y one can find a B-regular o <X’ with
y =P

It is clearly visible from all of the previous investigations that the
main difficulty of the theory lies in the fact that in Theorem 8.1 given ¢
it might be impossible to fix £¢ 5 in such a way that for every Z-infinitely
regular 4 there would exists & &-infinitely regular «” such that 3" =P’
A counter-example can be found in {3]. It means that given [-infinitely
regular y', we can provide B-regular solutions for every Be&, while at
the same time we might be unable to produce any &-infinitely regular
solution. )

TrHEOREM 8.2. Consider o barreled space (X, 1) and an {F)-class {p).
Suppose that (X, t) admils a strong basis of p-components E. Let in the
sequel T be a linear mapping from X' to some L, ¢ L, which is closed as a map-
ping from (of) 1o (o) for every £<Z. If the image of the domain Dy of T containg
at least one Lel,, i.e. if TDy > L for some LeL,, L = L,, thon there exists
&e B such that T is open from (o) to (o).

Proof. Tt is sufficient to notice that the family {(¢f): £¢ 5} over-
whelms in X’ and then there must exist a &e.= such that T turns every
ENnDyp, K ELeg: onto a second category set in (I, p). Then we apply

Theorem 2 of [7] and the Theorem follows.
Theorem 8.1 is an easy consequence of Theorem 8.2.

9. Two examples. Given a vector bundle (¥,p, M) over a non-
compact C* manifold M we write C3°(M , E) for the linear space of all C*
sections of (&, p, M) which has compact supports. Using the definition
of Atiyah and Bott (Annals of Math. 86 (1967), p. 391), we introduce
the space of distributional sections 2'(M , E). Consider a trivilization

By v,
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where ¥ isi an open set in the appropriate Euclidean space. For fe[OF(V)]?
we write

(ﬂ*f) (t) = fp“%t,f(t)), teV,
and for geCP(V) we write

0 %p
g(p)z(gu'--ygq)y gi:{gi='p:
so that for w<2'(M,F) we can write

(B )y (9) = u(R* ggpy)
and B
Bu = (B w)g, ..., (B u),).

Thus we defined the transformation
) B 9'(M, B> [2/(V)]
and then for every reM and u<2'(H, M) we define

(ordu) () £ max ord (A*w),.
. 1<i<q :

Here the definition is independent of the choice of % only that
reph~ (V % (%), . : :

It is easy to see that for ue9' (M, E) the function ordu assumes
only a finite number of values on every compact in M.

Denote by 9t the set of all natural valued functions defined on M and
assuming only a finite number of values on every compact in M.

Suppose that we are given two vector bundles (E:,p,, M,) and
(E,, ps, M,) and consider the distribution spaces 2, = 9'(M;, B,) and
@é = Q’(Mza E,).

Directly from Theorem 8.1 we obtain the following

THEOREM 9.1. Given a linear sequentially closed transformation T of
a subspace ¥ < 9, onto 9. To every Ny e N, there corresponds nye N,y such
that to every compact K, in M, there coresponds a compact K, in M, such
that to every veD, with ordo < n, poiniwise on K, there corresponds we Dy,
Tu = v, with ordu < n, pointwise on K,.

Loosely speaking, taking the right sides of the equation Tu = v
with ordv < m,; pointwise on the whole M, there might not exist n, sucu
that there would always exist a solution % with ordu < n, pointwise on
the whole M,. One can find a counter-example in [3].

However, if we only require the existence of n, such that for an arbi-
trary compact K, c M, and any veD;, ordw < m, pointwise on M ,, there
exists a solution %Y such that ordu < n, pointwise only on XK 5, then
Theorem 9.1 answers it in the affirmative. Even more, the function n,
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assigned to n, can be chosen in such a way that to every compact K, < M 5
one can find a compact K, = M, such that for every v«2, with ordo < n,
pointwise on K, there exists a solution % with ordu < n, pointwise on K.

Take an open subset 2 of the N-dimensional Euclidean space and
a Hilbert space (H, |). Denote by 2(Q, H) the space of all infinitely
often differentiable H-valued functions with compact supports. To every
non-negative integer # we assign a norm

Wl = (Z<n J 107101,

where p = (py, -.., Px) is an N-tuple of non-negative integers, Ipl =p1+
+ ... +Py, and D” denotes the differentiation |p| times, p; on the i-th
variable. For each compact K, the subspace

2(K, H) = {fe2(2, H): suppf < K}

provided with the topology induced by seminorms ||, ¥ =1,2,... is
a Fréchet space. The space

2'(2, H)

consisting of all linear functionals defined on 2(2, H) which are contin-
uous in every Z(K, H) we shall call the space of H-valued distributions.

Denote by 2" the set of all compact subsets of Q. Furthermore, denote
by 2 the set of all natural valued functions n defined on ¢ such that for
every Ke 4 the set

{n:n=n(L), Ko LeX}
is finite. For ue2' (2, H) and K e X write
_ lelln, =z = sup {ufl: [Ifl, <1, suppf < K}.
Define for ne Mt and KeX"
”“H:,K = SuP{““ﬂ:(L),L-' K o LeX}.

Due to the definition of the set M we can always find I,,..., L,
such that

““H:,K = Sup {”u“:(l;.,;),L;: i=1,2,...,n}.

Consider now two open subsets 2, and 2, contained in Euclidean

" spaces BV and B2 respectively, and two Hilbert spaces (Hy, |lls), (Hs,

[Illz). Then we introduce ; and M;, i = 1, 2, accordingly.
A linear transformation

T: ¥~ 2'(Q, Hy),
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where Y is a linear subspace of 2'(2,, H,) is said to be sequentially closed
if for any m;e M;, ¢ =1, 2, and any {u,} c Y, ueD (2,, H,),ve 2 (0, H,)
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un— 1l x tends to zero for every Ke ., .
and
|Tu—vl5,x  tends to zero for every Ked,
implies )
: veY and Tu =n.

Directly from Theorem 8.2 we obtain the following

THBOREM 9.2. If T'is sequentially olosed and if TY = @' (Q,, H,),
then to every mye My there corresponds am nye M, such that to every Kye o,
there corresponds an K, e A"y and C >0 such that

T{ue¥: |ulf, < C} > (e (2, @): Iolls, £, <1}
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