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A difference quotient norm for spaces of
quasi-homogeneous Bessel potentials

by
RICHARD J. BAGBY (Las Cruces, New Mexico)

Abstract. A generalized class of Sobolev spaces has been defined using Fourier
transforms. It is shown that the natural norm is equivalent to an integral norm of
a mixed difference quotient, thus generalizing a result of Strichartz. ‘

Introduction. The purpose of this paper is to obtain a more useful
norm for the spaces of quasi-homogeneous Bessel potentials introduced
in Cotlar and Sadosky [3]. The desired norm is analogous to that obtained
by Strichartz [8] for fractional Sobolev spaces and by the author 1
for parabolic spaces. The same general method could presumably be
used here, but an examination of [1] reveals that the calenlations would
be hopelessly complicated. In this paper the crucial inequality is estab-
lished by wusing an inductive argument to exfend Strichartz’s result.
The key to the inductive step is given in § 2.

Some of the results presented here were discovered during conver-
sations with Professor C. C. Tu of COase Western Reserve University;
T am grateful for his help.

1. Preliminaries. Points in R™ will be denoted z = (..., Ty
Throughout the paper a = (dy, - .., @,) Will be a fixed multi-index, where

each a; is rational with @ =1,¢,2>1fori =2,...,n Let m be the
smallest positive integer such that each of — , ..., —18 an even integer.
1 Gy,

We define a quasi-homogeneous metric on B™ by
[2] = (@4 ... 4 gy,
For 2 a positive real number, define
Dy = (g, ..., Anax,).

Then [A9g] = A[].
For arbitrary complex y, define an operator J; by

TN = (L4 [BI™rm.
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Here » denotes the Fourier transform, understood in the sense of
distributions [6]; where no confusion arises the dual variable is also
denoted by .

For 1 <p < oo, we define a Banach space Lf, = {Jf: feI?}. L2,
iS no'rmed bW “sz”pa/ = f”y

An operator closely related to J}, and I}, is defined by

H = [217F,
defined for all f such that [#]7%f is a tempered distribution. In many
contexts, H? is an unbounded operator.
In order for equations to be valid in the sense of functions, we will
occasionally restrict ourselves to the class Lf® of essentially bounded,
measurable functions vanishing a. e. outside some compact set.

For the induction argument, we will need to work in RM as well

as R". Points in B**' will be denoted as & = (w, t), where x<R"™. 4 = (a, b)
= (@, ..., @y, b) Will be a fixed (n + 1)-index of the same type as a.
We define

[#] = (@Ma .. 4+ e 4 (MI0yUM

where M is the smallest positive integer such that each of M [y .oy May,,
M [bis an even integer. A4 g, JUy I, and HY, ave given the obvious defi-
nitions.

Occasionally, operators indexed by “a” will be applied to functions
in B™'. We adopt the convention T,f(%) = (T.f(, 1)) () if all the quan-
tities involved ave functions; we understand the analogous definition in
the case of distributions.

2. Tools. The following theorem will be used: repeatedly. It has
appeared in various forms in a number of papers; an accessible proof of
the version stated here is given in Littman, McCarthy, and Riviére [5].

Murrrermee THEOREM 2.1. Let M be o function of n variables which
is of class C" in all of R™ ewcept possibly the coordinate planes. Suppose
that |z DM (n)| is bounded for each multi-index a = (ayy ..y @) with each
@, =0 or 1. Then for 1 < p < oo, the operator T' defined by (To)h = Mp
1s @ continuous operator from LP into LP. M is called a multiplier.

THEOREM 2.2. Let 1 < p < oo and y > 0. Then feI? e if and only if
fel” and f = Hip for some pelP. In this case, ||flpay ~ ISl 1D,

Proof. Suppose feI?, gpeI®, and f = H"(p Then ¢ = H;7f. We
have

27NN = @+ [a1myf
= (@4 LI (14 [07) ) (1 + [0])f
= (IO +(TH"F)N = (Tf)" + (o)
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where T is defined by (Tg)* = (L4 [#]"y™ (14 [2])7'g. Appling (2.1),
T maps I? into I? continuously. Thus f = J%(Tf+ Te), and (Tf+ Te)eL?
with |2+ Tol, < ¢ (Ifl,+ I ll,)-

On the other hand, suppose feLj,. Then f = J4y for some pelL”.
By (2.1), feI? and [fll, < ¢,lvlly = Colillpay - Also, | = HL(Sy), where §
is defmed by (8g)* = [#7 (14 [x]™)"*"™g. Again applying (2.1), SyeL”
with Sy, < 6, llvlly = €1 llpay-

" Remark. ¥ ¢ =6, =... =a, =1, then the above theorem Iis
known to be true for p = 1 or co. See [7]. The above theorem is adequate
for our purposes, 850 no attempt has been made to extend it.

PROPOSITION 2.3. Let 0 < y < la} and pel' NIP, where 1 <p < oo,
Then H?, @ is the sum of an L™ function and on IF funciion.

Proof. Let {e«0® with {(z) =1 for |#|< 1 Z(w) =0 for [.n|>2,
and 0 <{(m) <1l for 1<|#| <2 Then (Hij¢ = [2]77{(x) ¢ () +
+2]"7(1—¢ (x))zp (%). Since 0 <y <lal, [w]"’ 1s loe.ally mtegrable ;

-since ¢el!, ¢ is bounded. Thus [«]” 72 (w)@ () defines an I' function;

consequently its inverse Fourier transform is in L™, Applying (2.1) to
[#]7"{1— (@), we see that [#]7(L—((%))¢ () is the Fourier transform
of an IP function. o

Note in particular that the above hypotheses are satisfied for every

p if peli.
TEMMA 2.4, Let 1 <p < o0, b >0, y > 0. Then

_Z( f 1 j F(r, iwrl’s)ols‘xs'r"l‘z”dr)mdt< cp ,f:( Ofmm(r, t)l’r’l“z"dr)””dt.

Proof. Let H be the Hilbert space of measurable functions f on
(0, oo) for which [ |f(r)
0

ued function of . We define another H-valued function TF by
1

TF(r, t) = J P(r, t—10s)ds.

[Ey=1"%dr < co. Let us consider F to be an H-val-

Then the desired conclusion is |TF||ppm < C [flizo - Suppose F Fely(H);
i.e., [[F(-, )y is essentially bounded and vamshes for a.e. t outside
some compact interval. Computing Fourlel transforms (in the sense of
H-valued functions),

o 1
(T (r, 7) —-—1;fe-iffdz fF(-r,t——r”s)(ls
V2r 4, 1
1 o0
:_—1: f ds f e B (r, t—1Ps) dt,
2“ -1 —00
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the change in order of integration being justified because the latter inte-
gral converges absolutely in H.

1 o

1 . ,
(Tf)/\ (’V’, “L') —_ ]/5_ fe—mrbsrds f e«z(i-—rl’s)rF(.,r’ t-1“’s)dt
‘ 7r e
1
. 2sinr’r -
f o7 Bir, 7)ds =~ L B, 1)
-1
b P
. gin7 d sinr’r
Since beT <1 and TET <2, for each 7t multipli-
b, 3 /]
. nr'r J siny .
cation by o and by T T,)TT define bounded maps from H

into H. Appealing to a Hilbert space version of the multiplier theorem.
we have that T is a continuous map of L7 (H) into I”(H) for 1 < p < oo,

As the authors point out in Benedek, Calderén, and Panzone [2]
in Theorem 4 of their paper, such a multiplier theorem can be proved
using their Theorem 2 and the method of proof of Hérmander’s multiplier
theorem [4].

3. A new norm for I?

a,y”* -
o

DeriNttioN. 8 f(#) = ([[ [ 1f(@—r®y)—f (@)l dyfr~'"* @r)* where
I=[-1,1]. L

Note that for each z, 8% () is & semi-norm. Another useful property
is that if feZ*, then 8% (fg)(®) < |Ifle 8 g (@) + |g ()| S f ().

Our goal is the following: )

TegorEM 3.1. Let 1 <p < oo and 0 <y <1l. Then feIf, if and
only if feI? and 89 feLP. Moreover, |flpay ~ fllp+ 189l -

LEvwmA 3.2. For peLy and f = H? o,

189l < Oplipll,-

Eroof. (Induction on n). When n = 1, 4[m} = |o| and the result is
contained in the proof of Theorem 2.3 of Strichartz [8]. Assume the lemma
is valid in R". Let pe LY (R™?), f = HY p. We have

SYf (@) = (f [ [ 1@—1y, 1—1*5)— f(o, 1) ayas] r-=2 ar)"

mtl

0 N
<([ 1S [ 15—y, 1=0)— o, t—rsagas 1= )
0 il

([ [fJ 1500 =01 sta, ol agas] -2,

mtL

icm°®
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Putting
Fa,r, 1) = [ Ifle—1y, ) —f(z, t)|dy
and "
8 (2, 1) = (f | f \f(a, t—15)—f(a, ) s 27 )",
we have no

12

o 1
89f @, ) <( [ | [ Fla, r t—rtsyas] e~ arf" 20891 (2, 1)
1] -1

By (2.4),
[+<} o0 » o0 oo 2
—fw(nf ]—f:F(m, 7, t—r"s)ds]z 'r"l‘z'*’dr)Z < 03 ~£ (JI |F(z, 1, t)lgr*““dr\):’ di

=05 [ 8Pf(w, o dt.

Hence |89 f], < Cp I8 fll,-+2" IS f],. We have
} =181 = (@17 ([2F [2]77¢) = (Hiv)",

where by (2.1) peI? with |lpll, < Cpllpl,. By the induetive hypothesis
and a density argument,

[ 80f(@, 1y dw < C [ lp(@ tPde
and hence [8Yfl, < Cpllyll, < Cyliell,-
For the other term, we have
00 1 o /
g, 1) = ([ | [ 176 t—rPs)—fla, Ol ds e ar"
o -1
oo 1

- b—llﬂ( | [ [ \fa, t—rs)— fia t)xczs]2 r“'z”"’dr)

0 -1

112

This time we apply the multiplier theorem to [¢[""[#]™” and use
a similar argument to show [SYfll, < Cpligll,-

Tevua 3.3. Let 1 <p < o0, 0 <y <1, pely, and f = Hzg. Then
llelly < CpliSP Sl

Proof. The technique here is essentially that used in Strichartz [8],
except that instead of applying Theorem 4 of Benedek, Calderén, and
Panzone [2] we use some of the ideas present in its proof.
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Let
IO f(@) = (f [f[f(f(;_ T(a)?/)—f(m)]dyf 7'"1'2”(11")1/2,
6 ;

Clearly T < 8¢f; we shall show [l < 0, |79l Tet 7T be the Hilbert
space defined in (2.4). Define Byp(z) = [ [H}p(z—r®y)— 7 ¢(2)]dy.

oy 17’4
}1?}'" 3.2, Bpel”(H) with [ Bplrra = |10, < ISP flp < O llgl,. We
ave

(B)* (@) = [ Up(-—1y)— Hp) (o) dy
m

= [ (@) (@) [exp{—i < ¥y, 5 >} —1]dy

3

— ptaar ([ ] [ oxp {—iniya}dy;—2")

i=1 -1

sinrtiaz,

— oo ([ [ Tt ) = @i,

715;(*-, r) is an H—valued function; [|k(2, - )|z will be bounded subsequently.
, the ad]ou,n; of B, maps LP (H) into I” continuously with norm
bounded by C,, where [|B |, < 0, llpll,; all peL, 1 < p < co. Moreover,

for e Ly (H),
(B"p)" (@) = (3 (@), k(w, ),
where the inner product is taken in H. Hence for gL,
* .
(B" Bp)" (0) = (p(2) Rz, -), k(, -)) = ¢(a)|[k(x, )|

Since ||B* Byll, < C,|Byll» it we can appl 7t
proof is eomplpete. ! e T 8 to ke, Mg the

o

(@, M= 2 (a1 [

0
" sinrtis,
I] G L
11 g,

the integral converges. For 1 > 0,

sinrtia,

2
—1] "%y,

——
%,
i=1 B

Since

is bounded by 2 and is O(r?) as r —~0 for each ,

V

o«

530, )y = 2(2001> [

n

H sinr® %o, 2
3%, .

de=1

T = (1% (2, )”%7
0

as can be seen by substituting » = 2-1»".

icm
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Butb |[k(z, ) is bounded away from 0 on {z: [»] = 1}; hence it
is also bounded away from 0 in R* ~ {0}. Consequently, it suffices to
bound 2°D°||k(, -)|% for # not lying in & coordinate plane, and « of the
form (a, ..., a;) With each ¢; =0 or 1.

An elementary calculation shows that |o"D®[2]™%| < C{z]™® for
all such a; thus by Leibnitz's rule it suffices to show

o0 n . a;
£ D" n sinrfe;
rhig;

o i=1

2
i dr% < Ofz]”.

Differentiating under the integral sign, we see that

|[7 sinr%is, P2
eSS
rlig,

i=1 *

s a sum of products of terms of the form

1 = sin?""imi
(1) ] iz, Bl
5 sinr®ia;
(v ) r“imi_’
or
siny%iz; sinr®z;
3) @Dy = 0SB v,

due to the nature of a; the number of terms of the third type in each
product is the order of a.

As pointed out previously, the term of the first type is bounded by
2 and is O (#2) as r — 0. Terms of the second type are bounded by 1. Noting

¢ _
that cost = 11+ O(f2) a.ndil—?— —1+0(), we see that terms of the

third type are O(r%) as r — 0, uniformly for bounded z; moreover, such
terms are bounded by 2 for large 7.

r e sinr%ip, :
BET % 1) ¢ @y converges uniformly in a neigh-

Thus _F D
0

rHx;
borhood of each z not in a coordinate plane; consequently differentiation
under the integral sign is valid. It follows also that #* D*|k(a, -)|f is con-
tinuous on R" ~ {0}.

Evaluating terms of the three types at 2@y instead of # and then
substituting » = A7, it follows readily that

2" D° [l (@, )zl < OTw]”.

{t=
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Proof of Theorem 3.1. Here the details are identical to the proof

of the corresponding theorem in [1]; the method is due to Strichartz [8].
Let felf,. By (2.2), f = Hjp for some g@el” and ||fll,.q, ~ ||fl,+

+[|<;fs|’[(2,). By (3.2), (3.3), and a density argument, we have |,
~ 18- ’

On the other hand, suppose both f and S{f are in L?. Let g, be
a gequence of functions in O such that

(1) g, =0,
2) gl = 1,
(8) || F*g,— Fll, 0 for each FeLP.
A routine argument shows that both g, and fxg, are in IZ . By what
we have shown, '
1% Gnllp,ay < C(IF* Gully+ I8 (F* gl -

But ||f*g,ll, <|[fl,, and since g, >0 Minkowski’s inequality gives 8&(f+g,)

<g80f and thus (189 (Frg,)ll, < lg 8PSl < 8971, Hence {f+ g"}

forms a bounded sequence in If . It is shown in [3] that L2, is reﬂéxivz H

consequently, some subsequence fx Iy, 18 weakly convergent in Iz . Sinee’a

Fga,— 0 IP, it follows that fe ZE,. Y
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Convolution of functions in Lorentz spaces
by

LEONARD Y. H. YAP (Singapore)

Abstract. The well-known results of M. Rajagopalan, W. Zelazko, and N. Rickert
concerning the LP-conjesture are extended to the Lorentz spaces L{p, q) (G) defined
on (non-eompact) locally compact groups ¢. Related results for compact groups are
also given. The theorems presented here are complementary to, and motivated by,
earlier results on convolution of functions in Lorentz spaces by R. O’Neil and the
author.

1. Introduction. In O'Neil [2] and Yap [8] convolution of functions
in various Lorentz spaces L(p, q)(X, p) (for definition, see (2.1) infra)
were considered and interesting and useful results were obtained. For
example, if ¢ is a wnimodular locally compact group with Haar measure
2 and p,, p, are real numbers such that 1/p+1/ps =1, then for f in
L(P1, 0)(G A) and g in L(pe; g2)(G) 1), the usual convolution product
f*g is always defined (under some mild restriction on ¢, and ¢,) and it
has further pleasant properties 2], [§]. In this note we consider the case
1/p;+1[p. <1 and thus answer some natural questions left open in the
earlier papers. In addition to this we also consider the Banach algebras
L(p, )(@, 2) when Gis a compact group and p > 1. Our results are gen-
eralizations of theorems in [11,[37, [41,[7], [9]).

2. Definitions and preliminary results. In this section we review the
basic definitions, and give some preliminary results which are needed
in the sequel.

DrrmNITIONS 2.1. Let f be a measurable function defined on a measure
space (X, p). For y == 0, we define m(f, y) = p{zeX: |f(@) >y}, and let
f* be the function on [0, oo) which is inverse to m(f, -} and right-contin-
nous. For # > 0, we define

o) = [

Studia Mathematica XL.1
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