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Local inequalities for some functionals in the class §

by J. GOrsk1 (Katowice)

Garabedian [1] proved that the local maximum of |a,| in the class S
is assumed by the Koebe function z/(1—2)®. The proof is rather compli-
cated and therefore it would be desirable to find another way to obtain
the required estimation. In this note I want to show the possibility of
some estimations in the class 8 using formulas proved by Leja [4].

To each function f(z2)eS there corresponds in one-to-one way the
funetion w = 1/f(1/{) which maps the set || = 1/|2| > 1 conformally
onto the exterior of a certain continuum E with capacity 1; it carries
the point { = oc into w = oo and the origin O of the coordinate system
belongs to E. By the rotation of the coordinate system round the origin
through an angle a the coefficients a, of the corresponding function f(z)
are multiplied by powers of exp(ia) so that the absolute value of |a,|,
n = 2, ..., remains unchanged. On the other hand, if one changes the
position of the point O on E one obtains a new function in the class 8.

1. Let #,, 93y ..., 7, be to n-th extremal system of points in E, i.e.,

a system of n points in E such that [] |p;—mnl = sup []I&;— &l
1<i<k<sn leE
F. Leja proved the existence of the following limits:

8, = lim (ff+n5+...4+np)n, k=1,2,..
n—oo

The point s, = 0O is the center of gravity of the natural mass distri-
bution on ¥ and its position relative to F remains unchanged if one changes
the coordinate system. |

Let us consider the set of all continua F of capacity 1 on the w-plane
situated so that the center of gravity O is common for all B. It is known
that each F lies in the disc K of radius 2 and the center at 0. Among all
considered continua F there exist segments of length 4 with their
endpoints on the boundary of K. The other continua are contained
the interior of K. If the coordinate system is chosen in such a way
that the origin O lies at one of the endpoints of a segment, then the cor-
responding function is the Koebe function.
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Leja [4] gave formulas which express the coefficients a, of f(z)e8
as polynomials in 8, 8,y ...y 8,_,:

a, = —8,, a; =(3s]—5,)/2,

If we compute the “moments” s, relatively to the point O we obtain

= k - % -
8, = sk(O)+(1)8k_1(0)sl+(2)sk_2(0)sf+...—}-si‘
and the preceding formulas have the form
(1) 4, = —3,, @ =351—8(0)/2, ‘a, = —s+5,5,(0)—3,(0)/3,
a; = 8 —3535,(0)/2+28,8,(0)/3— 5,(0)/4 -+ 553(D)8,

The coefficients a,, a,, ... of those functions f(z)eS which correspond
to the same continuum FE are polynomials in a, = —s, = 00. As the
rotation of the coordinate system round 0 does not change the modulus
of a,, we can choose it so that the positive real axis has the direction of
00 and therefore a, — z > 0.

2. In the general case the origin 0 of the coordinate system lies on E
and a, = 2— ¢+ t¢), £ > 0. For the Koebe function we have ¢ =0, ¢, = 0,
$,(0) =2, 8,(6) =0, 8,(6) = 6. On the other hand (see [2]), [s,(0)] < 2,
|84(6)] < 6 for all f(2)e8, the equality holds only for the Koebe function.
Therefore if

$,(0) =2—06+16,, 66>0, s,(0)=6—n+iy, >0
then, according to (1),
(1*) a, = (2—e+ie)’—(2— 6+i6,)/2
= 3—4de+ 82+ & — 6] i(de,—2ee;— 6,/2).
Since |a,] < 3 for all f(z)eS, so reas; < 3, i.e.
(2) —4e+6/2—+ <0 for all f(2)eS, f(2) # 2/(1—2)%
In a slimilar way it follows from the inequality |a,] < 4 that
(3) —10e+20—res,(0)/3+ 66— 66— e+ 3ee] + 6,6, — £6 < 0;
M. Schiffer proved the inequality
|a,— 2a,a,+ 3 a3] < 3.
If one substitutes (1) one obtains

= 37

% _ &0
12 3
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hence

() —e DO G TS c0, fe)eS, f) £ ei—a)

The real part of a; has the value
(5)  rea; =5—20c—3res;(0)+7/4+10+21 86+ & —
—21e}+ 2466 — 667+ e]— 60+ 220 — 210+
+6¢,0,— 3¢, 6,+ 2eres; (0) +36°— 261+ 3¢, im 5,(0).
Multiplying (3) by 7 and (4) by J, we obtain
— Bt l0—Llresy(0)+ 28— 12—+ Leel —1e64 76,6, <0,
—Je—3res,(0) —3el - ear+ 36— e < 0.
Therefore
rea; < 5+in— et Dl el el — 662+ i — T ed+
+380—3204 Ve 6, 3851al+garesa(a)+—saz—ﬁaf+sslimsa(a).

Multiplymg (2) by 36 we have ;8 < —3&d-+5:0+3650. As 366,
= —3(6,— &) +350} +"’s§, it follows that

rea; <5+ 3in+e[—i+Ze—N+ 820+ 10— 2¢ 61 2res, (o) —

—6¢e] — 3¢, 6, + 301+ 1[___ia + 61— 3[51—61]z+§€1 im $3(0)+ 3¢, 9;.
But re}s,(3) =32 —17, hence
(6) re[a;+15,(0)] < 63+ e[—5+... I+ [—F—. . 1—3[0— &l +

36,0+ 3oy imsy(3)  for all f(2)S, f(2) # = ¢ TR

Let A > 0, ¢ > 0 be two fixed numbers. By the (4, ¢)-neighbourhood
of the Koebe function we understand the set of all functions f(z)eS for
which |e,| < de, 0 < ¢ < & holds. The last inequality proves that:

For all functions f(z)eS which belong to the (A, &) neighbourhood of
the Koebe function with sufficiently small &, the inequality (1)

(6") re[a,+15,(0)] < 63
holds.

() When |a,| = 2, & # 0, then &} = 4e6—¢2, 8(0) = 0. For sufficiently small
& > 0 inequality (6*) holds. -
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3. It is shown in [3] that

16a—5, a>=1,

(7 a.— aa| <
(7) |as — aay| 5160, a< 1

for all f(2)e8.
Now we can show that (7) is true for a < — ; and all f(z) which belong
to sufficiently small (4, &) neighbourhood of z/(1— 2)%.

Proof. As shown in {3}, |383(6)—s,(0)| <3 for all f(z)eS; hence,
in our previous notation,

(8) < 386—30" 4701
From (5) and (8) we have
rea; = 5—20e—3res,(0)+ 10+ 39+ 36" —361+ 0,
< 5—20e—3res;(5)+ 20— 30°+ ;01 + oy,
where
0, = 218 —8&°+&' 216+ 2456} —66°c] + 6] —6ed+ 56”6 — 316+
+66,0, — 3e,6, + Z¢, im 8,(0) 4 2eres,(0).
Since 8 < 40— &, we get
rea; < 5—20c— {Te8;(0) + 76— 30°+0, = 5—20e—;108,(0) + 78+ 0y,
0, =0,—;
Using (3) we obtain
70 < Je+ iresy(0) —216* +21e) 4 J&* — L eel — 16,6, + 2¢6.
Therefore

T©8,(0)

rea; < 5+15e— + 0,40,
0, = —218+21e}+ 16— Yee] — 1,6, + 1 56
Finally (see (4))
N “’sg(a’ Lpld L2 1219 140
0, = Jd—led—}é+ ¢
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Hence

rea; < 5+155e+0,+ 0,+ 0,
and

re[a;+3a3] < 13+153e— Ze+ 1(246” — 86>+ 6* — 246} + 2466} ¢} — 667 ¢]) +
+02+03+04 = 13—%8+02+03+04+05,
05 = 128" — 4%+ 16* —126] +- 12667 + e} — 367 €3

For functions f(2) which belong to a sufficiently small (4, &)-neigh-
bourhood of the Koebe function we have

re[a;+3a3] < 13.
4. According to (1), if @, = >0, 2 <2, then

res,(o
rea; = o' —aPres,(0) — iwres, (o) — - ;( )

+ 3Te sz (o).

We can find global estimations for rea;. Indeed, as proved in [3],

.,_. Tes,(0)
3res;(o)— ;( <}
and
2 50| .
12 3 | 3

holds for all f(2)eS. From the last inequality follows
—2pres,(0) < jx—iat.
Hence

re sk (0)

rea; < Sa*—3afres, (o) + o+ 31— o

On the other hand,

R _
rea; = o'+ jres,(o) [— % + Ees;(a)] —3aPres, (5)—

92— —
—2zres, (0)+ [resz(o) — res;(o)] — 3[res, (0) '+ 3res;(d).

But

x?2  res,(o) Tea,

S = BB and () s(0)] <2
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(see [2]). Therefore

res;(o) res,(0)
— >
4 4

1
— 5

—g[res,(a)]z-{-gresg(a) = —%(2—(5)2—{—%(4—464— 60— 8%) = —-gﬁf
and
rea; > o' — Yo' — tares, (o) —5— 16},
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