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ON TRACES OF EXTERIOR POWERS OF A SUM OF TWO
ENDOMORPHISMS OF A PROJECTIVE MODULE

BY

S. BALCERZYK (TORUN)

The purpose of the present paper is to compute traces trA”(f-+g)
of p-th exterior powers of a sum of two endomorphisms f, g of a finitely
generated projective module over any commutative ring (with 1) of coeffi-
cients. By the use of the recursive formula given in our Main Lemma one
can express trA”(f+g) as a polynomial with integral coefficients in
tr A9(firgh ... fimgim), where q(i;+j1+ -oo +tp+Jm) < p. If the coeffi-
cient ring contains the field of rationals, then tr A”(f+ g) is a polynomial
with rational coefficients in tr(f% ... g'»), where i,+ ... +j,, < p. This
follows easily from Newton’s formula for symmetric functions.

Theorems 1 and 2 will be used in a forthcoming paper in which we
define characteristic series of endomorphisms of modules which admit
finite projective resolutions.

1. Endomorphisms of free modules. Let R be any commutative ring.
By R, we denote the ring of all » X » matrices with coefficients in R.
If x¢R,, then we write x = (x;), ,j =1, ..., n, and we identify « with
the appropriate endomorphism of the free B-module on n free generators
R®...DR _

- Let A =Z[XP), ¥k =0,1,...,8 4,j =1,...,n, be the polynomial
ring in s + 1 sets of variables X{, x(® ..., x®_ X®  This ring admits
natural grading: if e,, ..., ¢, are integers, then homogenous elements of
degree ¢, ..., ¢, are polynomials which are homogenous of degree e, in
the k-th set of variables X, ..., X% for k =0,1,...,s. Let X® be
n X n matrix X® = (X{¥) in the ring 4,. If R is any commutative ring,
9, ..., 2®eR,, then there exists the unique homomorphism ¢: 4 - R
such that the induced homomorphism ¢,: 4, — R, satisfies ¢, (X®) = &®,
k=0,1,...,s If ved and e,,..., ¢, are integers, then we define

”(w(o)y seey a;(s)) = ¢(v),

v(@, ..., w("))eo _____ g = ¥ (Veq,....e0)»
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where v, . . is the homogenous component of v of degree e, .. ,e,.
For instance, the trace trA?(X©@+ ... +X®) is a polynomial in X%
and

ptr AP (XO 4+ ... 4+ X©) = tr AP (2 + ... +a2¥)
and

n
tr(@®+ ... +29), o= ) &) = tral®,
o

We have v(2@, ..., 2®), = 0 if some ¢, is negative and

=v(0,2Y,...,29),

o...-,e

0) 8)
v(m( 9y w( )('),el,...,es 1€)5++01€g "

MAIN LEMMA. Let 2@, 2"V, ..., 2® be nxXn matrices with entries
in a commutative ring R and let e, e,, ..., 6, be non-negative integers such
that e,+e,+ ... +¢, = p. Then

(1) A @O +a0+ .. +a®), .
= tr A% (@®) - (tr A%+ (g 4 ... + @) _

61,...,63

€0
- Z tr/lp_m (w(O) + LR + w(zs))eo—m,cl—ml,...,es—ms,ml,...,ma7
m=1

ml,...,ms
my+...+ mg=m

where Y = @M .. 2 = g6,

Proof. 1. We denote the number of elements of a set ¢ by || and
the set {1,2,...,n} by #. If ¢,, ..., t, are disjoint subsets of =, then we
write

M(XO, . .., XO; ¢, ...,1) = det(Y,),

where i,jet, U... Ut and Y,; = X if iet,. Then for xe¢R, we have

M(z;t) = det(w; l,bm=1,...,p,

i)
Um
if ¢ ={j1,.-sdp}rJ1<...<Jp, and the well known formula for trA?(z
takes the form

(2) tr AP (1) = Z'M(w;t).
ten
{tl=p
It is easy to see that for any permutation = of the set 0,1, ...,8 we
have

(3) M(a™, . ., a it s ) = M(ag‘°>, ey @05 80, iy 8).
If 2 is a diagonal matrix, then

(4) M@0, 20, ..., 2®;8,1,...,t)= (”wﬁ‘,’)) Mz®,...,59;t,,...,1,).

i(to
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Since

M@9+ ... +29;7) = det (2@ + ... +2®) = 2 ’(”)” 2 Y

neS,,

then for each sequence of integers e, ..., e, such that e,+ ... +¢, =n
we get

M@ ... +a957), . = 2 1) 2 ) n T - ” 2

neS, iety

= Z(I)M(w(‘”, ey @580, 000 L),

where by 2(1, we mean the sum taken over all sequences i, ..., of
disjoint subsets of # such that |t = ¢, k¥ =0,...,s. For any subset
r < 7 and any sequence of integers e,, ..., ¢, such that e;+ ... +¢, = |7|
we get in the same way

(5) M@0+ ... +a5r), . _2’(2) @@, ..., 2@ty ..., 1,),

where by >, we mean the sum taken over all sequences i, ..., of
disjoint subsets of the set » and such that [¢,| =€,k =0,...,8

2. Let us assume that the matrix 2 is diagonal. By 3’ we mean
the sum taken over all sequences ¢,, ..., ¢, of disjoint subsets of the set 7%
such that |t = ¢,k =1,...,8 and under the sign )’ we write addi-
tional conditions imposed on sets t,,...,%. We put t =¢, U... Ut for
abbreviation; then by formulae (2), (5) and (4) we get

tr AP (@ 4 ... +29), .
= D M@+ ... +295 1), ..,

rcn
Iri=p
1!

= 2 2 M(m(o)y"'7w(s);to’t1’°”ats)
ltgl=¢g
= Z 2 ”mﬁ?)-M(w(l),...,w(’);tl,...,t,)=a,1—a,,,

to‘:;‘ lpnt=0 el
Itgl=¢g

=( Z ”wﬁf’ (ZIM(x(l),...,w(");t,,...,ts),

tocn uto
ltg!=¢q

where

—/
@2 = 2 2{ nwi(,g).'M(w(l)y-”,w(s);t]_,...,ta).
tocn boni#D iety
Itol €o
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Using (5) once again we get

a, = tr A% (w(o)) . (trA91+---+cs(w(1_)+ . __|_w(8)))

61,...,68.

To compute a, let us remark that if subsets ¢y, ¢, ..., t, of the set %
satisfy the conditions

(') [te] = €y B =0,1,...,s8,

(ii’) ¢,,..., %, are disjoint,

(iii") to N (t, V... UL) #0,
then they determine subsets of the set @

Up =bo Ny Uy =5\t =t \u,, k=1,...,s,
u' - to\(tl V) see U tB)’

which satisfy conditions

(i") lukl+1u;c! =e, k=1,...,5s,

(i) W'y Uyy oeny Uy Uypy ..., u, are disjoint,

(1) 1< |uy| 4+ ..o Uy < €.

It is easy to see that the above correspondence between sequences
toy ..., t, SUbjected to the conditions (i’)-(iii’) and sequences u', u,,...,
Ugy Uy, ...y U, Subjected to the conditions (i’')-(ili”’) is one-to-one.
Thus if we denote by 3"’ the sum taken over all sequences ', u,, ...,
Uyy Uy, ..., U, Of subsets of the set = which satisfy conditions (i")-
-(iii"’) and if we put v = u; U... U u, then using formulae (4), (3) we
get

Ay =Z nwgg)’”mg) : M(w(l)’w(l)y °--’m(8)7a7(s); Uyy Uyy oeey Ugy Ug)

teu’ teu
= 2 ”wg‘)) : M(-’”(O)wu)7 "17(1)7 ceey m(o)w(s)’ w(s)i Uy y ’“; yooey Usy “.;)
iew

4 ’ ’

= Z M@0, 200, 2V, L 200, 3w g ugy e gy )
=2 M@0, a®, ..., 2@, 200, Q5D w ug, ey gy Uy ey W)
Let us put m, = |u,|, k=1,...,8, m = m;+ ... +m,. Then we have

|| = ey—m, |u,| = e,—m,, and, using (5) once again, we get

a, tr AP (2, ..., 2®))

u
N
N

eo—‘m,el—ml,...,es—ma,ml, reeyMg
m=1 my,...,M, > :
mp+...+mg=m
my<ey,...,Mg<€g

where ™) = @z . 2 = 2@ Thus (1) holds, because all
terms in the sum in (1) for which m, > ¢, vanish.
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3. Let us assume that R = C, the field of complex numbers, and that
the matrix z® -is equivalent to a diagonal matrix, i.e. there exists an
invertible matrix zeC, such that the matrix y©® = z7'2@z is diagonal.
Let us write y® = ¢='2®z, k =1,...,s. Then |

tr A7 (@ 4 ... +2¥) = tra? (z(y(°)+ YY) = tr A (yO+ ..+ ¥

and coefficients y{¥ of matrices y(") are linear forms in z{!) and conversely.
Consequently,

tr AP (@@ 4- ... + 29, .y = tr AP (y©@ + ... y(“’)e0

------

and formula (1) follows by application of the lemma to matrices y(®, ... y.
4. Let us. assume that R = C, the field of complex numbers. It is
easy to prove that the set of all » X » matrices equivalent to diagonal
matrices is dense in C, . If the formula (1) holds for matrices z® in a dense
subset of C, and for all ), ..., ®¢C,, then it holds for all matrices
@, . .’L‘(S)EC
Let Z be the class of such commutative rings R that Maln Lemma
holds for all matrices 2@, ..., #® in R,, n = 1,2,... We have proved
that C is.in #..1t is clear that if R is in Z, then.any subring of R and any
homomorphic image if R are in Z. Consequently, any finitely generated
Z-algebra is in #. _

Let R be any commutative ring and z%,...,2®¢R,. Then the
subring ‘S of the ring R, generated by all elements wﬁ", k=0,1,...,s,
t,j =1,...,nand 1, is in #. Then R belongs to # and the proof of Main
Lemma is finished.

COROLLARY 1. There exist polynomials w,, w,, ... with integer coeffi-
cients such that for any endomorphisms f, g of a finitely generated free module
over a commulative ring we_ have. :

tr A7 ( f+g = wy(..., trA%(u),...), »p=1,2,...,
where U varies over all monomials of the form -
u = figh ... fimgn
and q(iy+ji+ ..o +imtin) <P

‘2. Endomorphisms - of :projective modules. All projective modules
under consideration are finitely generated. The trace of an endomorphism
f: P — P of a projective module is defined as follows (see [1]). If F,.=P®
®P;, 1+ =1, 2, are free modules, then f; = f @ 0p, is an endomorphism-
of ¥;, + =1,2. Let h be-an automorphism of the free module ¥, @ F,
defined by ‘

h(P,pnI’” D) =(P'yP1,PyD2)y D,P eP, p1ePy, PyeP,y.
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Then we have h(f, ® Op)h™' =0y @ f, and, consequently, trf,
= trf,. Thus we can put trf = trf,. It is easy to see that if ¢: R — 8§ is
a ring homomorphism and f: P — P is an endomorphism of a projective
R-module, then ¢ (trf) = tr(f ® 15). It is well known (see [3]) that there
exists a natural isomorphism

(6) A(POP)~ © A(P)RA(P)

i+i=p

and if P’ is projective, then tr(f®f’) = tr(f)tr(f’) for all endomorphisms
f': P'—>P'. It follows by (6) that tr.A?( (f®0p)) = trAP(f). Hence and
from Corollary 1 we infer

THEOREM 1. There exist polynomials w,, w,, ... with integer coefficients
such that for any endomorphisms f, g of a finttely generated projective module
over a commutative ring we have

tr AP (f+¢) = wy (..., tr4%up),...), p=1,2,...,
where u varies over all monomsials of the form
u =filg7'l “.fjmgjm
and q(i,+j1+ ... +ip+in) <p. We compute polynomials w,, ws, ... by
the use of Main Lemma.

Let a,beR,. Then from Main Lemma it follows that for x = ab
we have

trAP(a+0),,_, = tra-tr 4?71 () —tr A*"(a+ b+ @) ,_,,
= tr a-tr A~ (b) — tr A?(ab +b), ,_,
and by an obvious induction we get

p-—-1
trAP(a+b), ,_, = Z (—1)itr (ab®) tr AP~ (b).

1=0

Using this formula we get for endomorphisms f, g of a projective
module P

tr A2(f+g) = tr A3(f) + tr(f)tr(g) + tr A%(g) — tr(fg),

tr A3(f+g) = tr A(f) + tr A*(f)tr(g) + tr(f)br A*(g) + tr A%(g) —
—tr(fg)tr(f+9) +tr(f*g +fg°)
and using Main Lemma once again we get

tr A4(f+ g) = tr A4(f) + tr A3(f) tr(g) + tr A2(f) tr A2(g) +
+tr(f)tr A3(g) + tr A4(g) — tr(fg) (tr A2(f) + tr(f) tr(g) + tr A%(g))—
—tr A%(fg) + tr(f) tr(f2g + fg*) + tr(g) tr (fg* + f29) +
+ tr(fg) tr(fg) — tr(fgfg) —tr(fg*> +f29) —tr(f2g?).
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We denote by f@g the endomorphism of the module PP defined
by (f@9) (p,p') = (fp,9p"), P, p’eP. Then by formula (6) we get

trA*(f+g) = tr A2*(fDg) —tr(fg),

tr A°(f+g) = tr A*(fDg) — tr(fg) tr(fFDg) + tr(fg(f+9)),

trA*(f+g) = tr A*(fDg) —tr(fg)tr A (fDg) +tr(fg(f+9)tr (fDg) +
+ tr(fg) tr(fg) —tr (fg (f* + fg + of + ¢°)) — tr A*(fg).

In the same way we prove that

trA°(f+g) = tr A3(fDg) —tr (fg)tr A (fDg) +tr(fg(f+ 9)) tr A2 (fDg) —
—tr(fg (f*+fg+of + ¢*) tr(f Dg) — tr (fg) [tr(fg (f+ 9)) —
—tr(fg)tr(f+g)| —tr A2 (fg)tr(f+9)+
+tr(fg(f* +1*9 +fof + ofg + fo* + ¢°)) .

THEOREM 2. Let f, g be endomorphisms of a finitely generated pro-
jective module over a commutative ring. If fg = 0, then

AP (f+g) = trAP(f@g) = Y trA(f)trdi(g).

i+j=p

Proof. Let a, beRn and e,+e¢, = p. Then by Main Lemma we get
for x = ab

trA4®(a+b), .. = trA%(a)trA2(d)—
0“1
‘o

—_ 2 tr Ap-ml (a + b + w)eo—mloc]__ml'ml

my=1
and if, moreover, ab = 0, then /

tr A% (a +b),, ., = trA%(a)trA°1(b)
and the theorem follows.

Let x¢R, be a diagonal matrix and let ; =z, ¢ =1,...,n. Then
symmetric functions

8 (Zyy oeny ) = 2 Ty oo By
‘l:l<...<'ik
n k= 1,2,
Pel@s ey 7)) = Y ()
t=1
satisfy Newton’s formula (see [2])
k-1
(7) D (1) pi8+(—1) ks, =0

1=0

(80 =1, 8, = 0 for k > n). We reformulate this formula as follows:
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THEOREM 3. Let f be an endomorphism of a finitely generated projective
module over a commutative ring. Then

k-1
®) Y (—1fte(fH e AN(f) + (— 1kt aA¥(f) =0, k=1,2,..

i=0

Proof.If fisa diagonal endomorphism of a free module and :i'l, ceny T,
are diagonal entries, then

tI'Ak(f) = Sk(d’l’ ceey @),
r(f*) = py(@, ..., 2,)

and (8) follows by (7). We finish the proof by application of arguments
used in parts 3, 4, 5 of the proof of Main Lemma.

It follows from (7) that symmetric functions s,, ..., 8, can be expres-
sed as polynomials (with rational coefficients) in. functions p,,..., p,

8k=’0k(p1,...,pk), k=1727--°7

and, similarly, by Theorem 3, it follows that

COROLLARY 2. There exist polynomials v, vy, ... with rational coeffi-
cients such that if a commutative ring R contains the field of rationals and f is
an endomorphism of a finitely generated projective R-module, then

tr AP (f) = v, (tr(f), ..., tr(f"), » =1,2,...
' In particular, we have
trA2(f) = }[(tr(f))2—tr(f?)].

By Theorem 3 it follows

THEOREM 4. There exist polynomials u,, u,, ... with rational coeffi-
cients such that if a commutative ring R contains the field of rationals and f, g
are endomorphisms of a finitely generated projective R-module, then

tr AP (f+g) = up(...,tr'(y), )y P =1,2,...,
where u varies over all monomzials of the form
p=figh... fimgmn

and iy +ji+ oo Flptin <D

If a ring R contains the field of rationals, then Theorem 2 for endo-
morphisms of projective R-modules follows from Theorem 3 by easy
induction on p.
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