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0. Introduction. The aim of this paper is to present some theoretical
results concerning the methods of construction and evaluation of sub-
jective classifications, and also, to present the practical application of
the suggested theory to a certain empirical problem. Though the theo-
retical concepts introduced in this paper may be applied not only to the
particular empirical problem which ingpired their introduction and analy-
gis, it seems best to start from a short outline of the questions posed by
practice.

The National Bank of Poland (NBP) replaces systematically used
banknotes by new ones. The banknotes replaced are those which enter
a branch of NBP performing such a replacement (there are several hun-
dreds of such branches) and which are deemed as used up in a degree
exceeding the admissible norm (in NBP terminology such banknotes are
called “destructs”). ‘

The norms of admissible waste are defined rather vaguely; in practice,
the bank employees whose principal duty is to count the packages of
banknotes reject from these packages those banknotes which, according
to their subjective judgment, should be withdrawn from the circulation,
and replace them by banknotes taken out of a special package. Elimination
of destructs is only a secondary task of these employees: they are interested
primarily in the correct counting the total number of banknotfes in
packages, as they are financially responsible for the correctness of this
counting.

As mentioned above, the criteria which distinguish destructs from
non-destructs are rather vague and at present cannot be changed in any
controllable manner. The bank instruction specifies that one should
reject the banknotes which are torn, have distinet stains, or are “too
much up”. While the first categories are defined in a more or less
satig a.cto'r'ya‘ nner, the basic difficulty lies in the lack of a sufficiently
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banknotes should be eliminated as destructs. Generally, the bank would
like to create the possibility of introducing a flexible policy of replacement
by which the “critical level of waste” beyond which the banknotes are
eliminated could be changed by decisions of NBP. Such a flexible policy
in an obvious prerequisite for any subsequent research aimed at the
choice of a policy being optimal from the point of view of suitable
criteria.

Thus, to create the possibility for search of an optimal policy of
replacement, it is necessary to formulate objective criteria for the concept
of destructs, criteria which could be changed in a controllable way;
moreover, it is necessary to create methods of objective evaluation of
various policies of replacement in terms of the quality of banknotes
in circulation. These two problems are closely related and will be
treated jointly.

For technical reasons one cannot use any criteria of the degree of
waste of banknotes other than those for subjective evaluations. Hence,
measuring the number of creases crossing a given line, amount of light
absorbed, or other more or less obvious indices, are eliminated from among
the considerations at the beginning. Therefore all concepts introduced
in this paper will be based solely on subjective evaluations by persons
performing the classifications, and the estimates of parameters introduced
will be based on observations of those subjective classifications. In short,
we will try to create methods of objective evaluations and of objective
control of subjective classifications.

1. Preliminaries. We postpone the consideration of classifications to
the following sections and begin with presenting two simple theorems
which will be used in Section 2.

Consider a system ¢ = {G,, ..., G,} of n independent experiments.
Assume that each experiment can lead either to “success” or to “failure”
and let a; be the (unknown) probability of success in the experiment G,.
Our problem consists in constructing methods of inference about the proba-
bilities a; in situations where for some reasons one is allowed to make not
more than two independent observations of each experiment G,;. These
methods of inference will be given in the form of estimates of the quan-

tities
1 v 1 v
a=— E @, and o =— E (a;— @)*
n . n )
=1 i=1

which characterize to some extent the vector (a,, ..., a,) corresponding
to the system %.

Assuming two independent observations of each experiment G,
let X; be 1 or 0 depending on whether the first trial in the experiment G,
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resulted in success or not, and let Y; be 1 or 0 depending on whether the
second trial in the experiment @G; resulted in success or not. Thus, if the
first and the second trials are independent, and if different experiments G;
are independent, the random variables in the pairs (X, Y,), (X;, X;),
(Y;, Y¥;) and (X;, Y;) are independent for ¢ +# §.

Write
and set
n
1 1
U= XX V=3 )T,
i=1 i=1
1 1 v
L= (U+Y), W =ZZZ"_ uv
i=1

We prove

THEOREM 1. The random variable L is an unbiased estimate of para-
meter @, and the random variable W is an unbiased estimaie of parameter o2.

Moreover, D*L < 1/8n, and D*W < a, ~3/4n.

Proof. By construction, U and V are independent and equally
distributed. We have EX, = P{X; = 1} = a;, = FY,, hence

1
EU =EV == E a; = G,
n

which implies that BL = a@. Next, BZ, = EX,Y, = EX,EY; — a?, and
consequently,

_1 _i 2 _1 2 =2 __ 2
EW_%ZEZM EUV = nzai EUEV—’,'—?I'ZQ.L_Q/ = 0,

which completes the proof of unbiasedness.
Now, D’X; = D*Y,; = a;(1—a;) < 1/4, and using the assumption of
independence we can write

consequently,

1
D'L< (D*U+D*V)<1/8n.
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Evaluation of the variance of W is somewhat messy. We write

D'W = D (iZz,.,.— UV)
_ 2 (32 + 07— Zow( Sz, o)
_ %1_{ D*Z+ FDz(Z x )'y)-
_ %COV(Z Zi D) X; D) T
3 Spas ho(Sa) Lon(Ye Se
_ ni N Dzt e 3 Cov iy, Zin)— s 3 0B, Zan)
Z‘D2 it — ZCOV(Z,,, L) —

1#f
k#m

(_ — —) [Z Cov(Z,;, Zy,)+Cov(Zy, Zkk)]

= S1+ Sz'—
Now, we have
D*Zy = P{Zy = 1}[1—P{Z; = 1}] = a;(1—a}) < 1/4,
hence the first term, S,, is bounded from above by 1/4n. In the second
sum all terms vanish except those corresponding to systems of indices
of the form (4, j; ¢, j) with ¢ # j and either (¢, j; ¢, k) or (7, j; k, ) with
%,§, k all distinet. For ¢ # j we have '
OOV(Z,;,, sz) == .DZZ,H = a,;a,- (l—a/ia,,-) < 1/4.
Next, for 4, j, k all distinet, we have
Cov(Zyy Zy) = BZyZy— EBZyEZ,; = EX;Y;Y,— EX,EY,EX,EY,
= EYj.EYk.Dz.Xz = a:,-aka,;(l—ai) < 1/4.
Now, the number of systems of indices of the form (¢, j; ¢, j) with
i # j is8 n(n—1); the number of systems of indices of the form (¢, j; ¢, k)
or (¢,j; k, ¢) with distinet 4, j, k i8 2n(n—1) (n—2). Thus, the term 8,
is bounded from above by
11 "2
Zﬁ[n(n—l)—l—mz(n—l) (m—2)] ~
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To obtain the desired upper bound of order 3/4n for D*W it remains
to prove that all terms in the sum §; are non-negative. Now, all terms
in 8, corresponding to systems (¢, ¢; j, k) with. j # ¢, k¥ # 4, vanish. There
remain covariances of the form Cov(Z,,Z,) equal to D?*Z,,>0 and
covariances of the form Cov(Z;, Z;) with ¢ # j. We have

COV( i Z‘ii) = EZ"'Z”'— .EZH.EZ.,'7 = E.Xf Y’i Y"—' .EX,,' YiEXi Yf
= [EX;BY,—(BX,)’EY,] = a;(a}—a}) >0

Thus, 8, > 0 which completes the proof of Theorem 1.
We state for further reference that the last covariance is bounded
from above by 4/27, i.e. that for ¢ = j we have

(1) Cov(Zy, Zy) < 4/27.

Suppose now that system ¢ is partitioned into two disjoint subsy-
stems ¢, and ¥, consisting of #», > 0 and n, > 0 experiments respectively
(so that n,+ ny = n). Define

1 1
al) = — iy a® =— iy

”’1 1 Ny 2

o} = _Z (a;—aW)?, g ____Z (a,— a?)?,

where for simplicity, ), and ), denote sums extended over indices ¢ from
subsystems ¢; and ¥,, respectively.

Using standard analysis of variance partitioning we shall devise
a test for the hypothesis that @) = a®, i.e. for the hypothesis that the
mean probabilities of success are the same in both subsystems ¥%; and ¥9,.
Let U,,V,, W, and U,, V,, W, be defined as before for subsystems
9, and 9,, that is let

Ul=i X I7l=i Y, W1=1 Z -U0,7,,

N, n, 1 N,

and similarly for U,, V, and W,. The random variable W will be defined
as before for the whole system ¥ = ¢, u ¢4,. We prove

THEOREM 2. The random variable
K == W‘_ ﬁ-W]._ &Wg
n n
has a non-negative expectation, EK > 0. The equality EK = 0 holds if and

only if aV =a®. Moreover, for min(n,,n,) > oo we have D*K < B,
~145 [54n.
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Proof. Partitioning the expression for ¢2, we get

1
=— Z (a;—a)*

n

1
_1 Z (a,— a0+ a0 —g) 4 = Z (a;,— @D+ a® — g)?
1 n 2
_ _2 (@,— aW)2 4 = 2 —aoy4 Lo _gpy " (a@) a)?
n
n
2t o L@ —af D@ -t
n

By Theorem 1, W, W, and W, are unbiased estimates of o*, ¢} and o2,
and we can write
BE — BW— 2 EW,— 2 BW, = @ —a)'+ ~2(@—ay > 0

with the equality sign holding if and only if @ = a@®, as in this case
a =a" =a®. To evaluate the variance of K note that W, and W,
are independent, hence

2 2
DK = D*W+ %Dle—l— %ﬁwz—z %i Cov(W, W,)—2 %oov(w, W,).

For large », and n,, the sum of the first three terms can be bounded
from above by

3 ny 3 +n§ 3 _3+3(n1+n2)_3
an ' n® 4n, ' n® 4n, 4n 4n? o’

Next, we need bounds from below for Cov(W, W,) and Cov(W, W,).
We have

Cov (W, W,) = Cov(—l—ZZu uv, —2 Z, —U1V1)
1

oS S genl e S
Lo S 3,2 (3 2 3.

From the proof of Theorem 1 it follows that all covariances of the
form Cov(Z;, Z,,,) are non-negative, thus we can concentrate on the last
two terms of the above sum only. We have

Cov(z i ka) = COV(Zl Zii’zl ij) = 21 Cov(Zy;y Zy),

since for ¢ in ¢,, j and % in 4,, Z; and Z;, are independent.
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Now, in the last sum all terms for which both j and % differ from ¢ are
zero; terms for which exactly one of indices j, k is equal to ¢ are, by (1),
bounded by 4/27, and all terms with j = k = ¢ are bounded by 1/4. The
number of the latter terms is n,; the number of terms with exactly one
of the indices j, k equal to ¢ is 2n,(n,—1). We have therefore

COV(ZZ Z ) ! [n1+ 4 2n4(n 1)] 8
nn? s w4 T 277 27Tn "

Finally, let us consider the covariance Cov(D1Zy, D Z;y). We may
write it in form of a sum,

COV(Z:1 Zy, Zl Zﬂc) + COV(Zl Zys Z’ Z‘”‘)’

where }" denotes the sum extended over pairs j, k for which at least one
term is outside of ¢,. The first covariance is bounded by

4
ﬂ+—mmrn

a8 before. In the second sum, the terms with both j and % outside of %,
vanish. If only one index, say j, is in %, and % is in ¢,, then the covariance
is zero unless j = ¢. In the latter case it is bounded by 4/27, as stated
in (1). The number of such terms is obviously equal to 2n,7n,. Thus we
have

1
nin, Cov (21 Zy, Z Z?'k)

< 1 n1+42 ( 1)+42 n 8[1 fn,1+1 nz] 8
— +—2n,(n,— — 2n —— ==
\nznl 4 g7 Mt g7 ~ 27 n n n o n

Hence Cov(W, W,) is bounded from above by 16/27n, and, by sym-
metry, the same applies also to Cov(W, W,). Combining these evaluations
we can write

+ Ny 16+ Ky 16 145
ﬂ”N n 2Tn n 21Tn  5dn’

which completes the p_roof.

Theorem 2 can be extended without any change to the case of testing
for homogeneity of a set of systems ¢,, ..., %. Infact,let ¥ =%, U ... U
U %, with 9, n¥, =0 for ¢« +# j and let ¢, consist of n; > 0 experiments.
Put n = n,+... +m. Define a®, ¢} and the estimates U,;, V,, W, in
a manner analogous to that used before. We have

THEOREM 3. The random variable

k
1
K =W— ;Zn,.w,.
=
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satisfies the condition EK > 0 and EK = 0 if and only if aV =a® = ...
.. =a®, Moreover, for min(n,, ..., n,) > oo we have D*K < f,~145[54n.

The constant 145/54 can be further improved if one takes into account
the fact that if terms of the form a;a;a;(1— a;) are close to their maxima
equal to 1/4, the terms involving a,(1—a;) and a;(1—a;) must be close
to zero.

2. Evaluation of schemes of classification. In this section we show
how the theorems of Section 1 may be used for constructing methods of
evaluation of schemes of classification. Informally, by classification we
shall understand the act of assigning elements of a given set (called cate-
gories) to elements of another set (of classified objects). Contrarily to the
approach presented in [2], we make no assumption about the existence
of a “true” category for any given object. Consequently, we shall evaluate
classifications by means of some parameters characterizing interindividual
and intraindividual variability. The underlying idea is that a good classi-
fication scheme satisfies the following informal requirement: if the same
set of objects is classified twice (by different individuals or by the same
individual), a majority of objects is assigned to the same category on both
occasions.

It should be remarked that the above requirement constitutes only
a necessary condition for a classification scheme to be “good”, and it
is by no means sufficient. However, as any sufficient condition must be
based on the concept of “true” category for a given object and consists
of requiring that the average number of “wrong” classifications is small
in some sense or other, such conditions lie beyond the scope of this paper.

Formally, suppose that we are given a non-empty set B whose elements
will be called classified objects, a non-empty set S whose elements will
be called individuals making classifications, and a finite or countable set
€ = {Cy, Cy, ...} whose elements will be called categories of classification.
To avoid trivialities, we assume that the set € contains at least two ele-
ments.

Given B, 8 and ¥, by a classification scheme we shall mean a family
of random variables (defined on some fixed probability space)

{£D(b), beB, seS, 1 =1,2,...}

which assume values in %, and such that:

1° if (b,s,%) = (b',s’,4'), then the random variables £ (b) and
E¥)(b') are independent;

2° for any beB and seS, the random variables £9(b), ¢ =1,2,...,
have the same distribution.

We shall interpret {£?(b) = O,} as the event “on ¢th trial individual
8 classified object b into category C;”.
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Write
P{EQ (b) = 0;} = p,;(b);

by condition 2° the latter quantity is independent of index 4.
For beB and 8., 8,¢8, write

(2) Uy 0g(8) = ) Day 5 (B) oy 5 (0).

The quantity u, ,,(b) Will be used as our measure of quality of a clas-
gification scheme (with respect to object b and individuals s, and 8,);
it is non-negative and attains its maximal value 1 if and only if the distri-
butions {P,,,;(0)} and {p,, ; (b)} are identical and degenerate (i.e. con-
centrated at one value of j).

In practical situations, the number of available independent classi-
fications of the same object by the same individual is limited, primarily
by learning effects. Thus, we shall use methods of Section 1 for estimation
of quantities u, ,,(b); as we shall see, it will be sufficient to take 2 or 4
observations of classifications by a given individual depending on whether
8 # 8 Or 8, = 8,.

Let Q@ = {b,, ..., b,} be a finite subset of B, and let s, and s, be fixed
elements of S (not necessarily distinct). Consider the following scheme

of experiments {G,, ..., G,}: experiment @; leads to success on the first
trial if &0 (b,) = &2 (b; ) otherwise it leads to failure. Similarly, @, leads
to success on the second trial, if £ (b;) = &2 (b;); otherwise it leads to
failure.

These definitions may appear somewhat artificial, but they allow
to avoid tedious distinguishing of cases s; = s, and s, # 8,. As we see,
in the first case one needs four observations, while in the second case one
needs only two observations for each individual and each element be@.

Clearly, by the assumed independence, the probability of success
in experiment G is u, 1.8, (0:); moreover, different experiments and succes-
8ive trials on the same experlment are independent. Thus, we are in the
Position to apply Theorem 1 of Section 1 to estimate the quantities

1 n
msl,s2 (Q) = "',,; 7'_2: Us,,s, (by)

and
1 v \
o'gl,sz (Q) = ; 7.21; [usl,sz (ba) - msl,sz (Q)] .

We can also apply Theorems 2 and 3 of Section 1 to design various
tests for “homogeneity”. We shall sketch the construction of two of them.
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Suppose that each individual s,,...,s, (m >1) of set S performs
four independent classifications of the same set @ = {b,, ..., b,}. In other
words, we observe values of the random variables Eg’ (by) forj =1,...,m,
k=1,...,mand ¢ =1,2,3,4. We may now define the family ¥ = {G,,,
j=1,...,m, k=1,...,n} of experiments defining “success” and “fail-
ure” on the first and the second trials in experiment G, depending (in
the same manner as above) on the results of four classifications of object b,
by individual s;. We may now proceed in two ways. First, by splitting
the system ¢ into subsystems ¢4, ,9,, ..., 9, corresponding to different
individuals and applying Theorem 3, we are able to test the hypothesis
that the average

n

1
m’sj,sj (Q) = ; 2 '”’s,-,sj (bk)
k=1
is the same for all individuals s;. Intuitively, this test would tell us whether
all individulas in question are equally “reliable” in their classifications
{with respect to the set Q).

We may also proceed differently and split ¢ into subsystems ¢,
Y3y ...y 9, corresponding to different objects from . Theorem 3 could
provide a test which (for large m) would inform us about the existence
of “odd” objects in @, i.e. objects which are significantly easier or signi-
ficantly more difficult to classify. More precisely, we could test the hy-
pothesis that all averages of the form

m Y
1
Tn‘zus,-,s,-(bk)r k=1,...,n,
i=1

were equal.

In a similar manner, we may partition the set {s,, ..., s,} into pairs
(say, by random metching) and define experiment G, accordingly, de-
pending on the results of classifications of object b, by the jth pair of
individuals. As before, two ways of splitting the system {G;,} so obtained
lead to two tests: one, which would inform us whether among the class-
ifying individuals there are such ones which “deviate” systematically
from the rest of the group in their classifications, and the other, telling
whether there exist objects which are either classified significantly “more
unanimously” than others or cause significantly greater differences of
opinion than others.

3. Construction of classification schemes. In this section we shall
show that under certain conditions we can construct classification schemes
satisfying some desirable properties. Intuitively, we shall assume that
objects of the set B possess some quantitative property (either directly
measurable, such as size, or a latent one, such as utility), and we shall
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assume that individuals from set 8, when confronted with a pair of objects
a, beB, are able to point out one of them as having “less” of this property.
If ties are not allowed in these judgments, we may expect inconsistencies
and, in general, randomness in these judgments; we shall see, however,
that a relatively weak requirement of over-all consistency will suffice
for constructing a reasonably good classification scheme.

In short, the construction of the classification scheme will be based
on a suitably selected “standard sequence” of elements of B and will
consist of assigning category C; to all elements of B which are judged
to fall “between” the jth and (j+4 1)th terms of this sequence. Our basic
idea will be to construct the longest possible standard sequence satisfying
the consistency property; with probability 1 no element of B will be
judged “earlier” than the jth element and “later” than kth element of
the sequence for & > j.

Formally, we shall assume that we are given a family of random
variables

{T%(a, b), (a,b)eBX B,sel8,i =1,2,...},

such that T{(a, b) assumes one of the values a or b and satisfying the
following properties:

1° if (s,4,(a, ) # (s, 4", (a', %)), then TP(a,d) and T (a,d’)
are independent;

2° for every (a,b)eBx B the random variables T%(a,bd), se§,
t=1,2,..., have the same distribution.

We shall interpret {T'"(a, b) = a} as the event “on the ith presenta-
tion of pair (a, b) individual s pointed out to a as having “less” of the
considered property than b”.

Write

P{T(a, b) = a} = p(a, b);

by 2° the last quantity does not depend on s and 4.

We shall assume that the probabilities p(a, b), (a, b) e B X B, satisfy
the following axioms (1):

(i) SYMMETRY. For any a, beB we have

p(a,b)+p(b,a) =1.

(ii) TRANSITIVITY. For any a, b, ceB,if p(a, b) > 1/2 and p (b, ¢) >1/2,
then

pla,c) > max[p(‘% b), p(b, e)].
(iii) PERFECT DISTINGUISHABILITY. There exists a certain q satisfying

the condition } < q <1 such that for all a,b,ceB, if p(a,b) >gq and
(b, ¢) > q, then p(a,c) = 1.

(Y) This is a slight modification of the set of axioms given in [1].
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To formulate the next axiom, write for fixed ae¢B and fixed % such
that 3 <h <1:
Ajf (@) = {zeB: p(a, 2)

> h},
Ay (a) = {yeB: p(y, a) > h}.

(iv) CLOSURE. For every aeB and every h such that } < h < 1:

I. If A} (a) is mon-empty, then there exists a u = u(h, a)ed; (a) such
that p(u, ) > 1/2 for all xe A} (a).

II. If A; (a) is non-empty, then there exists a v = v(h, a)e A} (a) such
that p(y, v) = 1/2 for all yeA; (a).

(V) ARCHIMEDEAN PROPERTY. For every a<B and every h such that
i<h<l1: |

I. If there exists an infinite sequence by, by, by, ... of elements of B
satisfying the condition p(b;, b;,,) = h for all j, then there exists m = m(a)
such that p(a,b,) > 1/2.

I1. If there exists an infinite sequence ¢y, €,y Cyy ... Of elements of B
satisfying the condition p(c;.,, ¢;) = h for all j, then there exists n = n(a)
such that p(c,a) > 1/2.

Note first that axiom (i) is not implied by the fact that the random
variable T((a, b) equals either a or b; indeed, as we consider ordered
pairs (@, b), there is no a priori reason why the distributions of T (a, b)
and T (b, a) should be related one to the other in any way.

Next, let @ be the set of ¢’s satisfying the .conditions of axiom (iii).
Clearly, if ¢geQ and ¢ < ¢’ <1, then ¢’'<Q. Write

(3) ¢" = inf{g: q<Q}.

Since strict inequalities are required in (iii), we have ¢*¢Q, which
implies that @ = (¢*, 1).

We shall precede the main theorems by some preparatory propo-
sitions.

Define: a~b if p(a,d) = 4. We have

PROPOSITION 1. Relation ~ 18 an equivalence relation in B.

Proof. By (i), relation ~ is reflexive and symmetric. Suppose that
a~b, and b~ec, ie. p(a,bd) = p(b, c) = %. By (ii) we obtain p(a, c) > 3.
Next, by (i), we have also p(¢, b) = p(b, a) =4, hence, by (ii), we get
p(c, a) > %. Using (i) again, we obtain p(a, ¢) = %, which shows that ~ is
transitive, thus completing the proof of Proposition 1.

Let us fix an arbitrary a*<B and h such that 1 <h <1. We shall
be dealing with finite or infinite sequences ..., b_,, bg, b, by, ... of ele-
ments of B satisfying the conditions

by~a* and p(b;,b;,,)>h for all j.
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The class of all such sequences will be denoted by L(h, a*).

In the class L(k, a*) we shall distinguish the sequence ..., b_,, by,
b,, by, ... defined by the following recursive scheme:

1° select as b, any element equivalent to a*; )

2+, for k > 0, if b;, is already defined, consider the set A; (b;) = {weB:
p(b', x) > h}. If A; (b) is empty, then b, is the last term of the sequence
with index %> 0. Otherwise, put by, ,~u(h,b,) with u(h,b,) given by
axiom (iv), part I;

2. for k <0, if b, is already defined, consider the set A; (b;) = {xeB:
(e, b;) > h}. If the set A; (b,) is empty, then b, is the last term of the
sequence with index % < 0. Otherwise, put b,_,~wv(h, b,) with v(h, by)
given by axiom, (iv), part II.

We prove first

PROPOSITION 2. Sequence {b,} is defined uniquely up to the equivalence
relation ~. '

Proof. By construction, the assertion is true for ¥ = 0. Suppose
now that b, (k> 0) is defined uniquely. The element ueAj; (b;) given by
part I of axiom (iv) is unique, for if « is another element such that
p(u’',x) >1/2 for all zeAd} (b;), then p(u,w’)>1/2 and p(u', u)>1/2,
which by (i) implies that u~wu’. It remains to show that if b,~b, , then
A (b,) = A (b ). Suppose that zedj (b), i.e. p(by, 2) = h. By (ii) we
get p(by , #) > max[p(by , b;), P (by, )] > h, hence xe A7 (b, ), which shows
that A; (b;) = Aj (b;). By symmetry we obtain also the reverse inclusion.

The proof for negative k is analogous.

We shall now prove that the sequence {b;} is, in a sense, the “long-
est” among all sequences in L(k, a*). More precisely, we prove

THEOREM 4. If {b;} is an arbitrary sequence in L(h, a*), then:

1. for any k = 0 for which by is defined, b, is also defined and satisfies
the relation p(by, b;) = 1/2;

2. for any k < 0 for which b, is defined, b, is also defined and satisfies
the relation p (b, by) > 1/2.

Proof. By construction, we have b,~b,~a", hence the theorem
holds for # = 0. Suppose that the assertion is true for some % >0 and
that b, is not the last term of the sequence with positive index. We have
then p(by, byy,) >k and, by inductive assumption, p (b, b;) > 1/2. Using
(ii) we obtain p (by, by.,) > h, hence by, e A (b;). Thus, 4; (b;,) is not empty
and b, , is defined. By definition, b, satisfies the relation p (by,,, #) >1/2
for all ze A} (by), hence also P (by1, bry1) = 1/2, which completes the proof
for k > 0. The proof for ¥ < 0 is analogous.

Until now we made no use of axiom (iii) which asserts “perfect distin-
guishability”. We shall now formulate the main theorem which will serve
as a foundation for our classification scheme. In the sequel, ¢* will denote
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the number defined by (3), i.e. the lower bound o(f ¢’s such that the condi-
tion of axiom (iil) holds.

THEOREM 5. Let {b;} be any sequence in L(h,a*) with ¢* <h <1.
For every weB, if 0 < p(w,b,) <1 for some m, then p(x,b,..) =1 and
POy, ) =1 for all k> 4.

Proof. Assume first that } < p(«, b,) <1. Then, by (ii), we have

P(®y byyy) = max[p(@, by)y P(Oms dnia)1 = b > ¢,

Since P (i1 Omes) =k >¢", using (iii) we obtain p(w,b,,,) =
Repeated application of (ii) shows now that p(zx, b,.;) =1 for k> 2,
which implies the first assertion of the theorem.

Next, we must have p(b,,_,,x) >1/2, since in the opposite case
we would have p(xz, b,) = 1 by the assertion already proved, contrary
to the assumption. Thus, by (ii), we get '

v

p(bm—sr w) > max[p(b -3 bm—2)7 p(bm—27 JL‘)] > h > q*,

and since p(b,,_,, by_s) > ¢, by (iii) we obtain p(b,,_,, #) = 1. Repeated
application of (ii) shows that p(b,,_;, ) = 1 for all k£ > 4, which completes
the proof for the case 4 < p(b,,, ) < 1. The proof for the case 0 < p(b,,, x)
< 1/2 is analogous.

Let now « be the class of all increasing sequences ... <m_;, < n,
<N, <Ny <... of integers such that n, = 0 and

mjin(n,-_,_l— n;) = 4

Let {n;}et and {b}eL(h,a*) with ¢* <h < 1. Consider the sub-
sequence ..., by .y by s byyy bnys by, ... Of sequence {b;} and define the
function t(x) = t(x; {b;}, {ny}), e B, as follows:

if b, . is the last term of the sequence with negative index and
P(by_ys @) < 1, put ¢(x) = —k—1. Otherwise, put #(x) = max {k: D (b, , )
= 1}.

We prove

PROPOSITION 3. Function t(x) is well defined and finite for every xeB.

Proof. Note first that since p(b;, b;;,) = h >q* and n,,—n; > 4,
repeated application of (ii) and (iii) shows that p(bn y by,) =1 forallj, &
with j < k. Thus, if p(bn , &) =1 for some j, we have p(bn , %) =1 for
all £ < j. Similarly, lfp(w b, ) = 1 for some j, then p(x, b, ) =1 for all
k >j. In other words, the sequence of probabilities {p (bn y &)y ] =

.,—1,0,1,...} is non-increasing. Theorem 5 implies that at most one term
of this sequence may be different from 0 or 1.

Consider first sequences {bnj} which contain the last term with nega-

tive index. If {bn],} contains also the last term with positive index, the
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above reasoning implies that #(x) is defined unambigously and is finite..
I {o, } has the last negative term, say b, ,, and p(b,_,,x) =1,
to prove the finiteness of () is suffices to show that the sequence {p (bny5 @)y
j = —k, —k+1, ...} cannot consist of terms all equal to one. This prop-
erty, hoWever, i8 assured by axiom (v), part I; in fact, the sequence
bn_,» bn_,41y - satisties the assumptions of part I of (V), as p(b;, b;,,)
> h >1/2; thus, there exists an m = m(x) such that p(z,bd,)>1/2
or P (b, ®) <1/2 < 1. Clearly, ¢(z) < k¥, where ¥* = 1+ min{k: n, > m},
which completes the proof for the case of sequences finite from the left.
Now, if the sequence {b, } contains no last term with negative index, by
similar reasoning based on part II of axiom (v) we exclude the possibility
that the sequence {p(d,,®), j =..., —1,0,1,...} consists of terms
equal to zero only. Thus, the proof of Proposition 3 is complete

Let now t'(x) be defined as above for sequence {b;}eL(k,a") and
{m} ={..., —4,0,4,...}. We prove

TH:EOREM 6. For any {b;}eL(h,a*) with ¢* <h <1 and {n,}es the
Sfunction t(w) = t(x; {b;}, {ny}) satisfies the inequality |t(x)| < |t'(x)| for
all zeB.

Proof. Suppose that ¢(z) = k> 0; thus, p(b,,, ) =1. It follows.
from Theorem 4 that b,'z is defined and that p(bnk, b,,) = 1/2. Next,
Wy = (”1_n0)+(”2—n1)+ A (—my_y) > 4k = my, hence P(bnk’ nk)
> 1/2. Repeated application of (ii) yields p(bnk, x) = 1, hence t'(x) > k.
The proof for 2 such that #(x) < 0 is analogous.

The above constructions were based on probabilities p (@, b) describing
statistical properties of choices T¢V(a, b), and not on the choices them-
selves. We shall now define a family of integer-valued random va-
riables which will lead directly to the construction of a classification
scheme.

Let us take sequences {b;}eL(h,a’) with ¢ <h <1 and {m}es.
Given the family of choices

{T(a, b), (a,b)eBX B, se8,i = 1,2,...}

satisfying the properties stated at the beginning of this section, define
the family of random variables

{E" (@) = K (w; (b}, {me}), weB,8e8,i =1,2,...}

by putting

(a) KP (@) =k >0 if TO(b,,,s) =b, and either b, w, 18 the la.sb
element of the sequence {b, } with posmve index or T (bgpyr @) =

(b) K (@) =k <0 if T“)(b @) = @ and either b, 1s the last

term of the sequence {b,} with nega.tlve index or T{) (b, , %) = by,
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We have

PROPOSITION 4. Let {b;}eL(h,a*) with ¢* <h <1 and {m}et and
let t(x) = t(w; {b;}, {n;}). Then the random variables K (x) are defined
unambigously with probability 1, and satisfy, with probability 1, the
inequality

t(x) < KP (0) < t(@)+1

for all xeB,seS and i1 =1,2,...

Proof. K{)(«) is defined unambigously since, as noted in the proof
of Proposition 3, the sequence of probabilities {p (b &)y ) = ..., —1,
0,1, ...} is non-increasing and at most one term is strlctly between Zero
and one. Now, suppose that ¢(x) = k, i.e. (for infinite sequences) p (b, , x)
=1, p(by,,,»®) <1. Then p(b, vy z) = 0 and with prob.abi]ity 1 we
must have T(" (%, b,,) = b,, and T“’ (@, by, ,) = @ Thus K{(x) equals ¥
or k41 depending on Whether T8 (5, bnk +1) equals & OF by, +p Tespectively.
The proof for bounded sequences requires obvious modifications.

From the assumptions about the random variables T (a, b) it follows
that (i, s,x) # (', s, 4') implies independence of K (x) and K (z).
Moreover, for every s ¢S and z ¢ B the random variables K (z),¢ =1, 2, ...,
have the same distribution.

We can now define the classification scheme of the set B with respect
to categories ¥ = {..., C_,, C,, C,, ...} by putting simply

(4) {&9 (a) = ,aeB,8¢8,i =1,2,...}.

E{)(a)

We summarize all our results as follows:

Suppose that the family of choices TS (a, b) satisfies conditions 1° and 2°
stated on p. 14 and that the induced probabilities p(a, b) satisfy awioms
(i)-(v). Fizx a eB and h such that ¢* < h <1, choose sequences {b;}eL(h, a*)
and {m e and define random variables K“’ (@) in the manner described
above. Then the random variables defined by (4) constitute a classification
scheme, i.e. they satisfy the requirements 1° and 2° stated in Section 2 on p. 10.
Let us call every classification scheme obtained in this manner an (h, a*)-
-scheme.

For every (h, a*)-scheme, the vector of probabilities

5,a(j) = P{E(a) = C}

does not depend on s, and from Proposition 4 it follows that at most two of
its components do not vanish. Consequently, the function s, s, () defined
by (2) is at least equal to 1/2 for every weB and does not depend on 8,, 8,.
Finally, the (h, a*)-scheme based on sequences {b,} and {n;} = {4k} is optimal
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¢n the class of all (b, a*)-schemes, in the sense of “maximal number of cate-
gories”, as explained in Theorem 4.

Some natural questions arise in connection with the set of axioms
(i)-(v). Define a 3 b if and only if p(a, b) > 1/2; then relation -3 iz non-
-reflexive, antisymmetric and transitive in B. Moreover, for any a, beB
we have a 3 b, a~b or b3 a, hence we have a linear ordering of B.
The question arises whether there exists a metric in B which can be defined
in terms of p(a, b) alone. The set of axioms (i)-(v) is, however, too weak
and the answer is negative. Indeed, for such a construction it would be
necessary to impose conditions on probabilities for “end-points” of inter-
vals consisting of two adjoining intervals stronger than those stated in (ii)
and (iii). Moreover, an obvious prerequisite for such a metric would be
the requirement that any two points situated at the same distance from
a given point and lying on the same side of it should be equivalent; how-
ever, from axioms (i)-(v) it does not follow that p(a, b) = p(a,c) >1/2
implies p (b, c) = 1/2.

4. Applications. We shall now sketch briefly the results of appli-
cation of the above construction of classification and methods of evaluat-
ing it to the empirical problem of classification of banknotes outlined
in the introduction.

The experiments were of a preliminary nature and their aim was to
gather data which would allow to assess the practical value of the
suggested theory rather than provide the final version of the clas-
gification scheme.

A large sum in 20 zt banknotes was borrowed from the bank; these
banknotes covered the whole “range” of various degrees of usage. After
preliminary inspection, all banknotes which were “not typical”, e.g. had
distinct stains or were torn, were eliminated from the experimental mate-
rial. Next, one banknote was selected as the initial banknote b, by the
experimenters. The initial banknote was neither too new nor too much
used; roughly speaking, it came from the “middle”. Then a package of
banknotes was selected by the experimenters: this package consisted
of banknotes for which there could be difference of opinions whether
they are “more” or “less” used up than the initial banknote. This package
was then sorted in two groups: the ones judged as “better” than the
initial banknote, and the ones judged as “worse” than it (ties were not
allowed). The total of 24 partitions were performed by 12 students from
the Institute of Mathematics of the Polish Academy of Sciences, two
partitions by each of them. The results of each partition was recorded,
and the package was shuffled by the experimenters before next presen-
tation for partition. The individuals performing the partitions were not
informed about the results of previous partitions.

Zastosowania Matematyki XII, 1, 2
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The object was to find in this package two banknotes which evoked
respectively 259, and 759, of judgments “better” than the initial banknote.
Thus, it was assumed on a priori grounds that ¢ = 0.75 is a number suf-
ficient to ensure the assertion of axiom (iii) to hold.

After selecting two banknotes (b_, and b,), the procedure was repeated
with packages selected by experimenters for banknotes b_, and b,; here
the object was to find one banknote (b_,) which evoked 259, of judgments
“better than b_,” and one banknote (b,) which evoked 759, judgments
“better than b,”. The procedure was repeated, thus expanding the sequence
of banknotes in two directions. Every two second banknotes of the sequence
were presented to the subjects: they were asked to point that one which
was “better” than the other. Out of 10 persons asked, usually 10 or 9
pointed that banknote which should have been indicated if axiom (iii)
were true. The fact that the decisions were not always unanimous may
have been due to two factors: 1° the probability ¢ = 0.75 may be some-
what too small for assertion of axiom (iii) to hold, and 2° selections of
banknotes which evoked 18 out of 24 (and later, 15 out of 20) decisions
may occasionally lead to pairs of banknotes a, b for which p(a, b) is con-
siderably smaller than 0.75.

In any case, the repetition of the above procedure supplied us with
a sequence of 17 banknotes; presumably, the sequence could have been
extended still further in both directions, as the best banknote in the
sequence, though quite new and good looking, was still distincly different
from a brand new one, and the “worst” banknote of the sequence was
distinctly better than some banknotes one encounters in everyday life.

The 17 banknotes were then used for the purpose of classification:
by taking every fourth of them, five banknotes were selected, these
banknotes constituting the “boundaries” between six successive cate-
gories.

A package of banknotes was then chosen for experiments with clas-
sifications: after preliminary elimination of “non-typical” banknotes,
there remained 100 banknotes to be classified into six categories of degree
of waste.

The total of 13 classifications of this set of 100 banknotes was ob-
served: five persons performed two classifications each and three persons
one classification each.

According to theory, the classifications of every banknote should
fall either within one category or into two neighbouring categories. Thig
turned out to be true for 55 banknotes; for 43 banknotes the classifica-
tions fell into three successive categories, and for 2 banknotes — into
four successive categories. However, in 37 cases out of the above 43 the
banknotes were put into the “outlying” category only once, and all re-
maining 12 classifications fell into the other two categories.
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The investigation of stability and inter-individual consistency for
five persons who performed two classifications are presented on the follow-
ing table:

8 8,y 8y 8 8
0.86 0.75 0.57 0.69 0.54
1 0.04 0.06 0.05 0.05
. 0.80 0.53 0.64 0.52
2 0.08 —0.01 0.01
0.67 0.50 0.47
%3 0.05 0.04
. 0.59 0.65
4 0.03
85 0.47

In this table the upper numbers give values of the estimates of

100

1
mst-,sf (Q) = W g usi,aj (bk) ’

where @ = {b,, ..., by} are banknotes of the sample, and u,i,,j(bk) is
the probability that classification of banknote b, by individuals s; and 8;
will coincide.

The numbers in italics (lower parts of the entries) give values of

estimates of
100

1
D gy, (0 — i, ()T
k=1

oﬁ,;,s,- (Q) = WO

These values could not have been computed for entries on the di-
agonal, as nobody performed four classifications.

The variance of estimates whose values are given on the diagonal
are bounded -by 1/400. The variance of estimates whose values are given
in upper parts of the off-diagonal entries are bounded by 1/800, and the
variance of estimates whose values are given in italics are bounded by
3/400.

At first sight, these results may appear not too satisfactory. However,
they seem to indicate the possibility of definite improvement of the situ-
ation from the point of view of the bank. The preliminary survey of the
present situation in sorting banknotes in the bank revealed that the pres-
ent state of affairs is rather far from satisfactory, as may be judged from
the following data. A sample of 1000 banknotes was put through the normal
present procedure of counting with elimination of destructs by subjects
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in two branches of the bank; each subject performed the process of count-
ing and elimination twice on two different days, without being aware
that she was being tested. In one case, a subject eliminated on different
days from the sample of 1000 banknotes 280 and 470 banknotes as de-
structs, while the other eliminated (from the same sample) only 118 and 82
banknotes. These are extreme cases, to be sure, but in the remaining
cagses the stability and inter-individual consistency was also low. The
tests in the Institute of Mathematics, reported above, were made under
experimental conditions, and the subtests were trying to do their best.
The fact remains, however, that they reached reasonably high standards
of stability and interindividual consistency in performing a considerably
more difficult task of classifying into six, and not only two categories.
It appears therefore that the method employed, namely the use of suitably
selected “standard banknotes” for comparison, may provide the bank
with a method of improving the present situation in the process of elimi-
nation of destructs. The results of classifications show also that one might
hope to develop reasonably objective methods of assessing the overall
quality of the population of banknotes. This, in turn, may lead to a search
for choice of such a “level of destructs” which would give some optimum
with respect to suitable criteria involving the number of banknotes re-
jected and the resulting overall quality of the population of banknotes.
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0 KONSTRUKCJI I OCENIE SUBIEKTYWNYCH KLASYFIKAC)I

STRESZCZENIE

W pracy podana jest definicja klasyfikacji subiektywnej i metody oceny jakosei
takiej klasyfikacji. Z grubsza biorac, klasyfikacja subiektywnqg nazywa sie przyporzad-
kowanie kazdemu obiektowi danego zbioru i kazdej z klasyfikujacych oséb pewnej
zmiennej losowej o wartosci ze zbioru, ktérego elementy nazywaja sie kategoriami
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klasyfikacji. Jako§é klasyfikacji (w odniesieniu do danego obiektu i pary oséb) wyra-
Zona zostala przez prawdopodobienstwo, Ze obiekt ten zostanie przez te osoby zakla-
syfikowany jednakowo. Podano estymatory wartoSci &redmiej i ,,wariancji” takich
prawdopodobienistw dla zbioréw obiektéw.

W drugiej czesci pracy podano metody konstrukeji klasyfikacji subiektywnych
zbioru obiektéw ze wzgledu na ceche, ktérej wartosci w zbiorze klasyfikowanych
obiektéw nie moga byé bezpofrednio mierzone. Mozna je jedynie oceniaé subiek-
tywnie; dokladniej, zaklada sie, Ze z kazda osobg i para obiektéw, powiedzmy <a, b),
zwigzana jest zmienna losowa o wartoSciach w zbiorze {a, b} reprezentujaca wybér
tego obiektu z pary, ktéry ma (w odczuciu wybierajacego) ,,mniejsza’’ warto§é cechy.
Podano uklad zalozer o takich zmiennych losowych, ktére pozwalaja skonstruowaé
klasyfikacje oparta o ciag obiektéw-wzorcéw, stanowiacych granice miedzy katego-
riami klasyfikacji.

Na zakoniczenie zilustrowano zaproponowane metody wynikami empirycznych
badah nad klasyfikacja banknotéw ze wzgledu na ich zuzyecie.



