FASC. 2

ON STRONGLY ADDITIVE SET FUNCTIONS

RV

Z. LIPECKI (WROCŁAW)

The purpose of this note is to give another proof of a theorem of J. Kisyński on strongly additive set functions (1).

Let \mathscr{L} be a lattice of sets, i.e. a family of sets closed under joints and meets. Let λ be a function from \mathscr{L} into an Abelian group G such that

(i)
$$\lambda(A) + \lambda(B) = \lambda(A \cup B) + \lambda(A \cap B)$$
 for $A, B \in \mathcal{L}$.

Hence, by induction,

(1)
$$\lambda(A_1) + \ldots + \lambda(A_n) = \sum_{k=1}^n \lambda \left(\bigcup_{1 \leq i_1 < \ldots < i_k \leq n} A_{i_1} \cap \ldots \cap A_{i_k} \right).$$

In fact, by (i) we have

Summing up equations (2) for l=0,1,...,n-1 and applying inductive hypothesis we obtain (1) for $A_1,...,A_{n+1} \in \mathcal{L}$.

Now we are going to prove

LEMMA. If $A_1, ..., A_n, B_1, ..., B_n$ are in $\mathscr L$ and

(3)
$$\chi_{A_1} + \ldots + \chi_{A_n} = \chi_{B_1} + \ldots + \chi_{B_n},$$

then

(4)
$$\lambda(A_1) + \ldots + \lambda(A_n) = \lambda(B_1) + \ldots + \lambda(B_n).$$

⁽¹⁾ J. Kisyński, Remark on strongly additive set functions, Fundamenta Mathematicae 63 (1968), p. 327-332.

Proof. Since $\chi_{A_1}(p) + \ldots + \chi_{A_n}(p)$ is the number of the A's containing the point p, formula (3) implies

$$\bigcup_{1\leqslant i_1<\dots< i_k\leqslant n}A_{i_1}\cap\dots\cap A_{i_k}=\bigcup_{1\leqslant j_1<\dots< j_k\leqslant n}B_{j_1}\cap\dots\cap B_{j_k},$$

whence in view of (1) we get (4).

From now on we assume that the empty set \emptyset is in $\mathscr L$ and that

$$\lambda(\emptyset) = 0.$$

A function λ on \mathcal{L} satisfying (i) and (ii) is called strongly additive. THEOREM. Every strongly additive set function λ on \mathcal{L} has the unique extension to an additive set function defined on the ring generated by \mathcal{L} .

Proof. Consider the set P of all functions f of the form $f = \sum_{i=1}^{n} \chi_{A_i}$, where $A_i \in \mathcal{L}$, and put $I(f) = \sum_{i=1}^{n} \lambda(A_i)$. P is an Abelian semigroup. The functional I is well defined (see the lemma and condition (ii)) and additive on P. Moreover, it can be uniquely extended to an additive functional $I^*\colon P^*\to G$, where $P^*=\{f-g\colon f,g\in P\}$, by $I^*(f-g)=I(f)-I(g)$. Consider the family of sets $\Re=\{A\colon \chi_A\in P^*\}$. Clearly, $\mathcal{L}\subset \Re$. Since $\chi_{A_1\cap A_2}=\chi_{A_1}\cdot \chi_{A_2}$, $\chi_{A_1\cap A_2}=\chi_{A_1\cap A_2}$ and $\chi_{A_1\cup A_2}=\chi_{A_1}+\chi_{A_2\setminus A_1}$, \Re is a ring. Putting $\mu(A)=I^*(\chi_A)$ for $A\in \Re$, we obtain the required extension of λ . The uniqueness of μ is a consequence of the construction.

Remark (added in proof). I have been recently informed that the above theorem was also demonstrated in the paper On the extension of measures by B. J. Pettis, Annals of Mathematics, 54 (1951), p. 186-197 (p. 188, Theorem 1.2). The idea of the proof, which slightly differs from that of Kisyński, is based on the notion of a semiring.

Reçu par la Rédaction le 4.1. 1970