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of certain differential equations of the fourth order
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Introduction. Let G be a bounded Jordan-measurable domain in the
space E™ of m variables X = (¢, ..., ®,) which can be approximated
by an increasing sequence of domains @G, with regular boundaries (i.e.,
the boundary 0@, of G, is a surface of class C.; for the definition of a sur-
face of class C. see [3], p. 132). We do not require any regularity prop-
erties of the boundary of G.

We shall consider a differential equation of the form

(1) &(u)—pu =0,

where &(u) is a differential operator of the form &(u) = L,[Ly,(u)] and
the operators L,(p) (kK = 0, 1) are selfadjoint differential operators, i.e.,

m

0
L,(p) = — 2’@ [ij(X)

i,7=1 t

dg
ox;

7

]+q’°(X>«p (k =0,1),

u is a real parameter. We make the following assumptions: af(X) = af;(X)

(¢, =1,...,m) are of class C*~* in @ (k = 0, 1), ¢*(X) > 0 are of class
— m

C*%* in @ (k =0,1), and the quadratic forms ay (X)EE (B =0,1)
are positive definite in G. wI=1

We shall also consider the generalized boundary condition (cf. [1]

and [2]) which in the case where the boundary 0G is regular may be
written in the form

(2) By(¢") =0 on 0¢ (k =0,1);
(X)) =u(X), ¢"(X) = Ly(u),

where R, (u) =0 on 0G means

d
(3) d—:;—h"(X)u=O on 0G-TI,, =0 onl, (k=0,1)
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and I, denote the (m —1)-dimensional parts of 0@ (I being connected
or not); in extreme cases I, may be the whole boundary of G or an empty
set. Here h*(X) (k = 0, 1) are non-negative continuous functions in G,
and de/dv, (k =0, 1) are the transversal derivatives of ¢ with respect
to the operators L, (k = 0, 1), respectively, i.e.,

dp k g —
o Zai,-(X)—a;cos(n,m,) (k =0,1),

i,j=1 K

m

n being the interior normal to dG.

1. EIGENVALUES AND EIGENFUNCTIONS OF PROBLEM 1), (2)

The object of the following considerations are some properties of
eigenvalues and eigenfunctions corresponding to equation (1) and con-
dition (2) (we shall shortly say: eigenvalues and eigenfunctions of prob-
lem (1), (2)).

DEFINITION. We shall say that a real number A is an eigenvalue of
problem (1), (2) if there exists a function #(X) # 0 belonging to C*(G) n
N Z*(@), and satisfying the boundary condition (2) (in a generalized
sense) and equation (1) for x = A. This function u(X) we shall call the
etgenfunction of problem (1), (2) corresponding to the eigenvalue A.

The existence of eigenvalues and eigenfunctions of problem (1), (2)

will be reduced to the following auxiliary problems. Namely, we con-
sider the equations

(4) Ly(w)—pu =0 (k=0,1)
and the equation

(5) Ly(u)— pK(u) =0

with the boundary conditions

(6) R, (u) =0 onoG (k=0,1)
and

(7) Ry(u) =0 on 0G,

respectively. The operators L, (k = 0,1) in equations (4) and (5) are
the operators defined in the introduction of this paper, and the operator K
in (5) satisfies the following conditions:

1° K: £*@) - £*(G), is a linear bounded operator,

2° the subspace #*(G)n C(G) of continuous functions is invariant
with respect to K,
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3° K is symmefric, i.e.,
(7, K@) = [o(X)E(y)dX = [p(X)E(9)dX = (y, E(p)
G G

for ¢, v £*(Q),

4° is positive, i.e., (p, K(p)) > 0 for ¢ Z 0.

The boundary conditions R, (%) (¥ = 0, 1) are defined by (3).

The eigenvalues and eigenfunctions of problems (4), (6) (k = 0,1)
are defined as in [1], and eigenvalues and eigenfunctions of problem (5),
(7) are defined as in [2].

We shall need the following assumptions:

HYPOTHESIS Z;. Given (4) and (6) there exist sequences of eigenvalues

(8) 0<a<ui<E<... (k=0,1)
and corresponding sequences of eigenfunctions
(9) wi(X), wy(X), w§(X),... (k=0,1)

which belong to F (1).
HYPOTHESIS Z. Given (5) and (7) there exisls a sequence of eigenvalues

(10) IS <Sp<ps<...
and a corresponding sequence of eigenfunctions
(11) 9,(X), v,(X), v3(X), ...

which belong to F.

LEMMA 1. If I') is not an empty set or if the function h'(X) > 0 in G,
then the first eigenvalue ») > 0.

Proof. From the assumption on the coefficients of (1) and on A'(X)
it follows that »; > 0 (cf. [1]). Suppose that »} = 0. Therefore (see [1]),
the function w}(X) satisfies the boundary condition R,(w}) =0 on 0G
and equation

(12) L, (w}) =0.

From the well-known theorems on the uniqueness of the solutions
of the elliptic equations it follows that w}(X) = 0 in G (cf. [3], p. 166).
On the other hand, by the definition of w}(X), we have w}(X) # 0 in G,
and thus we get contradiction.

LEMMA 2. Under the assumptions of Lemma 1 the restriction of the
operator L, to the space Fp r, (@) (?) admits a bounded inverse operator.

() For the definition of the space # see [1].
() For the definition of the space # r(G) see [1].
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Proof. As we know (see [1]),

1 . Di(p)
(13) . vy H1(®)

where 9 is the space of functions ¢ of class C} in @, ¢ = 0 on I, (in the
generalized sense) for which D,(p) < oo and H,(p) < oo, where

m

dp g
— 1 1 2 1 2
(14) D, (p) f[ E a"_awi—aw, +q tp]dX+ f B *ds,
G =1 8G -1
(15) H,(9) = [¢'dX = [lp|
G

(see [1]).

It is easy to verify that if o(X)eFu (@) (Fp, r,(@) is a subclass
of 9) consisting of the functions ¢ of class C*(G) and satisfying boundary
condition R,(¢) = 0 on 0G (see [1]), then

(16) Di(p) = [¢(X)Ly(p)dX = (p, L, (p)).
G

From (13), (15) and (16) it follows that the operator L, is positive
definite on #1 (@) and its range is the space FHGE) n C(G).

From this it follows that K = L;' exists and K satisfies the fol-
lowing conditions (cf. [4], p. 563):

1° K: £(G)n C(G) > Fp,, r,(@) is a linear bounded operator (*);

2° K is symmetric, i.e.,

('Pa K(‘P)) = (V” K(?’)) for ¢, ye L*(@) n C(G),

3° K is positive, ie., (p, K(p))> 0 for ¢ #0.

LeEMMA 3. The function w(X) # 0 in G belonging to C*(G) N L*(G)
is an eigenfunction of problem (1), (2) corresponding to the eigenvalue 2
if and only if the function u(X) is an eigenfunction of problem (5), (7) cor-
responding to the eigenvalue A.

Proof. Suppose now, that «(X) is an eigenfunction of problem (1),
(2) corresponding to the eigenvalue A. This means that «(X) satisfies
equation (1) with 4 = 4 and the boundary condition (2). From this it
follows that «(X) satisfies the boundary condition (7), and

L,[Ly(w)]— Au = 0.
Since L, K = I, the last equation may be written in the form
L, {Lo(u)— AK ()} = 0.

(?) Since #2(@) N C(G) is dense in ¥2(F), we may assume that K is bounded
on £%(@).
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From this it follows that »(X) satisfies equation (5) with u = 4,
and hence %(X) is an eigenfunction of problem (5), (7) corresponding
to the eigenvalue 4.

If 4(X) is an eigenfunction of problem (5), (7), then u(X) satisfies
the boundary condition (7) and equation (5) with y = 4, and »(X) % 0
in G. By the definition of the operator K and from (5) we have Ly(u)e R[K].
This means that the function v,(X) = L,(u) satisfies the boundary con-
dition R,(v,) =0 on 0G. By (5) we have

L, [Ly(u)]— AL, [K(u)] = 0.

From this, by the definition of operator K, it follows that u(X)
satisfies equation (1) with y = 4. Since u(X) satisfies also the boundary
condition (2), »(X) is an eigenfunction of problem (1), (2) corresponding
to the eigenvalue A.

Using Lemmas 1, 2 and 3 and using the results of [2], we shall prove
the following theorem:

THEOREM 1. Under assumplion Z if the functions v,(X) (n =

=1,2,3,...) are of class C* in G, then sequence (10) contains all the eigen-
values of problem (1), (2), and every eigenfunction of problem (1), (2) is
a sutitable linear combination of eigenfunctions of sequence (11).

Proof. It follows from Lemma 3 that each eigenvalue of problem
(5), (7) is an eigenvalue of problem (1), (2), and conversely, each eigen-
value of problem (1), (2) is an eigenvalue of problem (5), (7). On the
other hand, we know (see [2]) that the sequence of eigenfunctions
of problem (5), (7) is a complete system in 2£?(@) with respect
to the scalar product H(w,v) = (u, K(v)). From this it follows that
sequence (10) contains all eigenvalues of problem (1), (2). This
completes the proof.

Under the assumptions of Theorem 1, from Theorem 1 and from the
results of paper [2], we have the following statements:

COROLLARY 1. The sequence of eigenfunctions of problem (1), (2) is
a complete system in L*(Q) with respect to the scalar product H (u, v).

COROLLARY 2. Every eigenvalue of problem (1), (2) has finite mul-
tiplicity.
COROLLARY 3. Ewery function f(X)e %*(G) can be expanded in

a series of eigenfunctions {u,(X)} of problem (1), (2) which converges in the
mean, i.e.,

lim A (f— Zn:c,,'u,k(X)) = 0.

n—oo Joos 1
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2. SOME PROPERTIES OF THE FIRST EIGENVALUE
AND FIRST EIGENFUNCTION OF PROBLEM (1), (2)

We shall prove the following
LeMMA 4. The operator K defined in Lemma 2 satisfies the condition:
if p(X)>0 in G, then K(p)=0 in G.
Proof. Let y(X) = K(g). Then, by the definition of K,
L(y) =¢(X) and R,(y)=0 on dG.

Since ¢(X) >0 in G, in virtue of the maximum principle for the
solutions of elliptic equations, we have y(X) > 0 in @ (see for instance [3],
Chapter V).

In the sequel we shall need the following assumption:

HypoTHESIS A. No eigenfunction of (1), (2) can vanish identically
in any subdomain of domain G.

Remark 1. In the case m > 1 Hypothesis A is satisfied under the
assumption that the coefficients of (1) are analytic; however, in the
case m = 1 Hypothesis A is satisfied under the previous assumptions
(see the introduction).

If Hypothesis A is satisfied, then Lemma 4 implies that the opera-
tor K defined in Lemma 2 satisfies all the assumptions of paper [2].
Therefore, from Theorem 1 and from the results of paper [2] we get the
following theorems:

THEOREM 2. The first eigenfunction u,(X) of problem (1), (2) does
not vanish at any point of the domain Q.

THEOREM 3. If there exists a function ¢(X) #0 of class C* in G
satisfying the boumdary condition (2) and equation (1) with u =1, then
t =4, and ¢(X) = cu,(X), where ¢ = const # 0.

THEOREM 4. The first eigenvalue of problem (1), (2) is a single eigen-
value, i.e. each function ¢(X) % 0 of class C* in @ satisfying the boundary
condition (2) and equation (1) with u = A, is equal to the first eigenfunction
of (1), (2) multiplied by a constant ¢ +# 0, whence A, < 4,.

Remark 2. All the results of this paper may be generalized without
essential changes to the case of a more general equation of the form

(17) Li[Lo(u)]—uu =0,

where p is any integer and L,, L, are the operators defined in the intro-

duction -of this paper, with the boundary conditions
Ry(u) =0 on 0G

(18) o(k) ’

Bi(¢) =0 ond@d (k=1,...,p),

where ¢* = Ly(¢* 1), k=1,...,p,¢° = u.
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Finally, I would like to point out that the method used in this paper
cannot be applied when the operator &(u) in the equation (1) is of the
form

(19) Elu) =A,4, ... A, A,(u),

where the operators A4,, 4,,..., 4, are operators of the same form as
the operators L, and L,, because then the operator

(20) K =A7'4;1 .. A%,

is not necessarily positive. And its being positive is essential in the method
used in this paper.
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