ON TRACES OF EXTERIOR POWERS OF A SUM OF TWO ENDOMORPHISMS OF A PROJECTIVE MODULE

BY

S. BALCERZYK (TORUŃ)

The purpose of the present paper is to compute traces $\operatorname{tr} A^p(f+g)$ of p-th exterior powers of a sum of two endomorphisms f,g of a finitely generated projective module over any commutative ring (with 1) of coefficients. By the use of the recursive formula given in our Main Lemma one can express $\operatorname{tr} A^p(f+g)$ as a polynomial with integral coefficients in $\operatorname{tr} A^q(f^{i_1}g^{j_1}\dots f^{i_m}g^{j_m})$, where $q(i_1+j_1+\dots+i_m+j_m) \leq p$. If the coefficient ring contains the field of rationals, then $\operatorname{tr} A^p(f+g)$ is a polynomial with rational coefficients in $\operatorname{tr} (f^{i_1}\dots g^{i_m})$, where $i_1+\dots+j_m \leq p$. This follows easily from Newton's formula for symmetric functions.

Theorems 1 and 2 will be used in a forthcoming paper in which we define characteristic series of endomorphisms of modules which admit finite projective resolutions.

1. Endomorphisms of free modules. Let R be any commutative ring. By R_n we denote the ring of all $n \times n$ matrices with coefficients in R. If $x \in R_n$, then we write $x = (x_{ij}), i, j = 1, ..., n$, and we identify x with the appropriate endomorphism of the free R-module on n free generators $R \oplus ... \oplus R$.

Let $A=Z[X_{ij}^{(k)}],\ k=0,1,\ldots,s,\ i,j=1,\ldots,n,$ be the polynomial ring in s+1 sets of variables $X_{11}^{(k)},X_{12}^{(k)},\ldots,X_{1n}^{(k)},\ldots,X_{nn}^{(k)}$. This ring admits natural grading: if e_0,\ldots,e_s are integers, then homogenous elements of degree e_0,\ldots,e_s are polynomials which are homogenous of degree e_k in the k-th set of variables $X_{11}^{(k)},\ldots,X_{nn}^{(k)}$ for $k=0,1,\ldots,s.$ Let $X^{(k)}$ be $n\times n$ matrix $X^{(k)}=(X_{ij}^{(k)})$ in the ring A_n . If R is any commutative ring, $x^{(0)},\ldots,x^{(s)}\in R_n$, then there exists the unique homomorphism $\varphi\colon A\to R$ such that the induced homomorphism $\varphi_n\colon A_n\to R_n$ satisfies $\varphi_n(X^{(k)})=x^{(k)},$ $k=0,1,\ldots,s.$ If $v\in A$ and e_0,\ldots,e_s are integers, then we define

$$egin{aligned} v(x^{(0)},\,\ldots,\,x^{(s)}) &= arphi(v), \ &v(x^{(0)},\,\ldots,\,x^{(s)})_{e_0,\ldots,e_s} &= arphi(v_{e_0,\ldots,e_s}), \end{aligned}$$

where $v_{e_0,...,e_s}$ is the homogenous component of v of degree $e_0,...,e_s$. For instance, the trace $\operatorname{tr} \Lambda^p(X^{(0)}+...+X^{(s)})$ is a polynomial in $X_{ij}^{(k)}$ and

$$\varphi \operatorname{tr} \Lambda^{p}(X^{(0)} + \ldots + X^{(s)}) = \operatorname{tr} \Lambda^{p}(x^{(0)} + \ldots + x^{(s)})$$

and

$$\operatorname{tr}(x^{(0)} + \ldots + x^{(s)})_{1,0,\ldots,0} = \sum_{i=1}^{n} x_{ii}^{(0)} = \operatorname{tr} x^{(0)}.$$

We have $v(x^{(0)},\ldots,x^{(s)})_{e_0,\ldots,e_s}=0$ if some e_k is negative and $v(x^{(0)},\ldots,x^{(s)})_{0,e_1,\ldots,e_s}=v(0,x^{(1)},\ldots,x^{(s)})_{0,e_1,\ldots,e_s}.$

MAIN LEMMA. Let $x^{(0)}, x^{(1)}, \ldots, x^{(s)}$ be $n \times n$ matrices with entries in a commutative ring R and let e_0, e_1, \ldots, e_s be non-negative integers such that $e_0 + e_1 + \ldots + e_s = p$. Then

$$\begin{aligned} & \text{tr} \, \varLambda^p \, (x^{(0)} + x^{(1)} + \ldots + x^{(s)})_{e_0, e_1, \ldots, e_s} \\ & = \, \text{tr} \, \varLambda^{e_0} \, (x^{(0)}) \cdot \big(\text{tr} \, \varLambda^{e_1 + \ldots + e_s} (x^{(1)} + \ldots + x^{(s)}) \big)_{e_1, \ldots, e_s} - \\ & - \sum_{m=1}^{e_0} \, \sum_{\substack{m_1, \ldots, m_s \\ m_1 + \ldots + m_s = m}} \, \text{tr} \, \varLambda^{p-m} (x^{(0)} + \ldots + x^{(2s)})_{e_0 - m, e_1 - m_1, \ldots, e_s - m_s, m_1, \ldots, m_s}, \end{aligned}$$

where $x^{(s+1)} = x^{(0)}x^{(1)}, \ldots, x^{(2s)} = x^{(0)}x^{(s)}$.

Proof. 1. We denote the number of elements of a set t by |t| and the set $\{1, 2, ..., n\}$ by \overline{n} . If $t_0, ..., t_s$ are disjoint subsets of \overline{n} , then we write

$$M(X^{(0)}, \ldots, X^{(s)}; t_0, \ldots, t_s) = \det(Y_{ij}),$$

where $i, j \in t_0 \cup \ldots \cup t_s$ and $Y_{ij} = X_{ij}^{(k)}$ if $i \in t_k$. Then for $x \in R_n$ we have

$$M(x;t) = \det(x_{j_l j_m}), \quad l, m = 1, ..., p,$$

if $t = \{j_1, \ldots, j_p\}, j_1 < \ldots < j_p$, and the well known formula for $\operatorname{tr} \Lambda^p(x)$ takes the form

(2)
$$\operatorname{tr} \Lambda^{p}(x) = \sum_{\substack{t \subset n \\ |t| = p}} M(x; t).$$

It is easy to see that for any permutation π of the set 0, 1, ..., s we have

(3)
$$M(x^{(\pi(0))}, \ldots, x^{(\pi(s))}; t_{\pi(0)}, \ldots, t_{\pi(s)}) = M(x^{(0)}, \ldots, x^{(s)}; t_0, \ldots, t_s).$$
If $x^{(0)}$ is a diagonal matrix, then

(4)
$$M(x^{(0)}, x^{(1)}, \ldots, x^{(s)}; t_0, t_1, \ldots, t_s) = \left(\prod_{i \in t_0} x_{ii}^{(0)}\right) M(x^{(1)}, \ldots, x^{(s)}; t_1, \ldots, t_s).$$

Since

$$M(x^{(0)} + \ldots + x^{(s)}; \overline{n}) = \det(x^{(0)} + \ldots + x^{(s)}) = \sum_{n \in S_n} (-1)^{s(n)} \prod_{i=1}^n \sum_{k=0}^s x_{i,n(i)}^{(k)},$$

then for each sequence of integers e_0, \ldots, e_s such that $e_0 + \ldots + e_s = n$ we get

$$egin{aligned} M(x^{(0)} + \ldots + x^{(s)}; \, \overline{n})_{e_0, \ldots, e_s} &= \sum_{\pi \in S_n} (-1)^{s(\pi)} \sum_{(1)} \prod_{i \in t_0} x^{(0)}_{i, \pi(i)} \, \ldots \prod_{i \in t_s} x^{(s)}_{i, \pi(i)} \ &= \sum_{(1)} M(x^{(0)}, \, \ldots, \, x^{(s)}; \, t_0, \, \ldots, \, t_s), \end{aligned}$$

where by $\sum_{(1)}$ we mean the sum taken over all sequences t_0, \ldots, t_s of disjoint subsets of \overline{n} such that $|t_k| = e_k$, $k = 0, \ldots, s$. For any subset $r \subset \overline{n}$ and any sequence of integers e_0, \ldots, e_s such that $e_0 + \ldots + e_s = |r|$ we get in the same way

(5)
$$M(x^{(0)} + \ldots + x^{(s)}; r)_{e_0,\ldots,e_s} = \sum_{(2)} M(x^{(0)}, \ldots, x^{(s)}; t_0, \ldots, t_s),$$

where by $\sum_{(2)}$ we mean the sum taken over all sequences t_0, \ldots, t_s of disjoint subsets of the set r and such that $|t_k| = e_k, k = 0, \ldots, s$.

2. Let us assume that the matrix $x^{(0)}$ is diagonal. By \sum' we mean the sum taken over all sequences t_1, \ldots, t_s of disjoint subsets of the set \overline{n} such that $|t_k| = e_k$, $k = 1, \ldots, s$, and under the sign \sum' we write additional conditions imposed on sets t_1, \ldots, t_s . We put $t = t_1 \cup \ldots \cup t_s$ for abbreviation; then by formulae (2), (5) and (4) we get

$$\begin{split} \operatorname{tr} A^p (x^{(0)} + \ldots + x^{(s)})_{e_0, \ldots, e_s} \\ &= \sum_{\substack{r \in \overline{n} \\ |r| = p}} M(x^{(0)} + \ldots + x^{(s)}; r)_{e_0, \ldots, e_s} \\ &= \sum_{\substack{t_0 \in \overline{n} \\ |t_0| = e_0}} \sum_{t_0 \cap t = \varnothing}' M(x^{(0)}, \ldots, x^{(s)}; t_0, t_1, \ldots, t_s) \\ &= \sum_{\substack{t_0 \in \overline{n} \\ |t_0| = e_0}} \sum_{t_0 \cap t = \varnothing}' \prod_{i \in t_0} x^{(0)}_{ii} \cdot M(x^{(1)}, \ldots, x^{(s)}; t_1, \ldots, t_s) = a_1 - a_2, \end{split}$$

where

$$egin{aligned} a_1 &= \Big(\sum_{\substack{t_0 \subset \overline{n} \ |t_0| = e_0}} \prod_{i \in t_0} x_{ii}^{(0)} \Big) \Big(\sum' M(x^{(1)}, \ldots, x^{(s)}; \, t_1, \ldots, \, t_s \Big), \ a_2 &= \sum_{\substack{t_0 \subset \overline{n} \ |t_0| = e_0}} \sum_{\substack{t_0 \cap t
eq \varnothing}} \prod_{i \in t_0} x_{ii}^{(0)} \cdot M(x^{(1)}, \ldots, x^{(s)}; \, t_1, \ldots, \, t_s). \end{aligned}$$

Using (5) once again we get

$$a_1 = \operatorname{tr} A^{e_0}(x^{(0)}) \cdot (\operatorname{tr} A^{e_1 + \dots + e_s}(x^{(1)} + \dots + x^{(s)}))_{e_1, \dots, e_s}$$

To compute a_2 let us remark that if subsets t_0, t_1, \ldots, t_s of the set \overline{n} satisfy the conditions

$$(i') |t_k| = e_k, k = 0, 1, ..., s,$$

(ii')
$$t_1, \ldots, t_s$$
 are disjoint,

(iii')
$$t_0 \cap (t_1 \cup \ldots \cup t_s) \neq \emptyset$$
,

then they determine subsets of the set \overline{n}

$$u_k = t_0 \cap t_k, \quad u'_k = t_k \setminus t_0 = t_k \setminus u_k, \quad k = 1, \dots, s,$$

$$u' = t_0 \setminus (t_1 \cup \ldots \cup t_s),$$

which satisfy conditions

$$|u_k| + |u_k'| = e_k, \ k = 1, ..., s,$$

(ii'')
$$u', u_1, \ldots, u_s, u'_1, \ldots, u'_s$$
 are disjoint,

(iii'')
$$1 \leq |u_1| + \ldots + |u_s| \leq e_0$$
.

It is easy to see that the above correspondence between sequences t_0, \ldots, t_s subjected to the conditions (i')-(iii') and sequences $u', u_1, \ldots, u_s, u'_1, \ldots, u'_s$ subjected to the conditions (i'')-(iii'') is one-to-one. Thus if we denote by \sum'' the sum taken over all sequences $u', u_1, \ldots, u_s, u'_1, \ldots, u'_s$ of subsets of the set \overline{n} which satisfy conditions (i'')-(iii'') and if we put $u = u_1 \cup \ldots \cup u_s$, then using formulae (4), (3) we get

$$a_{2} = \sum^{"} \prod_{i \in u'} x_{ii}^{(0)} \cdot \prod_{i \in u} x_{ii}^{(0)} \cdot M(x^{(1)}, x^{(1)}, \dots, x^{(s)}, x^{(s)}; \quad u_{1}, u_{1}', \dots, u_{s}, u_{s}')$$

$$= \sum^{"} \prod_{i \in u'} x_{ii}^{(0)} \cdot M(x^{(0)}x^{(1)}, x^{(1)}, \dots, x^{(0)}x^{(s)}, x^{(s)}; u_{1}, u_{1}', \dots, u_{s}, u_{s}')$$

$$= \sum^{"} M(x^{(0)}, x^{(0)}x^{(1)}, x^{(1)}, \dots, x^{(0)}x^{(s)}, x^{(s)}; u', u_{1}, u_{1}', \dots, u_{s}, u_{s}')$$

$$= \sum^{"} M(x^{(0)}, x^{(1)}, \dots, x^{(s)}, x^{(0)}x^{(1)}, \dots, x^{(0)}x^{(s)}; u', u_{1}', \dots, u_{s}', u_{1}, \dots, u_{s}).$$
Let us put $m = \{u + 1, \dots, u_{s}, \dots, u_{s}, \dots, u_{s}, \dots, u_{s}\}$. Then we have

Let us put $m_k = |u_k|$, k = 1, ..., s, $m = m_1 + ... + m_s$. Then we have $|u'| = e_0 - m$, $|u'_k| = e_k - m_k$, and, using (5) once again, we get

$$a_2 = \sum_{m=1}^{e_0} \sum_{\substack{m_1, \dots, m_8 \\ m_1 + \dots + m_8 = m \\ m_1 \leqslant e_1, \dots, m_8 \leqslant e_8}} \operatorname{tr} \Lambda^{p-m}(x^{(0)}, \dots, x^{(2s)})_{e_0 - m, e_1 - m_1, \dots, e_8 - m_8, m_1, \dots, m_8}$$

where $x^{(s+1)} = x^{(0)}x^{(1)}, \ldots, x^{(2s)} = x^{(0)}x^{(s)}$. Thus (1) holds, because all terms in the sum in (1) for which $m_k > e_k$ vanish.

3. Let us assume that R=C, the field of complex numbers, and that the matrix $x^{(0)}$ is equivalent to a diagonal matrix, i.e. there exists an invertible matrix $z \in C_n$ such that the matrix $y^{(0)} = z^{-1}x^{(0)}z$ is diagonal. Let us write $y^{(k)} = z^{-1}x^{(k)}z$, $k = 1, \ldots, s$. Then

$$\operatorname{tr} A^p(x^{(0)} + \ldots + x^{(s)}) = \operatorname{tr} A^p(z(y^{(0)} + \ldots + y^{(s)})z^{-1}) = \operatorname{tr} A^p(y^{(0)} + \ldots + y^{(s)})$$

and coefficients $y_{ij}^{(k)}$ of matrices $y^{(k)}$ are linear forms in $x_{lm}^{(k)}$ and conversely. Consequently,

$$\mathrm{tr} A^p (x^{(0)} + \ldots + x^{(s)})_{e_0, \ldots, e_s} = \mathrm{tr} A^p (y^{(0)} + \ldots y^{(s)})_{e_0, \ldots, e_s}$$

and formula (1) follows by application of the lemma to matrices $y^{(0)}, \ldots y^{(s)}$.

- 4. Let us assume that R = C, the field of complex numbers. It is easy to prove that the set of all $n \times n$ matrices equivalent to diagonal matrices is dense in C_n . If the formula (1) holds for matrices $x^{(0)}$ in a dense subset of C_n and for all $x^{(1)}, \ldots, x^{(s)} \in C_n$, then it holds for all matrices $x^{(0)}, \ldots, x^{(s)} \in C_n$.
- 5. Let \mathcal{R} be the class of such commutative rings R that Main Lemma holds for all matrices $x^{(0)}, \ldots, x^{(s)}$ in R_n , $n = 1, 2, \ldots$ We have proved that C is in \mathcal{R} . It is clear that if R is in \mathcal{R} , then any subring of R and any homomorphic image if R are in \mathcal{R} . Consequently, any finitely generated Z-algebra is in \mathcal{R} .

Let R be any commutative ring and $x^{(0)}, \ldots, x^{(s)} \in R_n$. Then the subring S of the ring R, generated by all elements $x_{ij}^{(k)}$, $k = 0, 1, \ldots, s$, $i, j = 1, \ldots, n$ and 1, is in \mathcal{R} . Then R belongs to \mathcal{R} and the proof of Main Lemma is finished.

COROLLARY 1. There exist polynomials w_1, w_2, \ldots with integer coefficients such that for any endomorphisms f, g of a finitely generated free module over a commutative ring we have

$$\operatorname{tr} A^p(f+g) = w_p(\ldots, \operatorname{tr} A^q(\mu), \ldots), \quad p = 1, 2, \ldots,$$

where μ varies over all monomials of the form

$$\mu = f^{i_1}g^{j_1}\dots f^{i_m}g^{j_m}$$

and $q(i_1+j_1+...+i_m+j_m) \leq p$.

2. Endomorphisms of projective modules. All projective modules under consideration are finitely generated. The trace of an endomorphism $f\colon P\to P$ of a projective module is defined as follows (see [1]). If $F_i=P\oplus P$, i=1,2, are free modules, then $f_i=f\oplus 0_{P_i}$ is an endomorphism of F_i , i=1,2. Let h be an automorphism of the free module $F_1\oplus F_2$ defined by

$$h(p, p_1, p', p_2) = (p', p_1, p, p_2), \quad p, p' \epsilon P, p_1 \epsilon P_1, p_2 \epsilon P_2.$$

Then we have $h(f_1 \oplus 0_{F_2})h^{-1} = 0_{F_1} \oplus f_2$ and, consequently, $\operatorname{tr} f_1 = \operatorname{tr} f_2$. Thus we can put $\operatorname{tr} f = \operatorname{tr} f_1$. It is easy to see that if $\varphi \colon R \to S$ is a ring homomorphism and $f \colon P \to P$ is an endomorphism of a projective R-module, then $\varphi(\operatorname{tr} f) = \operatorname{tr} (f \otimes 1_S)$. It is well known (see [3]) that there exists a natural isomorphism

(6)
$$\Lambda^{p}(P \oplus P') \approx \bigoplus_{i+j=p} \Lambda^{i}(P) \otimes \Lambda^{j}(P')$$

and if P' is projective, then $\operatorname{tr}(f \otimes f') = \operatorname{tr}(f)\operatorname{tr}(f')$ for all endomorphisms $f' \colon P' \to P'$. It follows by (6) that $\operatorname{tr} \Lambda^p(f \oplus 0_{P_1}) = \operatorname{tr} \Lambda^p(f)$. Hence and from Corollary 1 we infer

THEOREM 1. There exist polynomials w_1, w_2, \ldots with integer coefficients such that for any endomorphisms f, g of a finitely generated projective module over a commutative ring we have

$$\operatorname{tr} \Lambda^{p}(f+g) = w_{p}(\ldots, \operatorname{tr} \Lambda^{q}(\mu), \ldots), \quad p = 1, 2, \ldots,$$

where μ varies over all monomials of the form

$$\mu = f^{i_1}g^{j_1}\dots f^{j_m}g^{j_m}$$

and $q(i_1+j_1+\ldots+i_m+j_m) \leq p$. We compute polynomials w_1, w_2, \ldots by the use of Main Lemma.

Let $a, b \in R_n$. Then from Main Lemma it follows that for x = ab we have

$$\operatorname{tr} \Lambda^{p}(a+b)_{1,p-1} = \operatorname{tr} a \cdot \operatorname{tr} \Lambda^{p-1}(b) - \operatorname{tr} \Lambda^{p-1}(a+b+x)_{0,p-2,1}$$

=
$$\operatorname{tr} a \cdot \operatorname{tr} \Lambda^{p-1}(b) - \operatorname{tr} \Lambda^{p-1}(ab+b)_{1,p-2}$$

and by an obvious induction we get

$$\operatorname{tr} \Lambda^{p}(a+b)_{1,p-1} = \sum_{i=0}^{p-1} (-1)^{i} \operatorname{tr}(ab^{i}) \operatorname{tr} \Lambda^{p-1-i}(b).$$

Using this formula we get for endomorphisms f,g of a projective module P

$${
m tr}\, \varLambda^2(f+g) \, = \, {
m tr}\, \varLambda^2(f) + {
m tr}\, (f) {
m tr}\, (g) + {
m tr}\, \varLambda^2(g) - {
m tr}\, (fg)\,,$$
 ${
m tr}\, \varLambda^3(f+g) \, = \, {
m tr}\, \varLambda^3(f) + {
m tr}\, \varLambda^2(f) {
m tr}\, (g) + {
m tr}\, \varLambda^2(g) + {
m tr}\, \varLambda^3(g) - \ - {
m tr}\, (fg) {
m tr}\, (f+g) + {
m tr}\, (f^2g+fg^2)\,.$

and using Main Lemma once again we get

$$egin{aligned} \operatorname{tr} arLeta^4(f+g) &= \operatorname{tr} arLeta^4(f) + \operatorname{tr} arLeta^3(f) \operatorname{tr}(g) + \operatorname{tr} arLeta^2(f) \operatorname{tr} arLeta^2(g) + \\ &+ \operatorname{tr}(f) \operatorname{tr} arLeta^3(g) + \operatorname{tr} arLeta^4(g) - \operatorname{tr}(fg) \left(\operatorname{tr} arLeta^2(f) + \operatorname{tr}(f) \operatorname{tr}(g) + \operatorname{tr} arLeta^2(g) \right) - \\ &- \operatorname{tr} arLeta^2(fg) + \operatorname{tr}(f) \operatorname{tr}(f^2g + fg^2) + \operatorname{tr}(g) \operatorname{tr}(fg^2 + f^2g) + \\ &+ \operatorname{tr}(fg) \operatorname{tr}(fg) - \operatorname{tr}(fgfg) - \operatorname{tr}(fg^3 + f^3g) - \operatorname{tr}(f^2g^2). \end{aligned}$$

We denote by $f \oplus g$ the endomorphism of the module $P \oplus P$ defined by $(f \oplus g) (p, p') = (fp, gp'), p, p' \in P$. Then by formula (6) we get

$$\operatorname{tr} \Lambda^2(f+g) = \operatorname{tr} \Lambda^2(f \oplus g) - \operatorname{tr}(fg),$$
 $\operatorname{tr} \Lambda^3(f+g) = \operatorname{tr} \Lambda^3(f \oplus g) - \operatorname{tr}(fg)\operatorname{tr}(f \oplus g) + \operatorname{tr}(fg(f+g)),$
 $\operatorname{tr} \Lambda^4(f+g) = \operatorname{tr} \Lambda^4(f \oplus g) - \operatorname{tr}(fg)\operatorname{tr} \Lambda^2(f \oplus g) + \operatorname{tr}(fg(f+g))\operatorname{tr}(f \oplus g) + \operatorname{tr}(fg)\operatorname{tr}(fg) - \operatorname{tr}(fg(f^2+fg+gf+g^2)) - \operatorname{tr} \Lambda^2(fg).$

In the same way we prove that

$$\operatorname{tr} \varLambda^{5}(f+g) = \operatorname{tr} \varLambda^{5}(f \oplus g) - \operatorname{tr}(fg)\operatorname{tr} \varLambda^{3}(f \oplus g) + \operatorname{tr}(fg(f+g))\operatorname{tr} \varLambda^{2}(f \oplus g) - \operatorname{tr}(fg(f^{2}+fg+gf+g^{2}))\operatorname{tr}(f \oplus g) - \operatorname{tr}(fg)\left[\operatorname{tr}(fg(f+g)) - \operatorname{tr}(fg)\operatorname{tr}(f+g)\right] - \operatorname{tr}(fg)\operatorname{tr}(f+g) + \operatorname{tr}(fg(f^{3}+f^{2}g+fgf+gfg+fg^{2}+g^{3})).$$

THEOREM 2. Let f, g be endomorphisms of a finitely generated projective module over a commutative ring. If fg = 0, then

$$\operatorname{tr} \Lambda^p(f+g) = \operatorname{tr} \Lambda^p(f \oplus g) = \sum_{i+j=p} \operatorname{tr} \Lambda^i(f) \operatorname{tr} \Lambda^j(g).$$

Proof. Let $a, b \in R_n$ and $e_0 + e_1 = p$. Then by Main Lemma we get for x = ab

$$\operatorname{tr} A^p(a+b)_{e_0,e_1} = \operatorname{tr} A^{e_0}(a) \operatorname{tr} A^{e_1}(b) - \\ - \sum_{m_1=1}^{e_0} \operatorname{tr} A^{p-m_1}(a+b+x)_{e_0-m_1,e_1-m_1,m_1}$$

and if, moreover, ab = 0, then

$$\operatorname{tr} \varLambda^p(a+b)_{e_0,e_1} = \operatorname{tr} \varLambda^{e_0}(a) \operatorname{tr} \varLambda^{e_1}(b)$$

and the theorem follows.

Let $x \in R_n$ be a diagonal matrix and let $x_i = x_{ii}$, i = 1, ..., n. Then symmetric functions

$$egin{aligned} s_k(x_1,\,\ldots,\,x_n) &= \sum_{i_1 < \ldots < i_k} x_{i_1} \ldots x_{i_k}, \ p_k(x_1,\,\ldots,\,x_n) &= \sum_{i=1}^n (x_i)^k \end{aligned}$$

satisfy Newton's formula (see [2])

(7)
$$\sum_{i=0}^{k-1} (-1)^i p_{k-i} s_i + (-1)^k k s_k = 0$$

 $(s_0 = 1, s_k = 0 \text{ for } k > n)$. We reformulate this formula as follows:

THEOREM 3. Let f be an endomorphism of a finitely generated projective module over a commutative ring. Then

(8)
$$\sum_{i=0}^{k-1} (-1)^i \operatorname{tr}(f^{k-i}) \operatorname{tr} \Lambda^i(f) + (-1)^k k \operatorname{tr} \Lambda^k(f) = 0, \quad k = 1, 2, \dots$$

Proof. If f is a diagonal endomorphism of a free module and x_1, \ldots, x_n are diagonal entries, then

$$\operatorname{tr} A^k(f) = s_k(x_1, \ldots, x_n),$$
 $\operatorname{tr} (f^k) = p_k(x_1, \ldots, x_n)$

and (8) follows by (7). We finish the proof by application of arguments used in parts 3, 4, 5 of the proof of Main Lemma.

It follows from (7) that symmetric functions $s_1, ..., s_n$ can be expressed as polynomials (with rational coefficients) in functions $p_1, ..., p_n$

$$s_k = v_k(p_1, \ldots, p_k), \quad k = 1, 2, \ldots,$$

and, similarly, by Theorem 3, it follows that

COROLLARY 2. There exist polynomials v_1, v_2, \ldots with rational coefficients such that if a commutative ring R contains the field of rationals and f is an endomorphism of a finitely generated projective R-module, then

$$\operatorname{tr} A^p(f) = v_n(\operatorname{tr}(f), \dots, \operatorname{tr}(f^p)), \quad p = 1, 2, \dots$$

In particular, we have

$$\operatorname{tr} \Lambda^{2}(f) = \frac{1}{2} [(\operatorname{tr}(f))^{2} - \operatorname{tr}(f^{2})].$$

By Theorem 3 it follows

THEOREM 4. There exist polynomials u_1, u_2, \ldots with rational coefficients such that if a commutative ring R contains the field of rationals and f, g are endomorphisms of a finitely generated projective R-module, then

$$\operatorname{tr} \Lambda^p(f+g) = u_p(\ldots, \operatorname{tr}(\mu), \ldots), \quad p = 1, 2, \ldots,$$

where μ varies over all monomials of the form

$$\mu = f^{i_1}g^{j_1}\dots f^{i_m}g^{j_m}$$

and
$$i_1+j_1+\ldots+i_m+j_m \leq p$$
.

If a ring R contains the field of rationals, then Theorem 2 for endomorphisms of projective R-modules follows from Theorem 3 by easy induction on p.

TRACES OF EXTERIOR POWERS

REFERENCES

- [1] N. Bourbaki, Eléments de Mathématique. Algèbre, Chap. 2, Paris 1962.
- [2] Éléments de Mathématique. Algèbre, Chap. 5, Paris 1950.
- [3] W. H. Greub, Multilinear algebra, Berlin 1967.

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS, COPERNICUS UNIVERSITY, TORUÑ

Reçu par la Rédaction le 27. 1. 1970