

STUDIA MATHEMATICA, T. XL. (1971)

An example of a normed spaces non-isomorphic to its product by the real line

by

S. ROLEWICZ (Warszawa)

Abstract. An example of a normed space non-isomorphic to its product by the real line.

Let X be an infinite-dimensional Banach space over reals and let R be the real line. The following problem is still open.

PROBLEM. Is X isomorphic to $X \times R$?

C. Bessaga, A. Pełczyński and the present author [1] gave an example of an infinite-dimensional nuclear complete locally convex metric space (nuclear B_0 -space) non-isomorphic to its product by R.

The present note contains an example of a non-complete normed space with this property. The constructed example is a pre-hilbertian space.

- 1. Let Γ be a set of sequences of positive numbers such that
- (*) if $\{t_n\} \in \Gamma$ and $\{a_n\}$ is a bounded sequence of positive numbers, then $\{t_n a_n\} \in \Gamma$.

Let X be a normed space with a norm $\|x\|$. The space X is said to be Γ -approximable if there is a sequence $\{L_n\}$ of finite-dimensional subspaces such that

(i)
$$\dim L_n = n-1$$
 $(n = 1, 2, ...),$

(ii)
$$L_n \subset L_{n+1}$$
 $(n = 1, 2, ...),$

and

(iii)
$$\{\delta_n(x)\} \in \Gamma$$
, where $\delta_n(x) = \inf\{\|x - y\| : y \in L_n\}$.

The property (*) trivially implies

Proposition 1. Γ -approximability is an invariant of isomorphism, i. e. if two normed spaces X and Y are isomorphic, then X is Γ -approximable if and only if Y is Γ -approximable.

73

2. Let X be the normed space of all sequences of reals $x=\{x_n\}$, such that

$$M_x = \sup_n 2^{2^n} |x_n| < +\infty$$

with the usual hilbertian norm $||x|| = \sqrt{\left(\sum_{n=1}^{\infty} |x_n|^2\right)}$.

Let Γ be the set of sequences of positive numbers belonging to X. Proposition 2. The space X is Γ -approximable.

Proof. Let L_n be the space of elements of the type $\{a_1, \ldots, a_{n-1}, 0, \ldots\}$. Clearly, the sequence $\{L_n\}$ satisfies (i) and (ii). Moreover, we have

$$\delta_n(x) = \left(\sum_{i=1}^{\infty} |t_i|^2\right)^{1/2} \leqslant \frac{M_x}{2^{2^n}} \left(\sum_{i=n}^{\infty} \frac{1}{2^{2(2^i-2^n)}}\right)^{1/2} \leqslant 2 \cdot \frac{M_x}{2^{2^n}}.$$

Thus $\{\delta_n(x)\} \in \Gamma$.

Hence the space X is Γ -approximable.

3. Now we shall show that the space $X \times R$ is not Γ -approximable. For this purpose we shall need some geometric properties of ellipsoids in a Hilbert space.

We recall that a compact ellipsoid in a Hilbert space H is a set

$$E=ig\{\sum_{i=1}^\infty a_i e_i^E\colon \sum_{i=1}^\infty |a_i|^2\leqslant 1ig\},$$

where $(e_i^E,\,e_j^E)\,=\,0$ for $i\,
eq j$ and $\lim\,\|e_i^E\|\,=\,0$.

The vectors e_i^E are called the axes of the ellipsoid E. Of course, the ellipsoid E does not depend on the ordering of the axes in a sequence. We shall assume in the sequel that $\|e_i^E\| \geqslant \|e_i^E\|$... and we shall put $\lambda_i^E = \|e_i^E\|$, $i = 1, 2, \ldots$

Let us put

$$\dot{E} = \{x \in E : rx \notin E \text{ for all } r > 1\}.$$

LEMMA 1. Let E be a compact ellipsoid in a Hilbert space H. For any orthogonal projection P the set PE is a compact ellipsoid. Moreover, if dim ker P=1 then

$$\lambda_i^{PE} \geqslant \lambda_{i+1}^E \ i = 1, 2, \dots$$

Proof. The first assertion is obvious. Let $0 \neq e_0 \epsilon \ker P$. Let $E_n = E \cap \operatorname{span} \{e_1, \ldots, e_n\}$. Let us observe that if $x \in E_n \cap E$, then $||x|| \geqslant \lambda_n^E$

Now we shall show Lemma 1 by induction. Let e_1' be an element of $E_2 \cap \dot{E}$ orthogonal to e_0 . Thus $Pe_1' = e_1'$ and $\|e_1'\| \geqslant \lambda_2^E$. Hence $\lambda_1^{PE} = \|e_1^{PE}\| \geqslant \|e_1'\| \geqslant \lambda_2^E$. Let $H_n = \operatorname{span}\ \{e_0, e_1^{PE}, \dots, e_{n-1}^{PE}\}$. Let e_n' be an element $E_{n+1} \cap \dot{E}$ orthogonal to H_n . Let us observe that $\lambda_n^{PE} = \|e_n^{PE}\| \geqslant \|e_n'\| \geqslant \lambda_{n+1}^E$.

This implies the conclusion.

LEMMA 2. Let

$$K = \left\{ x \, \epsilon E \colon \left\| x \right\| \geqslant rac{\lambda_1^E}{2}
ight\} \, .$$

Then conv K contains an ellipsoid E' such that

$$\lambda_1^{E'} = \lambda_1^E$$

and

$$\lambda_i^{E'}\!\geqslant\!rac{\lambda_i^E}{\sqrt{2}} \hspace{0.5cm} i=2,3,\ldots$$

Proof. Let us pick $x \in E$ so that $(x, e_1) = 0$ and let $K_x = K \cap \operatorname{span} \{x, e_1\}$.

It is easy to verify that conv K_x contains an ellipse (two-dimensional ellipsoid) $E^{\prime\prime}$ such that

$$\lambda_1^{E''} = \lambda_1^E$$

and

$$\lambda_2^{E''}\geqslant rac{\|x\|}{\sqrt{2}}$$
.

This trivially implies the conclusion of the lemma.

LEMMA 3. Let $\{g_1, \ldots, g_n, \ldots\}$ be an orthonormal sequence of elements of Hilbert space H. Let E be a compact ellipsoid contained in H. Let $L_1 = \{0\}$, $L_n = \operatorname{span} \{g_1, \ldots, g_{n-1}\}$ and

$$K_n = \left\{ x \in E \colon \ \delta_i(x) \geqslant rac{\lambda_i^E}{2^{i+1}} \ \ i = 1, 2, \ldots, n
ight\},$$

where as before

$$\delta_i(x) = \inf \{ ||x - y|| \colon y \in L_i \}.$$

Then the sets K_n are not empty.

Proof. Let P_n be the orthogonal projection onto a subspace orthogonal to g_n . Let $\pi_n = \prod_{i=1}^n P_n$. We shall show by induction that (**) $\operatorname{conv} \pi_n K_n$ contains an ellipsoid E_n such that $\lambda_i^{E_n} \geqslant \frac{\lambda_{i+n}^{E}}{2^{n+1}}$.

By Lemma 2, $\operatorname{conv} K_1$ contains an ellipsoid E'' such that $\lambda_i^{E''} \geqslant \frac{\lambda_i^E}{\sqrt{2}} \geqslant \frac{\lambda_i^E}{2}$. Thus by Lemma 1 $\operatorname{conv} P_1 K_1 = P_1$ $\operatorname{conv} K_1$ contains an ellipsoid E_1 such that

$$\lambda_i^{E_1} \geqslant rac{\lambda_{i+1}^E}{2}$$
 .

Therefore (**) hold for n = 1.

Let us suppose that (**) holds for n=m. By Lemma 1, $\operatorname{conv} \pi_{n+1} K_n = \operatorname{conv} P_{m+1}(\pi_m K_m) = P_{m+1}(\operatorname{conv} \pi_m K_m)$ contains an ellipsoid E'_m such that

$$\lambda_{i}^{E_{m}^{'}}\geqslant\lambda_{i+1}^{E_{m}}\geqslantrac{\lambda_{i+m+1}^{E}}{2^{m}}.$$

Let us observe that $\delta_{m+1}(x) = ||\pi_{m+1}x||$. Thus

$$\pi_{m+1} K_{m+1} \, = \, \left\{ \! x \, \epsilon \pi_{m+1} \, K_m \colon \; \|x\| \geqslant \frac{\lambda_{m+1}^E}{2^{m+1}} \right\}.$$

Therefore, by Lemma 2, $\operatorname{conv} \pi_{m+1} K_{m+1}$ contains an ellipsoid E_{m+1} such that

$$\lambda_i^{E_{m+1}}\geqslant \lambda_i^{E_m^{'}}\cdot rac{1}{\sqrt{2}}\geqslant rac{\lambda_i^{E_m^{'}}}{2}\geqslant rac{\lambda_{i+m+1}^{E}}{2^{m+1}}$$
 .

This completes the proof.

COROLLARY. Let E be a compact ellipsoid in a Hilbert space H. Let L_n be an arbitrary sequence of finite-dimensional subspaces satisfying (i) and (ii). Then there is an element $x \in E$ such that

$$\delta_n(x) \geqslant \frac{\lambda_n^E}{2^{n+1}}.$$

Proof. The sets K_n are compact and $K_n \supset K_{n+1}$. Thus $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$. This trivially implies the conclusion of the corollary.

Proposition 3. The space $X \times R$ is not Γ -approximable.

Proof. The space $X \times R$ is obviously isomorphic to the space X_1 of real sequences $x = \{x_n\}$ such that

$$\sup_{n} 2^{2^{n-1}} |x_n| < +\infty$$

with the usual Hilbert norm $||x|| = (\sum_{n=1}^{\infty} x_n^2)^{1/2}$.

Let L_n be an arbitrary sequence of finite-dimensional subspaces satisfying (i) and (ii).

Let

$$e_n = \{0, \ldots, 0, 2^{-2^{n-1}}, 0, \ldots\}$$

Obviously, $||e_n|| = 2^{-2^{n-1}}$. Let us observe that the ellipsoid

$$E = \left\{\sum_{n=1}^{\infty} a_n e_n \colon \sum_{n=1}^{\infty} |a_n|^2 \leqslant 1 \right\}$$

is contained in x_1 . Thus by the Corollary there is an $x \in E \cap X_1$ such that

$$\delta_n(x) \geqslant \frac{2^{-2^n-1}}{2^n} = 2^{-2^n-1-n}.$$

Therefore,

$$2^{2^n} \delta_n(x) \geqslant 2^{2^n - 2^n - 1 - n} \to \infty$$
.

This implies that the space X_1 is not Γ -approximable.

From Propositions 1-3 we immediately obtain the following

Theorem. The prehilbertian space X is not isomorphic to the space $X \times R$.

The author offers his sincere thanks to Professors E. Dubinsky and A. Pełczyński for their careful and penetrating perusal of the manuscript and their valuable remarks.

References

 C. Bessaga, A. Pełczyński, S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Pol. Sc. 9 (1961), pp. 677-683.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK