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1. In his recent paper (}) A, C. Lazer has given a simple condition
for all solutions of the differential equation

(1) y'+p(@)y =0

to tend to zero as z tends to infinity. Namely, he proved the following
THEOREM. If _’p(.’ﬁ) >0, p(m)eo?a,w)) lim p(x) = + oo and
T—>4-00

I

then, for each solution y(z) of (1), lim y(wx) = 0.
>0

dx < + oo,

In the present paper we will show that the same result may be ob-
tained under more general assumptions than those of Lazer and we will
prove a similar property of the derivative of every y(z) satisfying equa-
tion (1). In the second part of this paper, returning to original Lazer’s
assumptions, we will strengthen considerably his theorem.

In the proof of his theorem Lazer considers the function
W@r ( 1V 1\,
Vo@) ( f-—p(w)) y(@)y (W)+[Vp(w)+g(‘/m) ]Zl ().

As may be verified by differentiation, if y(x) is a solution of (1)
then

w(x) =

) w(@) = wia)+ [ (ﬁ) y*(1)dt.

In the proofs of our theorems we will make use of the same function
w(z) and equality (2).

(1) A.C. Lazer, A stability condition for the differential equation y"”’+p(x)y = 0,
Michigan Math. Journ. 12 (1965), p. 193-196.
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2. THEREM 1. If p(2) > 0, P(®)eCl s lim p(2) = + oo, and

( 1 )III‘ dt < 1
Vo)) ’

lim sup

o
Jm o]

then, for each solution y(z) of (1),

(3) lim y(x) =0
400
and
(4) iim 2@ _o.
z-++oo Vp ()

Proof. Let y(z) be a non-trivial solution of (1). We shall first prove
boundedness of y(z) for ¢ < # < + oo, Since p(x) > + o as & - + oo,
y (x) is oscillatory. To show that y(z) is bounded, it is therefore sufficient
to prove that the absolute values of y(z) at its relative maximum and
minimum points are bounded. Suppose then that these values are un-
bounded. Then there exists a sequence {c¢,} such that

y'(c,) =0, |y(c,))| = max{|y(z)|: we[a,®,]} (n=1,2,..),

lim ¢, = o and lim |y(c,)] = ooc.

n—00 n—+00

From equality (2), for z =¢, (n =1,2,...), we obtain

1/ 1\ AR
) = — z = — r— 2(t)dt.
wte) = [Valait 5 (1o=) | te) = w5 | (o) o
Since
1\ 1.\ A1\
®) (l/p(m)) (l/p(w))z=a+!(l/p(t))
setting

VPle)y* (e < ey(e)+ 1w @)+ [

(Vpl_a)!dt

Hence we obtain the inequality

6 2(e, Wp(c,)|1— R
(6)  y*le) P(""[ Vp(e,) '/P_(c_)f

Cn

(I/—;Tt_))m dt] < |w(a)l.
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Since, by the assumption, lim y2%(c,) l/p(cn) = 4 oo, from (6) we
obtain

T
1 1 e
limin.f[l— ( ) /dt]<0
a>+oo @), 1\Vp()
which is in contradiction with the assumption.
Thus we have

a = lim sup y%(z) < + oo.
T+ 00
To complete the proof of (3) it is sufficient to prove that a = 0.
Suppose that a > 0. Then for every ¢ > 0 there exists a number M such
that

(7) yi(x)<< at+e for a> M.
Let 2, < @, < ... be the successive relative maximum and minimum

points of y(x). Then ¥'(x,) =0 and »x, > 4+ oo as n - + oo. From (2)
for # = x, we have

o " zn 1 res
® Vs +i V}%) v (@) = wia)+4 [ (VzT—n) o

Setting b > M and

°= b(l/p(m))z-a %f(l/p(t)) 1

a =]w(a)+& f (V—;T_)) zﬂ(t)dt}

from equalities (5) and (8) we obtain the inequality

(}/p (t))m de_

+1 bf " (1/_;’(:0‘) y(1) .

From inequality (7) we obtain the futher inequality

Vo (z,)yi(@,) < cy?(w,)+d+ 1y

1 e
( __) ’dt for @, > M.

¢ d a+te i
2 <— €

+
(,) Vop(z,) Vpla,)y
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Hence

)

(10) limsup y2(x,) < (a-+ ¢)limsup
>0 n—>00 ]/p (.’0

(50

If § =0, then from (7) it follows that a = 0 and we have the con-
tradiction. If g > 0, then, for ¢< a(1—pB)/f, we have B(a+¢)< a, in
contradiction with (10). This proves that a = 0 and, therefore, relation (3)
is satisfied.

For to prove (4), consider the sequence x; < x, < ... of the successive
relative maximum and minimum points of the function y’(z)/Vp(z). It
is sufficient to show that

fll s
e | 1
‘Write

~ I
ey l/p (@) 3

. y'(=,)
1 =0.
() oo Vp ()
Since
(;1%) =0 (n=1,2,..)
therefore o

Ry
Vp(@)),es, @ Jas,

Hence and from equality (2), for z =2, (» =1,2,...), we have
[y’ (,)]? ( 1 )

+ Y y2(mn)
Vp (@) Vo (@)/oa,

— w(a)+ f ' (ﬁ) v (Ot

By (3), for any given & > 0 there exists a number M such that
(13) yi(x)<e for x> M.
Setting b > M, from inequalities (12), (13) and equalities (9) we have

vl

Since the right-hand side of inequality (14) can be made arbitrarily
l small, we have (11) and the proof is completed.

2

(@) ce+d 1 "
(14) (” ) <2l L, 1
Vop(@)le-zs  Vp(a,) Vp(maf

dt  for xz, > M.
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3. Theorem 1 is a generalization of Lazer’s theorem, since if the
function p(x) satisfies the assumptions of this theorem, then

w

If, however, the function p(x) satisfies the Lazer’s assumptions we
can obtain a stronger result, namely the following

THEOREM 2. If p(x) > 0, p(m)eC[dw), lim p(z) = + o0, and

limsup da =0.

Zvtoo l/p (w)

>+
(> 1 rer
— d 00,
o (l/p(m)) vt
then, for each solution y(x) of (1),
[ 2(w)+ [yt ;] ] = 0(1Vp(x).

Proof. Since [ |(1/V17m)}”’|dw< L oo and for every solution y(x)
0

of (1) y(z) >0 as © - + oo, therefore from equality (2) the functions

w(z) and (1/ VM)”yz(w) are bounded for ze[a, oo). Thus there exists
a number M such that

< M for ze[a, ).

1 1 ’ —
— == ‘(@) +V 2
@) (l/ .(m)) y(2)y (v)+Vp(2)y*(2)

From the above inequality we have

l/"_[ . [y'(w)]z] _)( _1__)
P(z) |y (%) + () s

ly(@)y' (2)| < M

Since
vy @)l < 33 [+ (L]
Vp(z)
we obtain
o S e
W lpres @ I\ %(Vp(w) M for zefa, o)

Since |(1/Vp(2))"”’| is integrable, (1/Vp(x))"” is bounded for ze[a, o).
Therefore, since lim 1/Vp(z) = 0, it follows that

Z—>+ 00
1 1
hm( ___) =0.
e \V p (@)
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Thus from inequality (15) it follows that there exists a positive
number K such that

[y’ ()1
P ()
This completes the proof of Theorem 2.

CorOLLARY. For any solution y(x) of (1) there exists a number M such
that

VM[?I’(“’H— ]QK for zefa, oo).

M 4,—
ly ()| <m, ly'(z)] < MVp(®) for wela, ).
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