- [4] R. M. Brooks, Boundaries for locally m-convex algebras, Duke Math. J., 34 (1967), pp. 103-116.
- [5] R. M. Crownover, Principal ideals which are maximal ideals in Banach algebras, Studia Math., 33 (1969), pp. 299-304.
- [6] K. Hoffman, Fundamentals of Banach Algebras, Institutio de Mathematica da Universidad de Parana, Curitiba, 1962.
- [7] M. E. Kuczma, On a Problem of E. Michael concerning topological divisors of zero. Colloq. Math., 19 (1968), pp. 295-299.
- [8] J. A. Lindberg, Jr., Algebraic extensions of commutative Banach algebras, Pac. J. Math., 14 (1964), pp. 559-589.
- [9] E. A. Michael, Locally m-convex topological algebras, Mem. Amer. Math. Soc. 11 (1952).
- [10] H. Rossi, The local maximum modulus principle, Ann. of Math., (2) 72 (1960), pp. 1-11.
- [11] W. Rudin, Real and Complex Analysis, New York, 1966.

S.U.N.Y. OSWEGO, NEW YORK

Recu par la Rédaction le 19.9.1970

(206)

On a class of operators on Orlicz spaces

b

J. J. UHL, Jr. (Urbana, III.)

Abstract. Let L^{Φ} be an Orlicz space over a σ -finite measure space. If $\mathfrak X$ is a Banach space and $t\colon L^{\Phi}\to \mathfrak X$ is a linear operator, $|||t|||_{\Phi}=\sup\sum_{i=1}^{n}\|a_{i}t(\chi_{E_{i}})\|$ where the supremum is taken over all measurable simple functions $f=\sum\limits_{i=1}^{n}a_{i}\chi_{E_{i}}$ { E_{i} } disjoint and $||f||_{\Phi}<1$. Under fairly general assumptions on $\mathfrak X$ and Φ it is shown that $|||t|||_{\Phi}<\infty$ if and only if $t(f)=\int\limits_{\Omega}fgdu$ where $g\colon\Omega\to\mathfrak X$ is measurable and the above Bochner integral exists for all $f\in L^{\Phi}$. Consequently it is shown that such operators are compact. Finally, under moderate assumptions on Φ , it is shown that $t\colon L^{\Phi}\to L^{\Phi}$ has $|||t|||_{\Phi}<\infty$ if and only if ts adjoint is of finite double norm, thus providing a new characterization of Hilbert-Schmidt operators.

1. Introduction. Let (Ω, Σ, μ) be a sigma-finite measure space, Φ and Ψ be complementary Young's functions and $L^{\Phi}(\Omega, \Sigma, \mu) (=L^{\Phi})$ and $L^{\Psi}(\Omega, \Sigma, \mu) (=L^{\Psi})$ be the corresponding Orlicz spaces of (equivalence classes of) measurable functions on Ω . L^{Φ} is a Banach space under each of the equivalent norms N_{Φ} and $\|\cdot\|_{\Phi}$ defined for $f \epsilon L^{\Phi}$ by $N_{\Phi}(f) = \inf\{K > 0: \int\limits_{\Omega} \Phi(|f|/K) d\mu \leqslant 1\}$ and $\|f\|_{\Phi} = \sup\{\int\limits_{\Omega} fgd\mu \colon g \epsilon L^{\Psi} \ N_{\Psi}(g) \leqslant 1\}$. If $\mathfrak X$ is a Banach space and t is a bounded linear operator mapping L^{Φ} into $\mathfrak X$, Dinculeanu has defined $\||f||_{\Phi}$ by

$$|||t|||_{\Phi} = \sup \sum_{i=1}^{n} \|a_i t(\chi_{E_i})\|,$$

where the supremum is taken over all measurable simple functions, $f = \sum_{i=1}^{n} \alpha_i \chi_{E_i}, \{E_i\} \subset \Sigma$ disjoint, such that $N_{\Phi}(f) \leq 1$. This norm for operators has been the subject of some study by Dinculeanu in [1], [2], and [3]. The purpose of this note centers around proving a Bochner integral representation theorem for these operators, examining their compactness properties and looking at their rather close relationship with operators of finite double note. [8].

2. Operators with $|||t|||_{\theta} < \infty$. This section is concerned with operators $t\colon L^{\theta} \to \mathfrak{X}$ where \mathfrak{X} is either reflexive or is a separable dual of a Banach space, which satisfy $|||t|||_{\theta} < \infty$. Radon–Nikodym theorems for vector measures will be used to obtain a Bochner integral representation for these operators. The section will then conclude by looking at compactness properties of these operators. Recall that a Young's function θ obeys the Δ_2 -condition if there exists a finite constant M such that $\theta(2x) \leq M \theta(x)$ for all x.

Theorem 1. Let Φ obey the Δ_2 -condition and let $\mathfrak X$ be a Banach space which is either reflexive or is a separable dual space. Then $t\colon L^{\sigma}\to \mathfrak X$ has $|||t|||_{\Phi}<\infty$ if and only if there exists a strongly measurable $g\colon \Omega\to \mathfrak X$ such that $||g||_{\epsilon}L^{\Phi}$ and $t(f)=\int\limits_{\Omega}fgd\mu;f\,\epsilon L^{\Phi};$ where the integral is the Bochner integral. In this case $|||t|||_{\Phi}=||||g||_{\mathbb Y}.$

Proof. (Necessity) First assume $\mu(\Omega) < \infty$. Define $G \colon \Sigma \to \mathfrak{X}$ by $G(E) = t(\chi_E)$. Since t is bounded and linear, we find that if $E_n \to E$, $E_n \in \Sigma$, then $||G(E) - G(E_n)|| \le ||t|| \, ||\chi_E - \chi_{E_n}||_{\mathfrak{o}} \to 0$. Since G is clearly finitely additive the above limit shows G is countably additive and a similar computation shows G is μ -continuous. Next choose the constant $\alpha > 0$ such that $N_{\mathfrak{o}}(\alpha\chi_{\Omega}) = 1$ and consider for any finite disjoint collection $\{E_n\} \subset \Sigma$, $\bigcup_{n=1}^{m} E_n = \Omega$. $\alpha\chi_{\Omega} = \sum_{n=1}^{m} \alpha\chi_{E_n}$. Then $\alpha\sum_{n=1}^{m} ||G(E_n)|| = \alpha\sum_{n=1}^{m} ||t(\chi_{E_n})|| = \sum_{n=1}^{m} ||t(\alpha\chi_{E_n})|| \le ||t|||_{\mathfrak{o}} < \infty$ definition of $||t|||_{\mathfrak{o}}$. Hence G is of bounded variation. Now since $\mathfrak X$ is either reflexive or a separable dual space, Phillips' Radon–Nikodym Theorem [7, p. 134], or the Dunford Pettis Theorem [4, pp. 344–45] respectively establish the existence of a strongly measurable $g \colon \Omega \to \mathfrak X$ such that $||g|| \in L^1$ and

$$G(E) = \int\limits_E g d\mu \quad ext{ for } E \, \epsilon \, \Sigma.$$

Next it will be shown that $||g|| \epsilon L^{\Psi}$. For this note that for any decomposition $\{E_n\} \subset \Sigma$ of Ω into a finite disjoint sequence of sets if follows from $|||t|||_{\mathcal{Q}} < \infty$ and the definition of G that

$$\sum_{n=1}^{m} |\alpha_n| |G|(E_n) \leqslant |||t|||_{\varphi}$$

provided $f = \sum_{n=1}^{m} a_n \chi_{E_n}$ satisfies $N_{\Phi}(f) \leq 1$, where |G|(E) is the variation of G on $E \in \Sigma$. Now since $\int_{\mathbb{R}^n} ||g|| d\mu = |G|(E)$, $E \in \Sigma$, one has

$$\sum_{n=1}^m \|a_n t(\chi_{E_n})\| \leqslant \sum_{n=1}^m |a_n| \int\limits_{E_n} \|g\| d\mu \leqslant |||t|||_{\boldsymbol{\sigma}}$$

$$|||t|||_{m{\sigma}}=\sup\Big\{\int\limits_{\Omega}|f|\,\|g\|\,d\mu\colon f ext{ simple};\,\,N_{m{\sigma}}(f)\leqslant 1\Big\}.$$

From this it follows that

$$|||t|||_{\pmb{\sigma}}=\sup\Big\{\int\limits_{\Omega}|f|\;\|g\|d\mu\colon\,N_{\pmb{\sigma}}(f)\leqslant1\Big\}.$$

A check of the definition of ||| |||_{\sigma} shows then that

$$|||t|||_{\varphi} = |||g|||_{\Psi}.$$

Now since $||g|| \epsilon L^{\Psi}$,

$$\int\limits_{\Omega}\|fg\|d\mu<\infty\quad\text{ for all }\quad f\epsilon L^{\Psi}.$$

Hence $\bar{t}(f) = \int_{\Omega} fg d\mu$ exists for all $f \in L^{\Phi}$ and since $||\bar{t}(f)|| \leq \int_{\Omega} |f| ||g|| d\mu$ $\leq ||f||_{\Phi}|| ||g|| ||_{\Psi}, \ \bar{t}$ is bounded. But if $f = \sum_{n=1}^{m} a_n \chi_{E_n}$ is simple, then

$$t(f) = \sum_{n=1}^m a_n t(\chi_{E_m}) = \sum_{n=1}^m a_n G(E_m) = \sum_{n=1}^m a_n \int_{E_n} g d\mu = \int_{\Omega} f g d\mu = \bar{t}(f).$$

But since Φ obeys the Δ_2 -condition, simple functions are dense in L^{Φ} 's thus $t(f) = \int_{\Omega} fg d\mu$ for all $f \in L^{\Phi}$. This proves the necessity in the case of a finite measure. The σ -finite case can be proved using usual techniques.

The proof of the sufficiency follows from an application of the Hölder inequality and will be omitted. \blacksquare

The second and final result of this section is

COROLLARY 2. If in addition to the hypothesis of Theorem 1, Ψ also obeys the Δ_2 -condition, then every $t\colon L^{\Phi} \to \mathfrak{X}$ with $|||t|||_{\Phi} < \infty$ is compact.

Proof. Let the $\mathfrak X$ valued strongly measurable function g satisfy

$$t(f) = \int\limits_{O} fgd\,\mu \quad (f\,\epsilon\, L^{\Phi})$$

and $\|g\| \in L^{\Psi}$. Choose a sequence [5, p. 117] $\{g_n\}$ of simple functions such that $\|g_n\| \leqslant 2 \, \|g\|$ a. e. and $\lim g_n = g$ a. e. Then for any $K > 0 \, \Psi(\|g_n - g\|/K) \to 0$ a. e. Also $\Psi(\|g_n - g\|/K) \leqslant \Psi((\|g_n\| + \|g\|)/K) \leqslant \Psi(3 \, \|g\|/K)$ which is integrable since Ψ obeys the Δ_2 -condition. Hence for any K > 0, $\lim_{n \to 0} \int \Psi(\|g_n - g\|/K) d\mu = 0$ by the dominated convergence theorem. From this it follows that $N_{\Phi}(\|g_n - g\|) \to 0$.

But now consider $t_n \colon L^{\Phi} \to \mathfrak{X}$ defined by $t_n(f) = \int_{\Omega} f g_n d\mu \, f \, \epsilon L^{\Phi}$. The operators t_n are bounded, and in fact are compact since their range is contained in the span of the finite set of values of g_n for each n. Moreover

$$\|t-t_n\| = \sup_{\|f\|_{\mathbf{d}}\leqslant 1}\|\int f(g-g_n)\,d\mu\| \leqslant \sup_{\|f\|_{\mathbf{d}}\leqslant 1}\int |f|\,\|g-g_n\|\,d\mu \leqslant N_{\,\varPsi}(\|g-g_n\|)$$

by the Hölder inequality. Hence $\lim \|t-t_n\|=0$ and t is compact.

- 3. Operators of finite double norm. This section is devoted to the connection between linear operators of finite double norm $t\colon L^{\Phi}\to L^{\Phi}$ and linear operators $t\colon L^{\Phi}\to L^{\Phi}$ with $|||t|||_{\Phi}$ finite. It will be shown that under a fairly generous hypothesis, the two classes of operators are adjoints of each other. To this end, recall that a bounded linear operator $t\colon L^{\Phi}\to L^{\Phi}$ is of finite double norm [8, p. 177] if there exists a $\mu\times\mu$ -measurable function $g\colon \Omega\times\Omega\to R$ such that
- (i) the section $g(s,\cdot) \in L^{\Psi}(\Psi)$ complementary to Φ) for almost all $s \in \Omega$;
- (ii) the function $z\colon \mathcal{Q}\to R$ defined by $z(s)=\|g(s,\cdot)\|_{\Psi}$ belongs to $L^{\varPhi},$ and
 - (iii) for each $f \, \epsilon \, L^{\sigma}$ and for almost all $s \, \epsilon \, \Omega$

$$t(f)(s) = \int_{\Omega} f(r) g(s, r) \mu(dr).$$

In this case the double norm of t is given by

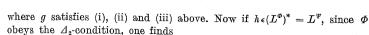
$$|||t||| = ||z||_{\varphi} = ||(||g(\cdot,\cdot)||_{\Psi})||_{\varphi}.$$

Probably the most famous operators of finite double norm are the Hilbert-Schmidt operators [5, p. 1009] which are precisely those operators of finite double norm when $\Phi(x) = |x|^2/2$; i. e. when $L^{\Phi} = L^{\Psi} = L^2$. Operators of finite double norm are discussed in some detail in [8]. The following theorem characterizes operators of finite double norm.

THEOREM 3. Let Φ and its complementary function Ψ each obey the Δ_2 -condition. Then a bounded linear operator $t\colon L^{\Phi} \to L^{\Phi}$ is of finite double norm if and only if its adjoint $t^*\colon L^{\Psi} \to L^{\Psi}$ satisfies $|||t^*|||_{\Psi} < \infty$. In this case $|||t|||_{\Phi} = |||t^*|||_{\Psi}$. In particular if $L_{\Phi} = L^2$, $|||t|||_{\Phi} < \infty$ if and only if t is a Hilbert-Schmidt operator.

Proof. (Necessity) Suppose $t\colon L^{\sigma}\to L^{\sigma}$ is of finite double norm and that for $f_{\epsilon}L^{\sigma}$

$$t(f)(s) = \int\limits_{\Omega} f(r)g(s,f)\mu(dr)$$
 a. e.



$$\begin{split} \int\limits_{\Omega} t^* h(s) \dot{f}(s) \, \mu(ds) &= \int\limits_{\Omega} h(s) t f(s) \, \mu(ds) \\ &= \int\limits_{\Omega} h(s) \Big(\int\limits_{\Omega} f(r) \, g(s, \, r) \, \mu(dr) \Big) \, \mu(ds) \\ &= \int\limits_{\Omega} f(r) \Big(\int\limits_{\Omega} h(s) \, g(s, \, r) \, \mu(ds) \Big) \, \mu(dr), \end{split}$$

by the Fubini Theorem. Since this holds for all $h \in L^{\Psi}$ and for all $f \in L^{\Phi}$, it follows that

$$t^*(h)(r) = \int\limits_{\Omega} h(s)g(s,r)\mu(ds)$$
 a. e.

Now define the function \bar{g} by $\bar{g}(s)=g(s,\cdot)$, $s \in \Omega$. By hypothesis $\tilde{g}(s) \in L^{\Psi}$ for almost all $s \in \Omega$. Arguments entirely analogous to those of Dunford and Pettis [4, p. 336] show that \tilde{g} is strongly measurable as a vector-valued function. Also by (iii) above, $\|\bar{g}\|_{\Psi} \in L^{\Phi}$. Now applying [5, III. 11. 17], one finds

$$t^*h(r) = \int\limits_{\Omega} h \bar{g} d\mu \ [r]$$
 a. e.

and hence by Theorem 1,

$$|||t^*|||_{\Psi} = ||(||\bar{g}||_{\Psi})||_{\varphi} = |||t||| < \infty.$$

This proves the necessity.

To prove the sufficiency, suppose $|||t^*|||_{\Psi} < \infty$. Since, under the current hypothesis, L^{Ψ} is reflexive, Theorem 1 applies and produces a strongly measurable L^{Ψ} -valued g with $|||g||_{\Psi}||_{\varphi} < \infty$ satisfying

$$t^*(h) = \int\limits_{\Omega} hg d\mu \quad ext{ for } {}^{\dagger} ext{all } \quad h \, \epsilon L^{\Psi}.$$

Now in view of [5., III. 11. 17], which is valid for all the Orlicz spaces under consideration here, there exists a $\mu \times \mu$ -measurable real valued \bar{q} on $\Omega \times \Omega$ such that

(a)
$$\tilde{g}(\cdot, s) = g(s)(\cdot) \epsilon L^{\Psi}$$
 a. e.

(b)
$$\int\limits_{E} \tilde{g}(r,s)\mu(ds) = \int\limits_{E} g(s)\mu(ds)(r) \quad \text{ a. e. }$$

for all $E \in \Sigma$ of finite measure. Moreover since $||g||_{\Psi} \in L^{\Phi}$,

(c)
$$\|\tilde{g}(\cdot,\cdot)\|_{\varPsi} = \|g(\cdot)\|_{\varPsi} \epsilon L^{\varPhi}.$$

.

From (2), one has that for almost all $r \in \Omega$

$$\int_{\Omega} f(s)\tilde{g}(r,s)\mu(ds) = \int_{\Omega} f(s)g(s)\mu(ds)(r)$$

whenever $f \in L^{\Psi}$ is simple. Since simple functions are dense in L^{Ψ} , it follows that for almost all $r \in \Omega$. $t^*(h)(r) = \int\limits_{\Omega} h(s) \tilde{g}(s,r) \mu(ds)$ for $h \in L^{\Psi}$. Arguments the same as those used in the necessity show that

$$t(f)(s) = \int\limits_{\Omega} f(r)\tilde{g}(s,r)\mu(dr)$$
 a. e.

for all $f \in L^{\sigma}$. The fact that t is of finite double norm follows immediately from (c). \blacksquare

References

- [1] N. Dinculeanu, Vector Measures, New York, 1967.
- [2] Integral representation of linear operation, Queen's Papers in Pure and Applied Mathematics, no. 10, (1967), pp. 2-41.
- [3] Representation integral des operations lineaires (roumain) I, II, Studii Cercet. Mat. 18, (1966), pp. 349-385, pp. 483-536.
- [4] N. Dunford, and B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc. 47, (1940), pp. 323-392.
- 5] and J. T. Schwartz, Linear Operators, New York, 1958.
- [6] W. A. J. Luxemburg, Banach function spaces, Thesis, Delft, 1955.
- [7] R. S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math. 65 (1943), pp. 108-136.
- [8] A. C. Zaanen, Linear Analysis, Amsterdam, 1953.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

Reçu par le Rédaction le 28.4.1970 (203)

STUDIA MATHEMATICA, T. XL. (1971)

On shrinking basic sequences in Banach spaces*

b;

DAVID W. DEAN (Columbus), IVAN SINGER (Bucharest) and LEONARD STERNBACH (S. Carolina)

Abstract. In § 1 we prove that a Banach space E with a basis $\{x_n\}$ contains a subspace with a separable conjugate space if and only if $\{x_n\}$ admits a shrinking block basic sequence. Hence, a Banach space E contains a subspace with a separable conjugate space if and only if E contains a shrinking basic sequence. In § 2 we prove that if E has a subspace with a separable conjugate space, then E^* (the conjugate of E) has a quotient space with a basis. In § 3 we prove that if E has a basis, then every shrinking basic sequence in E has a subsequence which can be extended to a basis of E. We also raise some related unsolved problems.

Introduction. A sequence $\{x_n\}$ in a Banach space E (we shall assume, without special mention, that dim $E=\infty$ and that the scalars are real or complex) is called a basis if E if for every $x \in E$ there exists a unique sequence of scalars $\{a_n\}$ such that $x=\sum_{i=1}^{\infty}a_ix_i$. A sequence $\{z_n\}\subset E$ is said to be a basic sequence if $\{z_n\}$ is a basis of its closed linear span $[z_n]$. A sequence $\{z_n\}\subset E$ is called a block basic sequence with respect to a sequence $\{y_n\}\subset E$ if it is a basic sequence of the form $z_n=\sum_{i=m_{n-1}+1}^{\infty}\beta_iy_i\neq 0$ $(n=1,2,\ldots)$, where $\{m_n\}$ is an increasing sequence of positive integers and $m_0=0$; it is well known and easy to see that if $\{y_n\}$ is a basic sequence, then $\{z_n\}$ is necessarily a basic sequence. A basic sequence $\{z_n\}\subset E$ is called shrinking, if $\lim_n \|\chi_{\|z_n,z_{n+1},\ldots\|}\|=0$ for all $\chi\in[z_n]^*$. Say that a basic sequence $\{z_n\}$ can be extended to a basis of E if there exists a basis $\{x_n\}$ of E and a sequence of positive integers $\{k_n\}$ such that $z_n=x_{k_n}(n=1,2,\ldots)$.

In §1 of the present paper we shall prove some results on the existence of shrinking basic sequences. Among other results, we shall prove that if E has a basis $\{x_n\}$, then E contains a subspace G having a separable

^{*} The work of the first author was partially supported by NSF Grant GP9037. The second author was on leave from the Institute of Mathematics of the Romanian Academy of Sciences.