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On a class of operators on Orlicz spaces
by
J. J. UHL, Jr. (Urbana, IIL)

Abstract. Let L? be an Orlicz space over a o-finite measure space. If X is a Banach

n
space and t: L? — ¥ is a linear operator, ||{t{]|s = sup Z Hait(};E_)H where the supremum

is taken over  all measurable simple functions f = at g, {B;} disjoint and [|flle<< 1.

Under fairly general assumptions on ¥ and & it is shown that |[]#]]]e < oo if and only
if t(f) = [ fgdu where g: Q— % is measurable and the above Bochner integral exists

for all feL®. Consequently it is shown that such operators are compact. Finally, under
moderate assumptions on &, it is shown that t: L® — L® has |{|i||l¢ < oo if and only
if £'s adjoint is of finite double norm, thus providing a new characterization of Hilbert-
Schmidt operators.

1. Introduction. Let (2, X, ) be a sigma-finite measure space,
@ and ¥ be complementary Young’s functions and L®(RQ, Z, p)(= L®)
and L¥ (8, Z, u)(= L¥) be the corresponding Orlicz spaces of (equiva-

" lence classes of) measurable functions on 2. L is a Banach space under

each of the equivalent norms N, and |||, defined for f eL® by No(f)
— (K >0: [ @(f|/K)ap <1} and [fls = sup{[ fodus geI* Nelg)

1}. If X is a Banach space and ¢ is a bounded lmear operator mapping
IL°® into ¥, Dinculeanu has defined [||t|lle by

n
e = sup D llast(xz)lls
i=1 )
Whel'e the supremum is taken over all measurable simple functions,
f= 2 @ Xz, (B} = X disjoint, such that N4(f)<1. This norm for

opelat01s has been the subject of some study by Dinculeanu in [1], {2],

‘and [3]. The purpose of this note centers around proving a Bochner

integral representation theorem for these operators, examining their
compactness properties and looking at their rather close relationship
@.[8].

with operators of finite double no;
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2. Operators with ||t]||, < co. This section is concerned with opera-
torst: L® — X where X is either reflexive or is a separable dual of a Banach
space, whieh satisty ||/f|lls < oc. Radon-Nikodym theorems for vector
measures will be used to obtain a Bochner integral representation for
these operators. The section will then conclude by looking at compactness
properties of these operators. Recall that a Young’s function @ obeys
" the 4,-condition if there exists a finite constant M such that @ (22) < M &(x)
for all .

THEOREM 1. Let @ obey the Ay-condition and let X be a Banach space
which is either reflexive or is a separable dual space. Then t: L® - % has
e < oo if and only if there exists a strongly measurable g: Q2 — ¥ such
that |lg|leL® and t(f) = [ fodu;feL®; where the iniegral is the Bochner

2

integral. In this case |||t|||e = || lg]] lw-

Proof. (Necessity) First assume up(R2) < co. Define G: X — X
by G(E) = t(yg). Since ¢ is bounded and linear, we find that it B, — B,
B,eZ, then |G(B)—GEN<Ilyu— xz,le—>0. Since @ is clearly
finitely additive the above limit shows @ isx countably additive and a simi-
lar computation shows @ is y-continuous. Next chooge the constant « >0
such that Ng(ay,) =1 and consider for any finite disjoint collection

n 717.-‘ 7711‘ '))l%
{-En} < 2’ L)1 En = 0. axo = 2,1 GXE,,- Then «a ZIHG(En)H = a,z, ““X!ﬂn)”
n= = n= Ne==l
m
= ' t(aym ) < lil]]ls < oo definition of |[[t|||,. Hence @ is of bounded
n=1

variation. Now since X is either reflexive or a separable dual space,
Phillips’ Radon—-Nikodym Theorem [7, p. 134], or the Dunford Pettis
Theorem [4, pp. 344 —45] respectively establish the existence of a strongly
measurable g: 2 — X such that |jg|eZ' and '

G(B)= [ gdp for BeX.
B
Next it will be shown that {jg|eL¥. For this note that for any decompo-

sition {E,} = X of 2 into a finite disjoint sequende of sets if follows from
[[lt]lle < oo and the definition of G that

m

D lal 161 (By) <

mn

3 oy, satisfies Nq(f)

n=1

of ¢ on FeX. Now since [ [lg||du
B

2 Hant (XE
n=1

NP

provided f = < 1, where |G|(H) is the variation

= |G| (E), FeZ, one has

el e

S’ la| f llgh d <

n==<1

©
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for all f = 2
following equa.hty

litlile = sup{ [ 1] lghdu: f simple; No(f)<1}.
From thig it follows that

Nitllle = sup{ [ 1f1 lgldp: No(f)<1}.

a, ¥z, » above. Taking appropriate suprema yields the

A check of the definition of ||| |||, shows then that
ltHle = 1 gl -

Now since |jgleL¥,

f”fglid,u < oo forall feL¥.

fifll!g

<I[iflall llg) e, ? is bounded. But if f = 2 o, ¥z, 18 simple, then
n=1

Hence (f f fodu exists for all feIL® and since | f)n

1) = D aut(tm,) = D, @G (Bn) Yan f gdu = f fodu = 1(£).

But since @ obeys the A,-condition, simple functions are dense in L®%g
thus #(f) = [ fgdp for all feL®. This proves the necessity in the case of
Q

a finite measure. The o-finite case can be proved using usual techniques.

The proof of the sufficiency follows from an application of the Holder
inequality and will be omitted. m

The second and final result of this section is

COROLLARY 2. If in addition fo the hypothesis of Theorem 1, ¥ also
obeys the As-condition, then every 1: L% - X with |||tl|ls < oo is compact.

Proof. Let the X. valued strongly measurable function g satisfy

= [fodu (feI®)
2

and |lg]leL¥. Choose a sequence [3, p. 117] {g,} of simple functions such
that |lg,/| < 2{gll a. e. and limg, = g a. e. Then for any K >0 ¥(lg.— gll/ K)
~0 a.e Alo ¥Y(lg,—gl/E) < ¥ ((lgall+ llgl)/E) < P3gll/K) which i3
integrable since ¥ obeys the A,-condition. Hence for any K >0,
hm ] ¥ (|lg,—gll/K)dp = 0 by the dominated convergence theorem. From

thls it follows that Ng(|lg.—gll) = 0.
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But now consider #,: L® - X defined by 1,(f) = [ fg,du feL”®. The
) Q

operators t, are bounded, and in fact are compact since their range ig
contained in the span of the finite set of values of g, for each n. Moreover

lt—tall = sup | [ flg—g)dull < sup [ If] lg—gallde < N olg—gal)
1

PSS [HFAS

by the Holder nequality. Hence lim|jf—¢,| = 0 and ¢ is compact.
n

3. Operators of finite double norm. This section is devoted to the
connection between linear operators of finite double norm ¢: L® — L®
and linear operators ¢: L — L® with |||t|||s finite. It will be shown that
under a fairly generous hypothesis, the two classes of operators are adjoints
of each other. To this end, recall that a bounded linear operator ¢: L? — L?
is of finite double norm [8, p. 177] if there exists a u X y-measurable
function g: 2x Q — R such that

(i) the section g(s,")eL*(¥ complementary to @) for almost all
sef;

(ii) the function 2: Q— B defined by 2(s) = |lg(s,")|w belongs to
L% and

(iii) for each feL? and for almost all seQ

1)) = [fr)gls, r)u(dr).
2
In fhis case the double norm of ¢ is given by .

AN = llelle =1 (g (-5 le)lla-

Probably the most famous operators of finite double norm are the Hil-
bert~Schmidt operators [5, p. 1009] which are precisely those operators
of finite double norm when &(x) = |s/2; i.e. when L® = L¥ — I7.
Operators of finite double norm are discussed in some detail in [8]. The
following theorem characterizes operators of finite double norm.

THEOREM 3. Let & and its complementary function ¥ - each obey the
Ay-condition. Then a bounded linear operator t: L® — I,° 4s of finite double
norm if and only if its adjoint t*: I¥ ~ L* satisfies |||t*|||w < oco. In this
case ||ltlllo = |I"]|ly. In particular if L, = I?, e <oo if and only
if ¢ s a Hilbert~Schmidi operator.

Proof. (Necessity) Suppose t: L® - L® i of finite double norm
and that for feL?®

H()6) = [Fr)gls D@ ae.

Class of operators on Orlicz spaces 21

where g satisties (i), (i) and (iii) above. Now if he(L%)* = LY, since &
obeys the 4,-condition, one finds

[T uids) = [R(s)f(s)p(ds)
Q2 2
= [1s)( [£r)g(s, )u(an) p(ds)
Q2 Q

= [10)( [ h(&)g(s, ) (ds)) (),
2 Q

by the Fubini Theorem. Since this holds for all heL¥ and for all feIL?,
it follows that

£ w)0) = [h(s)g(s1)p(ds) s o

Now define the function g by g(s) = g(s, ), s¢2. By hypothesis §(s)eL¥
for almost all seQ. Arguments entirely analogous to those of Dunford
and Pettis [4, p. 336] show that § is strongly measurable as a vector-
valued function. Also by (iii) above, [glseL®. Now applying [5,
III. 11. 17], one finds

*hir) = [ hgdp Tr] a.e.
Q

and hence by Theorem 1,
HE* e = NUgle)le = 117l < co.

This proves the necessity.

To prove the sufficiency, suppose ||[t*]|]y < oo. Since, under the
current hypothesis, LY is reflexive, Theorem 1 applies and produces
a strongly measurable L¥-valued g with | |lgllw]le < oo satisfying

t*(h) = [hgdy for'all heL¥.
Q

Now in view of [5., TIT. 11. 17], which is valid for all the Orlicz spaces
under consideration here, there exists a w X u-measurable real valued
g on 2% 2 such that

(a) gl 8) =g(s)()eL¥ a.e.
(b) [G(r, s)uds) = [gls)plds)(r) ae.
E B

for all EeX of finite measure. Moreover since |jg| weL®,

(c) g (-, e = llg(lweL®
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From (2), one has that for almost all reQ2

[1()7 0y ) p(ds) = [f(s)g(s)u(ds)(r)

whenever feL" is simple. Since simple functions are dense in LY, it follows
that for almost all 7€ Q. t*(2) (r) = [ h(s)§ (s, 7) u(ds)for he LY. Arguments
Q

the same as those used in the necessity show that
() = [ (s, rudn)  ae
Q2

for all feL®. The fact that ¢ is of finite double norm follows immediately
from (c). m
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On shrinking basic sequences in Banach spaces*

by

DAVID W. DEAN (Columbus), IVAN SINGER (Bucharest)
and LEONARD STERNBACH (8. Carolina)

Abstract. In § 1 we prove that a Banach space F with a basis {z,} contains
a subspaco with a separable conjugate space if and only if {z,} admits a shrinking
block basic sequence. Hence, a Banach space F contains a subspace with a separable
conjugate space if and only if E contains a shrinking basie sequence. In § 2 we prove
that if B has a subspace with a separable conjugate space, then E* (the conjugate
of E) has a quotient space with a basis. In § 3 we prove that if & has a basis, then every
shrinking basic sequence in E has a subsequence which can be extended to a basis
of . We also raise some related unsolved problems.

Introduction. A sequence {z,} in a Banach space F (we shall assume,
without special mention, that dim E = co and that the scalars are real
or complex) is called a basis if ¥ if for every reF there exists a unique

oo
sequence of scalars {a,} such that » = ) a,4;. A sequence {z,} = E is
i=1 B
said to be a basic sequence if {z,} is & basis of its closed linear span [z,].
A sequence {z,} c F is called a block basic sequence with respect to a se-

My
quence {y,} < B if it is a basic sequence of the form z, = Z By #=0
i=dy 141

(n =1,2,...), where {m,} is an increasing sequence of positive integers
and m, = 0; it is well known and easy to see that if {y,} is a basic sequence,
then {z,} is necessarily a basic sequence. A basic sequence {z,} = B is
called shrinking, it lim|jy |y ¢ ..l =0 for all yefz,1*. Say that a basic
n

sequence {z,} can be ertended to o basis of E if there exists a basis {2}
of B and a sequence of positive integers {k,} such thatz, = 2, (n =1, 2, ek

In §1 of the present paper we shall prove some results on the existence
of shrinking basic sequences. Among other results, we shall prove that
if B has a basis {x,}, then E contains a subspace & having a separable

i
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