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Extremal problems in the class
of close-to~convex functions

by 8. WaLozAK (LédZ)

Introduction. Let 8 denote the class of functions f(2) = 2+ az2?+...
regular for |2| < 1 and mapping the unit circle on a convex region.

In 1952 Kaplan [6] has introduced the class L of close-to-convex
functions. This class has been defined as follows: a function f(z) = 2+
4+ A,2%4 ..., |2| <1 belongs to I if and only if

f'(#)
1 e = —~ > 0
&) @' (2)
for some function @(2) = A6z ay2%--..., mapping the circle |¢|-< 1

into a convex region. 2 and a are real numbers.

One can prove [6] that the class L is a subclass of the family § and
that it includes the class of starlike functions. In 1955 Reade [9] has
proved that in the class L the hypothesis of Bieberbach is true. If ¢(z) ¢S,
we denote this class by L,. Xrzyz [7], Szczepankiewicz and Zamorski
[10] worked on extremal problems in this class. The class L was investi-
gated by Bielecki and Lewandowski [2]. Z. Lewandowski has proved
that the family I coincides with the family of linearly attainable functions
which was introduced in 1936 by Biernacki [3].

A number of extremal problems in the class L have been solved by
Aleksandrow and Gutlianski [1]. They have given the sets of values
of many functionals defined in the family I. In thiz paper the modulus
of the K-th derivative of a function of the class I has been estimated.
On the basis of a structural formula the variation formulas have been
deduced.

In the second chapter the basic theorem which gives & characteri-
zation of the boundary and extremal functions for an extensive class
of functionals F(f), feL defined in Chaper II will be proved.
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CHAPTER I

The estimates of the moduli of the derivatives
of close-to-convex functions in the family L.

The variation formulas in the classes L, C, 8*

1. DEFINITIONS AND NOTATION

The following notation will be applied in this paper:

B ={z: 2| <1};

8* — the clags of functions f(z) = 2+ bg2?+... regular in E and
mapping the unit circle into a starlike region in relation to the point
w=290;
| (¢ — the class of functions of the form h(z) = 1+0,2+¢p22+...
regular in F and satisfying there the' condition reh(z) >0 for z¢J,;

M — the clags of functions a(f) real in (—m, =], non-decreasing

and such that [ de(t) = 1;

8* — the class of functions F(2) = f(2)/z, where f(z)eS*;
0 — the clasg of functions of the form
T ot 6y

j;’(’Vv) = f )

. da(t), where |p|< = and a(t)eM;

— 2

§° — the class of functions of the form 7(z) = 2 p(z), where p(z)eS®
and 1> 0;

C; — the class of functions of the form %(z) = ye?+ a;2+ a,2?+...
satisfying the conditions rek,(¢) >0 and y > 0.

From the definition of the family L the following equality holds:

(2)  f'(®) =¢'(2)-hy(2), where f(2)eL and #(2)ed’, hy(2)eC,.

Making use of the expansions of the functions f(2), p(2), hy(2) into
a power series and of equality (2), we find that Ayd®e” = 1. Thus g —a
and 1 = 1/y. Without loss of generality of our considerations we may
agsume that A =1. From the definition of the class ¢, the inequality
la| < 4 follows.

The following theorem [10] is true

THEOREM 1. If f(2)elL, then

k+r

(3) 1P (2)] < %! A

|| =7, &k =0,1,...
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The bound it sharp, being attained by

2

fz) = (l—sz)hz."

lel = 1.

2. PROPERTIES OF THE CLASS Z: COMPACTNESS AND CONNECTEDNESS

We prove

THEOREM 2. The class L is a compaoct family.

Proof. From the estimate of the modulus of a function of the class I
it follows that L is a close-to-uniformly bounded family in Z, and thus
is a normal family. Tet {f,(2)}, where f,(2)eL is a convergent-sequence,
We denote the limit of that sequence by f,(z). We know from the defi-
nition of the class L that f,(0) = 0 and [, (0) = 1.

By the theorem of Weierstrass we find that fy(2) is a regular function
and that f,(0) = 0 and f;(0) = 1. Thus the limit function is finite and
different from a constant. By ¢,(2) and %, ,(2) we denote funetions
satisfying equation (2):

(4) .ﬁ)’z(z) = ‘;’;L(z)'hl.n(z)-

It follows from the simple relationships between the functions of
the classes S§° and &° on the hand those of the clagsses ¢ and ¢, on the
other that the families 8 and O, are compact. Thus from the sequences
{Pn(2)} and {h,, ()} one may take out subsequences {‘Pnk(z)} and {R,, (%)}
which tend to qou(z)eSO and to h, .0y respectively and satisfy the equa-
th]l fnk(z) = l'pnk(Z) hl,‘)b"(z)

For n_ — oo we obtain

lim @, (2) by, (2) = Hm f), (2) = lim £, () = f; (2).
h—»oa N> n—>o0
Hence
(6) fo = ‘Po (2) hl,o(z)-

Thus we have proved that fy(2) in # iy a regular function fo(0) = 0,
and f,(0) = 1 and that there exists a function p(,2)e8° satisfying the
condition

22 o,

®q(?)

Thus f,(z) belongs to the family L, which proves its compactness.
A family R is called connected if for arbitrary functions fy(z) and
fa(2) of this family there exists a class W <= R of functions f(», 1), zeD,
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te[a, b] satisfying the following equalities:
1. f(#, t) is cloge-to-uniformly continuous in D in relation to {;
2. f(#,t) converges close-to-uniformly to f;(2), as ¢ — a;
3. f(z,t) converges almost uniformly to fy(2) as ¢ —b.
THEOREM 3. The class L is connected.

Proof. Let f;(2) and f,(2) be arbitrary functions from the family L.
The class W mentioned in the definition will be defined as follows:

1
1_»‘:);’-‘fl[z(l—t)] for 0t <1,

for =1,

[

(6) flet) =
1
. 1—1

falz(t—1)] for 1 <t 2.

For every t¢[0, 2] the function f(z,1) belongs to L. It suffices to
put for p(z), in equation (1),

1.
( Pil2(l—2)] for 0<t <1,

1—t¢
(2, 1) ={ 2 for t =1,
1 .
where ¢, (2) and ¢,(2) satisfy the conditions
re 'fl,(z) >0 and e ‘fz,(z) > 0.
@1 (2) @2 (2)

We estimate the difference

h = |f(2 1) —f(z t:)l, 1, t,€[0,1).
For an arbitrary 2, |2| <r <1 we have

?

1 1
h = ‘T_—tl‘*fﬂ:z(l—h)] — ‘l—_'?;.ﬁ (2(1—1,)]

h = ‘S‘Aka—mk—lzk— S:A,,(l—t,)"“‘z"]

k=2 k=2
< ) ML= 1) — (L — 1) Jalf
k=2

< k|t —1,| (k“l)"'kg [t —ts]- B(r),
k=2
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where

- 273

B(r) = b(k—1)r* = .

(r) gv( L o
From the estimate h < [t;—1i,|-B(r) it follows that the functions
f(z, t) are close-to-uniformly continuous in E. Putting i, = 0 and ¢, =1
respectively, we find that f(2, ¢) converges close-to-uniformly to fi(2)
ag 1 — 0 and that f(#, t) converges close-to-uniformly to 2z as ¢t —1. In

a similar way we may prove that

|f(2y 1) — S (2 8)] < [8,—1e] B(r)  for #y, t,e[1, 2].

Assuming ?, =1 and ¢, = 2 respectively, we observe that f(z,1)
converges close-to-uniformly to # as ¢ — 1 and that f(2, ¢) converges close-
to-uniformly to fy(z) as ¢ — 2.

We have proved that the clasy W defined by equality (6) satisfies
conditiong 1-3. Thus the family L is connected.

3. THE STRUCTURAL FORMULA AND THE VARYATION FORMULAS IN THE
CLASS L

3.1. The structural formula, It can easily be proved that f(2)eL
if and only if
A L —3 [ log(i—c—te)au(t) |
(1) £(2) =oj [ i S da(t)]-e % e

for some functions «(f) and u(f) of the family M and for an arbitrary
?, lpl < = (comp. e.g. [1]) and f(2)eS* if and only if

f(2) = zexp fﬂlog(l-—e'“ 2)du(t)

for some function u(t)e M.
Equality (7) may be written in the form

(8) fl) = [ h(z)-F(z)dz,
where 0
. - fl‘ gt —‘-sz

S dal), h(z)eC,

-TC

8" Jio) =exp[—2 [logl—ea)du(t)], Fla)es".
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3.2. Variation formulas in the class ¢. T can casily be observed
(comp. [4]) that the function

Iy
(9) ha(2) = h(2)+ 2 [ g1(2, 1)la()—oldt
1

belongs to the class U together with the function k(z), where

Ae(—1,1), #,te(—m, =], ¢ =lima() or ¢ =lima(l)
t-—rtf t—*li"

1467
) iy ) = i S

If a(t) is a step function, then the function

(10) hi(z) = h(z)+21g(2 t)—g(2 t)]
belongs to the class C, where
éit—l—ﬂiwz

95 t) = —g——

t, &, are the discontinuity points of a(t), Ae(—e ¢e) for ¢>0 and
sufficiently small,

3.3. The variation formulas in the class S*. Let f(z)eS". Basing
ourselves on the variation formulas in the class ¢, one may prove (comp.
[4]) that the function

M) HE) =@+ [ ) e )= el di+ o1

i
also belongs to §* 1

If u(t) has at least two steps, the function of the from

(12) fi(2) = f(2)+ Af(2) [log (L — 0™ "22) —log (1— 6™"12)]+ 0(A)
belongs to §* together with f(z), where Ae(—e¢, &) and t,,¢, are discon-
tinuity points of u(1).

On dividing both sides of inequalities (11) and (12) by # we obtain
the variation formulas in S’*

(13) ful2) =F (2)+4 ff

2R ) — eldit o(A),

(14)  fie) =)+ ) uog(l—e“zz)—log(l— “2)]+ o (4).

3.4. Variation formulas in the class L. Let us come back to equality

(8). Replacing k(2) in that formula by hy(2) defined by formula (9), we
obtain the first variation formula in the class L:

(15) fi(2) = f(2)+ AT, (2),



Dairemal problems in the class of close-to-convex functions 29

where
(15) U,(2) = of tftzgl(z, 1) | () — | dtde.
Putting in (8) #;, (2) for 'I'a(zl), we get the second variation formula:
(16) fil#) = f(2)+ AT, (2),
where
(16) Ua(2) = of F@) g (e t)— g(e, ta)1de.

The next two formulas can be obtained, by replacing in (8), f(z)
by the function f;(z) defined by formula (13) or by formmla (14). Making
use of (13), we have

(17) fil#) —f(z)—|—1U3(z)+o(}.),

where £ I3 it

Uue) = | f M F(0) e 1 () ol i

If u(1) is & step functlon, we obtain from (8) and (14)
(18) fi(z) = f(z)+ AU, (2)+ 0(4),

where ot —it
f h(2) f (2)[log(1— ¢ *22)—1log (1 — e~"12)]dz.

Formulas (15), (16), (17) and (18) are the four basic variation formulas
in the class L.

CHAPTER II

Boundary functions in the family L in relation to some functionals

1. DEFINITIONS AND NOTATION

Let a given function
(19) F(f) = F(f',f'y - [ 1)
be differentiable in a region D defined by the inequalities

L—r 1+7r 1—r — 1—|—r

Ik+r k-7
' (1_T)k+2; |fk)| (1 k+2 y k =2, 3, resy n.
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Consider the functional

(20) F(f3) = P (3), F3), - S*(3), F™(3))

defined in the family L. 3 is a fixed pomt of the circle |2| <1 and 3| = .

We denote by 4 the set of values of the functional F(f). It follows
from Theorem 2 and 3 that 4 is a closed region. We denote by I" the
boundary of the region 4. One may prove (comp, [5]) that for every
point FeA there exists a point Fyel' such that, for Fed and sufficiently

close to F,, the inequality
(21) [Fo—P| < |F— T
holds.
The point ¥ is called a regular point of the boundary I
We denote the set of these points by I”. One may prove (see [5])
that I is dense in I'. A function f(z)eL is called a boundary funclion in
relation to the functional F(f) if F(f(3))el. A boundary function which
satisties the condition F(f(3))e/" will be denoted by f*(z). The functions
f (2), h(2), a(t), u(t), corresponding to the function f*(z) will be denoted
v P2), B*(2), a*(t) and u*(1).

2, THE FUNCTIONS a* (/) AND 4i*(¢) AND THEIR PROPERTIES

Preserving the notation of (9’) (15') (16') and (20), we agsume

) oF _ OF
= f ﬁf(k) +8 aFm

k=1,2,...,m; |f] =1.

Let @,(1), —n <t< =, be a function defined by the formula

L k—1

a1 . - -
22 20 = Y a g U @aa(s, W+ a gz 7 906, 1],

Ie=1

We shall prove
LevMMA 1. The function @,(t) satisfies the equation

(23) [@.(t)]a(t)—eldt =0,

‘w;w'l‘e t.l.’ tze("‘ﬂ’ Tc]-
Proof. Making use of variation formula (15), we obtain

B @)+ AU@R); -+ 7™ (3) +ATD (3) = F(f* (3) ... P (3))

n

=4 D (3, U0 (3)4 ¢, TV (3))+ 0 (4),

k=l
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where
or or
Pr = 6ft(k")'a 4, = ——a}-*(,‘) .
Hence
n
AF =1 (2, UM (3)+ ¢ TP (3)+0(4).
k=1
Inequality (21) ean be written in the form
(24) | — Fo|34 | Fy—F |2 270 (F— T) (Fo— 1) > |y —FJ2.

Because of I'— I, = AF we have

arep 3 (9, UP(3)+ g, UM () +0(h) > 0,
fe=1

where § = ¢ ™01,

Since A takes arbitrary values from the interval (—1, 1), we obtain

(25) ref D) (pr UP(3)+ ¢, U (3)) = 0.

k=1

By successive transformations we have

N (80, U (3)+ B0 TH @)+ Y (B8 TP (3)+87,UP (3)) = 0
Jeml k=l
or

Do UP (3)+a, TP (3)) = 0.
k=1

By (15') and the theorem on the sum of integrals we obtain

Ic -~

(26) fZ{ e L (s, 1+

k=1

k-1

+ay, Tdaz:-rllf*(a)yl(a, t)]}la(t)—OIdt =0.

By (22) the lemma follows.

Lemuma 2. If at every point w = ( f’,f’ yoeny f("’,'jT"—)) of the region D
defined by (19') and for every f, |f| = 1 the condition

n —
oF - OF
E:Iak|>01 a, = f of® +p 3Fk_)’ k=1,2y..4n

is satisfied, then the fumotion ®.(3) has no more than 2n roots in the interval
(—m,m)if 3 #0 and 2n—3 roots if 3 = 0.
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Proof. By the formula of Leibniz and equality (22) we obtain

n k-1

o) =) [ak (;'c Tl)f @6, 0+

k=1 =0 J

+a (M) PTG, 6

Grouping the coefficients at the successive derivatives of the function
91(3,1), we have
¢,() = HO)+H (),
where
n—1

2 = [Z (ﬁ) ak+1f*(k) (3)] g1(3, 1)+
k=0
+ 2 (f) ak+1f*(k—l)(3)] 013, )+... 4+
%=1

3 (et rain

k=n—1

The constants appearing in-the square brackets will be denoted
by 4., 4,,..., 4,. Thus

(26") G1(t) = D [4g®" (3, )+ A, 0003, 1)].

k=1
We shall prove that the coefficients 4,, 4,,..., 4, do not vanish
simultaneously. Suppose that the contrary is the case, i.e. that
n—1

D (o)t =0,

k=0
n—1

(27) » (’{) By FE D (3) = 0,

k=1

n—-1

2 (n-k-l) e ETMV(3) = 0.

k=mn—1

We treat a,,a,,...,a, a8 unknowns. System (27) is homogeneous.
It is easily seen that the determinant of this system is different from zero.
By the theorem of Cramer it has one golution a; =0, a, =0, ..., a, = 0.

n
These equalities contradict the assumption of Lemma 2. Thus X |44 >o0.
kml
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y (9') and (26') the function @, (1) can be written in the form

a*l — (1467 ey a1 —i(L46®)e3
D (1) = Z‘A‘k da]c— (8“——3)2 + k dak— (G'Et_ 3)2

few1

It may easily be proved that

dp_, —1i(14 €763 (T — 1) 6** - 36
e
where @, = —i(1+6*)(k—1)!. Thus
70'— 21.t+38 (76—1) 62i£+36¢t
(28) (D1 2 Bk ( i )k-l ] k (6“—3)"‘” ' ‘Bk =.A,,-ak.

kw1

Congider the function

—1)o? —1 k=2 ) Sak—1
I e

k1
e (v—3)

Comparing (28) and (29), we find that

n

(30) G(e") = 2,(1).

The function G(v) is rational in » and regular for v # 3 and v # 1/3.
We write it in the form

A\ k-2
&) = ZE (& 1)v Ui +

k1
P —03)

1
+[By3v(v—3)" " + By (v 4 30)* '+ ... 4 B, (n—1)v*+39)] o

To fix attention, suppose that B, is the non-vanishing coefficient.
Ag v -3, G(v) - oo. Thus G(v) £ 0.

The function G (v), being regular, must have a finite number of roots
on the circumference v = ¢, By equality (30) we have

(31) D, (t) #0.

By successive transformations of equation (28) we obtain

'rt]va 1(ofll)( l_'é)n+1_|_8—dth_1(eit)(eﬂ_3)n+l
¢1(t) =T (eu_ 3)'n-l-l(6—'L't_—a)’n+1 !

where W,,_,(¢") is a polynomial whose degree is k < n—1,

3 — Annales Polonici Malhematlel XXV
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6“W,,,,_1(6ﬁ) (1— e'tt.a)n+16-—u('n+1)+ e—ith_l (6—#) (3’“_ 3)n+1.

P.(t) = |gﬂ_ 3|z(n-:-1J -
Wn_l(ﬂﬂ)(l—‘ 61‘13)1;-1-1+W _1(6“)(6“-- a)n-}-l
D, (t) = |&¥ — 3P+ gind !
W ( 'lt)
(32) &) = i T;‘”“’ i -

It follows from the last equality and from (31) that &,(¢) hay in the
interval (— =, =] no more than 2n roots. It can easily be observed that
if 3 = 0 the number of roots of the function @,(¢) does not exceed 2n— 2.

We denote the roots @, (1) by t;,1%,, ..., %,. We shall prove

Levma 3. In every imterval (1;,%,,), ¢ =0,1,...,2n, f = —mx,
bty = ™ wo have |a(t)—c¢| =0 or a(t) = const.

Proof. Suppose |a(t)—o| %% 0. Thus there exists a point ¢ such
that |a(#f)—¢| >0. To fix our attention, agsume that @&,(t) >0 for

te(tyy t;+,) and ¢ =lim a*(t). Sipce a(f) is a non-decreasing function,
=ty

la(t)—¢| >0 in the entire interval [#,¢,,,]. Thus
i1
[ o) la*()—cldt > 0.
)
The.above inequality contradicts equation (23). Thus a* () = const
in every interval (1, %)
LemMMA 4. The function h*(z) has the form

elk I_Biwz
h* (?J Z ;‘k uk

k=1

N
where 4y =0, Y =14 =(—m,n], lp| <m, N<nif3 #0and N<n—1
if 3 = 0. k=1
Prooi. We have found that a*(¢) is in interval (4, #,.,) continuous
function. In this case we may apply the second variation formula in the
class L. By a similar procedure to that followed in the proof of Lemma 1.
one may prove that the boundary function satisfies the equation

N F
63) D gy @06, 01+ oy 1751 (3, 1)
k=1 )

n dk 1
*Z k -y [f 9(3) t)] |—a, TR [f* g3ty

k=1
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where ¢, and ., are the adjacent step-points of a*(f). Consider the function

n ke

1 . dk-1 . '
B0 0 = e g 096 014 U @96, 1)

k=1

By (33) we have
lp1(tt) = y’1(tl+1)-

Thus in the interval (4, t,..,) there exists a point (#}) such that ¥ (¢,) = 0.

Comparing (9), (10), (22) and (34) we find that ¥ () = @,(¢). The
function. a*(¢) is a step-function in the interval (— =, =] and the number
of its steps in not greater than n. In fact, supposing that a*(f) has more
than % step-pointy we find that @,(f) has more than 2n roots. This is
impossible by Lemma 2, By (8') the result of the lemma follows. From
the above Lemmas we infer the following theorem:

THEOREM 4. If at every point w = (f, fT, ey f, f(n_)) of the region D
defined by (19') and for every f, |f| =1 the condition

n —
oF - oF
lag) >0, =4 Bf"‘) +8 0f(k)’ k=1,2,...,m,

ke=1

is satisfied, then the function h*(2) s of the from

N i e
i () =21k——" e,

¢ —z
ke=1

N
where A, =0, 3 A =1, tre(—m, n), N<n for 3#0 and N<n—1 for
a = 0. loweml

3. THE FUNCTIONS z* (t) AND f*(¢) AND THEIR PROPERTIES

We shall prove the following

THEOREM 5. If an any point w = (f, f_’, ceey f("’,f_(’ﬁ) of the region D
defined by (19') and for every || = 1 the condition
W o
W or - or
Zlakl >0, akmﬂ—gf(ﬁjm'l—ﬂ"a_f(ft‘)—’ Io=1,2, ..,
kel b

is satisfied, then the function f*(2) is of the form
M

Fre) = [[ a—e¥ey™,
fm=1
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where
M
ye(—m,nl, w;=0, 2."‘1=1:
L=l
ML for 30 and M<Ln—1 for 3 =0.
Proof. By a similar procedure to that followed in the proof of Lemma 1

and by formula (17) one may prove that the function f*(2) satisfies the
equation

lo
(35) [ @) lu*(t)—oldt =0,
i
where 1
n dk_l ?:[_"'
By(t) = kZ gt UL )0a(6, D1+ = L@, ),

-~ 2'
) = @76, 0,0 = s

The function @,(t) is real continunous and has in the interval (— =, n]
no more than 2% roots. We denote them by 0,, 0,, ..., 6,,. In every inter-
val (6;, 0,4,), u*(t) iy constant. The fourth variation formula together
with the property of the boundary points leads to the equation

n k—1 k—1

(36) ’; akW [H (3)log(1— 04013)]4‘5};? [H (3)log (1—e~*13)]
= ar-1 gt
= 2 % T [H (3)log(1—e™*r+13)]+ g [H (3)log (1— ¢~ "1+13)],

k=1

where 6;, 6;,, are adjacent points of discontinunity of x*(t). Oonsider
the funection

A ‘
67 o) =2 e (A )og(1— 0 9)]+
k=1
S

—Fﬁk—d_?.—r[ﬂ(a)loa(l—e""”a)i]-
From (36) the equality

F,(0,) = ¥, (0,,.)
follows.

By an argument analogous to that contained in the proof of Lemma 4
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we find that u*(¢) is a step function in the interval (— r, =) and that the
number of its steps does not exceed n. If 3 = 0, then M < n—1.

By equality (8") the result of Theorem 5 follows.

4. THE BASIC THEOREM

Theorem. (4) and (b) and inequality (8) imply

TunorREM 6. If the functional I(f) defined im the class L is of the

Jorm (20) and at every point the region D defined by (19') and for every B,
|8l =1 the condition

3 F .. aF
Z‘akl>07 ﬁ ?f(k) ﬁ af(k), 76:1,2,...,’)11,

Jo==1l

is satisfied, then the boundary function f*(z) is of the form

z M e e“’z
(38) 1@ = [ [Ja—e2) ***‘fZAk e

¢ 7=l

M
where M;/ 0 lk/ 0 E,u, = 1, 2 A’k = 1 01, tkﬁ(—"lf, TC], lq’l < T,
MLnand Nnif3 ;_uéO and M n—l and N <n—11if 3 =0.

Using another method Aleksandrow and Gutianski [1] have proved
the above theorem.

5. EXTREMAL FUNCTIONS IN RELATION TO REAL FUNCTIONALS

If F(f) is a real functional, the assumptions of Theorem 6 may be
weakened. Proceeding in the same way as in sections 2 and 3 of Chapter II
Wwe may prove.

THEOREM 7. If the functional F(f) is of form (20) and for and arbi-
trary weD,w = (f', f, oy f, £,

“af®
Feonl af
then every emtremal function is of form (38).

The assumption of Theorem 7 is weaker than the assumption of
Theorem 6. This follows from the implication

%9) (2] 0o+ | >0) - (2’ o |~

>0,
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(1]
£2]

(8]
[4]
(5]
[6]
[7]
[8]

(8]
[10j

S. Walezak

S| OF
Proof. Suppose that 2}0—(7')— = 0; hence
= of
or ,
‘5‘?(_’3‘=0 101’k=1,2,...,?’b.

Since the functional F(f) is real, we have

or  aF
af® = of®

From inequalities (40) and (41) it follows that

0w

2

k=1

oF - OF
5% TP o | =

i 0.

This equality contradicts the assumption of (39). Thus (39) holds.
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