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POLYNOMIAL APPROXIMATION TO INTEGRAL TRANSFORMS

0. Introduction. The polynomial approximation of the integral trans-
forms of the Laplace or Fourier type in a series of symmetric J acobi
Polynomials has been studied by Wimp [5]. He obtained the coefficients
in such an approximation as the Hankel transforms containing the given
function. In the present note the approximation of the Laplace or Fourier
transform g¢(«) of some function f(?) has been obtained in a series of Jacobi
Polynomials P () in the interval —1 < <1. The coefficients in such
cases are found as integrals containing confluent hypergeometric func-
tions which have ultimately been reduced to a series of Hankel transforms.
A similar treatment has been applied to the case of inverse Laplace trans-
forms. Several examples have been included to show the practical appli-

cations of the method.

1. Laplace transform. The Jacobi polynomial is defined as

pgmw)=(”:ayFb4%n+a+ﬂ+l;w+h%—$@

— 0 (VEP) Bl a4 1 .

Let g(z) be the Laplace transform of a function j(t); then

1) g(@) = L) = [ efwa = D' 4, P8 (a).

~ To determine the 4,, 8, we replace the kernel ¢ in (1) by an expan-
sion obtained by putting y = 4¢ in the relation ([2], vol. 2, eq. (4), p. 213)
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Iren+a+p+1)
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@) o = (aig)Hernt Y My (i) PP (),
n=0
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where ¥ = (a—f)/2, m = n+3}(a+4p+1), and M, ,(x) is the Whittakar
function of the first kind.
Thus we obtain

o T(n+a+p+1)
~ I'(2n+a+p+1)

(3) &% = (—2f)HetA-1 My —20) PSP ().

Now, from [2], vol. 1, eq. (1), p. 264, we have
(4) My (—2t) = (=2 TP (04 415 20+ a4 B+ 2;—20),
and applying the Kummer transformation ([2], vol. 1, eq. (7), p. 253)

(5) P(n+p+1;2n+a+p+2;—20)
= e ¥P(n+a+1;2n+a+p42; 21),

we obtain A, from (1), using (3), (4) and (5), in the form
(6) An =

non I'm+a+p+1)
T@nt+atpt1))

—1)"2 -‘t"qb(n+a+1;2n+a+5+2;2t)f(t)dt.

But from [4], eqs. (2.2) and (2.8), taking A =1, 6 =n+at+4 we
have

I'(2n+2a+2WVn
F(n+a+1) (Zt)n+a+§ 'n+a+}

(1) O(n+at1;2m+atp+2;2) = (t)+

2¢Vn k(n+k+a+g)r(2n+2a+k+1)
T I'(n+a+1) (2t)"Fott 2 (=1) k!

X By(n+a+1, 20+ atf+2, ntat ;1) Lnsriars (),

where

RBy(n+a+1,2n+a4p+4+2,n+4+a+13;1)
= By(n+a+1,2n+a+p+2,n4 a4 %)

T(k+a—p) T(2n+atf+2)

= (—1)* .
T(a—p) T(2n+atp+k+2)
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Also if a = 8, then
0 if k+#0,
(8) Ri(n+a+1,2(n+a+1), n+atd) = 1 ifk=0.

Substituting (7) in (6) we obtain
)n2—0+a)]/— n+a+.3+1) 1
TF@ntatp+1l) Tint a—|—1)

- on+2a+2k+1)I(2n+2a+-k+1
xZ[(—n(” ¢ )k'(’“r atkt1)

9) 4, =(—

X R (n+a+1,2n+a+p+2,n+a+}) f In+k+a+,(t)t“°+*’f(t)dt].
0

Now, since ([2], vol. 2, eq. (12), p. 5)

I,(2) = J,(2¢™?) eXP{—’&%v},
we have

In+k+a+}(t) = Jn+k+a+§(it) exp{—ig (n+k+a+t %)}

Taking now
9" (a+})]/ 'n—l—a-l—f}—|-1) 1 _0
T@ntatpt+l) Fntatl)
and
2
(10) (— )k (2n+2a+2k+1)F(2n+ at k+1)

k!
XRy(n+a+1,2n4+a+p+2,n+a+3) =Gy,
©equation (9) becomes

[o ] . t
(11) 4, = (—1'Q, G, o RV g {f: &3 } | ,
k=0

Y=
v=n+k+a+i

Where H{F(t)} = [ F(t)J,(y?)(yt)""dt denotes the Hankel transform of F'(t).
0

In the symmetric case a = f, from (8) and (10) @, ; = 0 for k +# 0,
and so only for k¥ = 0 (11) gives the coefficients for the symmetric Jacobi
expansion as

1)
.(12) A; — ginf2n—a- 1)s) Gn OH{.:;(-H . ’
‘Where smntath
(13) 0q . —gi-aym et HI (A 2at1)
nYn,0 — .

I'(n+a+1)
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The coefficients C, for the Chebyshev expansion of g(x) follow from
(12) by putting a = —1/2, and all these results are identical with those
of Wimp [5].

2. Inverse Laplace transform. We consider now the inverse problem,
i.e. g(#) being given, to find f(f) as a polynomial in P{»%(t), where # lies
between —1 <t < 1. Now, referring to g(z) as given in (1)

c+1iv

f) =5lim [ gla)dn,

Y=»00 .
Cc—1y

where the real number ¢ is so chosen that all singularities of g(x) are to
the left of the line of integration. The inversion is valid for ¢ > 0. To take
into account negative values of ¢ two functions f; () and f,(f) are defined
as follows:

f(@®), t>0, J(@), t<0,
f1(t) =1f0)/2, =0, and f.(¢)) =1f(0)/2, t=0,
0, t<O0, 0, t>0.

Hence for all real ¢ we may write

f@) = fi(®)+1.(t)
We now define

g:1(x) = [ e =f@t)dt = L{F(1)},

o}

g:(—a) = [ e *f(—t)d = L{f(—1)},
0
so that g¢,(») and g¢,(x) are the Laplace transforms of f,(f) and f,(—?1).
Hence, following an analysis by Elliott [1], we have for all ¢

cl+w —02+'W

(14) f(t)=—2——hm{f Ag@)dat [ gy (—a)da].

T y—00 .
1~ —Cop—i¥

If ¢+ lies in —1 <t <1, then interchanging # and ¢ and replacing
z by —x we obtain from (3)

(15) ¢ = (2z)Ha+A-1 O [(n+atp+1)

(a,8)
=0 I'2n+a+p+1) My (22) PP (2).

Now, if

1) = 34,0 ),
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then using (4), (5), (14) and (15), we infer that

I'in+a+p+1) 1
Iréen+a+pg+1) 2m
cl+1lv

xlim{ [ ¢a"@n+a+1;2n+a+p+2; —22)g;(v)do+

vy—>00 cl —1

(16) 4, =2"

—-cz+iv
+ [ Fad(ntatl;mtatp+2; —20)g,(—a) dw}.

—Cy—1iv

Applying (7), relation (16) can be reduded to the form

oo c1+1v
1 N : e
17 4, = _.,Q”Z(f an’k [llm{ f o +*)In+.k+a+i(m)gl(w)dm+
2rt = y—>00 oy =iy
—Co+1v
+ L, a3 (0)g3(—) da} |-
—cz—iv
If a = B, then as before
1 cl+iv
18) 4, = —— 0,6, lim{ [ o7V, (0)0: (@) a0+
2 y—>00 oy v
—Cg+iv
+ f "”_(GH)In+a+i(“l‘)gz(—-’”)dw},
—cz-—iv

Where Q,@, , is given by (13).
In particular, for « = —1/2, the coefficients for the Chebyshev
®Xpansion follow from (18) as

1 cy+iv N
0, = Lim{ [ L@@+ I,(@)g:(—a)dal,
T y>00 3
c;—iv i

Which corresponds to the result obtained by Eliott [1].

3. Fourier transform. In the case of the Fourier transform
g(z) = [ é=f()dt.
1]
The kernel ¢ is replaced by (2) taking y = ¢. So if

g(2) = D 4,P&P (x),
n=0
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then as before
(19) A4, =2""%x

 Tn+atp+1)
T@ntatp+l),

"D (n+at1;2n4 a+t p+2; —2it)f(2)dt.

Applying (7), relation (19) can be reduced to the form

(2n+ t;—l— %)'iﬂ} Q,

' J
Xzexp{ 2(n+k+a+1})}G H{i‘}%}v=l

v=n+atk+}

(20) 4, = exp{-

Taking ¢ = 8 we have

ta+1
v=n+a+t}

(21) 4, =" GnoH{f (t)}
y=1

It may be observed that Wimp’s results for the Chebyshev expansion
of g,(x) and g,(x), i.e. for the Fourier cosine and sine transforms, follow
directly from (21).

4. Ilustrative examples. In this section several examples have been
included for the Laplace transform, inverse Laplace transform, and
Fourier transform to show the practical application of the method. It
may be remarked in this connection that the integrals for the coeffi-
cients A, occurring in the polynomial approximation of the transform
problems ultimately depend on the Hankel transforms which are similar
to those obtained by Elliott [1] and Wimp [5]. Hence for the complete-
ness of the discussion most of the examples considered by Wimp have
been chosen to illustrate our method.

4.1. Laplace transform. If f(t) = t#"'¢~%, then g(z) = I'(s)/(xz+ a)’,
Re(s) >0, Re(x) > —Re(a). Now, employing the relations ([3], vol. 2,
p. 332)

1 z\" _, 1
I,(2) = F( 1) ( ) (D(v—l— ; 2v+1; 2z)

and ([3], vol. 1, eq. (11), p. 215)
(22) [ e V1D (a; c; 20) dt
1}

2 .
— oo di(a b0 o), Re)>0, Be(p) >1,
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we obtain

@3) [ e PetL(hat
0

_ 1 I'(v+0b)
2T +1) (p+1)*

1 2
2F1(—2— +v,0+9v;2v41; m)’

Re(b+») >0, Re(p) >1.

With the help of (23) the coefficients A, in the Jacobi expansion of
(z+a)~* can be evaluated from (11) as

2, © 1 I'(n+k+s) _
24 = (—1)y"—"— E ! (n+k+8)

Xy (nek ok @ T ek oo By Dokt 1) ),
Re(n+s8+k) >0, Re(a) > 1.
Now, combining the result of (23) with ([3], vol. 1, p. 196)
I'(v+b) (p—q)
rv»+1) ¢

Where ¢ — V/p2—1, Re(b) >0, Re(p) >1, and using the formula ([4],

f e P1T (1) dt = 2F1(1_b,b;v+1;u),
0 2q

€q. (3.3))
| o s-bg2s 2 % (0)(26), —w)\*
F1(a, b5 052) = (1+'w)“2(_) ! (6)z Thi(2), w80 ’6)( 14w )x
xm(l—b+ 8y b—0; k+48+1; — (1Iww)’

Where w — V1—2, |¢| <1, relation (24) can be reduced after certain
Manipulations to
(25) 'An = (—1)"2" I'in+a+p+1) . I'(n+3)
Ir@en+a+p+1) I'(s)
X oIy (n+a+1, n+8; 2n+a+ 425 2/(a+1)),
Re(n+8) >0, Re(a) >1.

(a+ 1)—(n+s) X

For this particular example the coefficients given in (25) could have
been directly obtained from (6) and (22) but for the simplicity of the
integral in (11), the latter formula has been used for the evaluation. More-
Over, since the Hankel transforms are widely tabulated, it is easier to
handle formula (11) than that of (6).

Zastosowania Matematyki XII, 1. 7
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In particular, if « = 8 = —1/2, the coefficients of (25) are

I'(n) I'(n+s)
I'2n) I(s)

and so the coefficients of the Chebyshev expansion

A, ={(—1)y2" (a+1)""+),Fy(n+},n+3; 20+ 1;2/(a+ 1)),

— (_1\? P( n+8) -—slz —n a
On = (=1 —p 5~ (@*=1) P’"‘(Vaz—1)’
where
1 forn=0,

en .
2 for n>0.

4.2. The Psi and Log Gamma functions. Now f(t) = (—1)PHe %P x
X (1—e %)™, Re(a) > 1. Then g(z) = y*(x+ a), where y(x) = D logI'(x).
The coefficients in the Jacobi expansion of g(x) are given by
I'in4-a+p+1)
I'en+a+p+1)

X Z (@a+r+1)~ 2B (n+p+1, n+ a+1; 20+ a+ +2;2/(a4-r+1)).
r=0

4, = (—1)rrrign I'(n+p+1) %

If p =0, then the coefficients in the expansion of g(x) are

piign L0kt pt1)
T@ntatp+1)

X D (a+r+1)""D, Py (n+1, n+ a+1; 20+ a+ f+2; 2/(a+r+1)).

r=0

Taking a = = —1/2, for the Chebyshev expansion we have

(26) A, =(—1 I(n+1)x

oo

(27) C, = (_1)n+l2—n+1 2(a+r+1)—(n+l) X

r=0
X2F1(’”'+1, n+%;2n41;2/(a+r41)).
Now for n = 0 and n = 1 it follows from (27) that

) 1
(28) Co= —22(a+r+1) L (1, 45152/ (a4 1)) = “22 Varmn—1

r=0
and

[= 2]

(29) 01‘=Z(a+r+1)-221’1(2,2,3 2/(a-+r-+1))

- _22[1_ l/(a+r)’ ]

r=0
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The series in (28) diverges, and that in (29) slowly converges. Hence
O, and O, are to be determined in terms of higher computable coefficients,
as shown in [5]. Having determined the Jacobi expansion or the Cheby-
shev expansion of y(x-+ a) from (26) or (27) respectively, the correspond-
ing expansions of logI'(z+a) can be obtained by integrating the series
for y(x+ a).

4.3. Inverse Laplace transform. Let g(x) = $log(1+(a/z)?), Re(w)
> |Im(a)]. Then f(f) = (1—cosat)/t. Here g,(x) = }log(1+(a/z)?) and
92(2) = —g,(v). With these g;(x), ¢ = 1, 2, the integrant in (17) tends
to zero as v »> oo in @ = ¢+ iv. Hence (17) gives

1 = n - a+-1- a 2
4, =4T¢Q”§(_1) G Gf ol 2)1n+k+u+,(w)1og(1+(;) )dw,

Wwhere (' is the contour enclosing the slit from —ia to ia. By displacing
the contour to the slit we obtain

4, =59, ) [<—1>’°+(—1>““]exp{“”+" —1)“} X
k=0

2

e
X Gy i f Y Y pirkrary(¥)dy.
0

If a« = —1/2, then from [3], vol. 2, eq. (1), p. 333, it follows that

(oo IR o o]

4, Qn22[<—1)k+<—1>"+‘]exp{

r=0 k=0

i(nt+k—1)n
L

X (Gn,k)a=—} Inrrrer1(8),
Mojreoven, taking g = —1/2, the Chebyshev coefficients are

0 for n even,
C, = in—1)7) « .
l4exp{(—2—)—}§Jn+2r+1(a) for n odd.

4.4. Fourier transform. If

1, O0<i<a
o= !

y a<t< oo,
then

4 1—cosax

g1(z) = Y = Jf(t)sintmdt
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and
sin ax

ga(w) = = [ f(t)costwds.
0
Using [3], vol. 2, eq. (1), p. 333, we evaluate (20) for « = —1/2 to
obtain the coefficients in the particular Jacobi expansion of the Fourier
transform of f(t) as

oo o

: i(nt-%
(30) A, =26""Q, Z ZexP {—— W} (Gnx)am 12T nsrr2r41(0).

If, in addition, § = —1/2, then (30) gives
(31) Ay, = 26" (G da—1j2 D, Tnrarsr (@),
r=0

and so the coefficients for the Chebyshev expansion for the sine and cosine
integrals follow from (31); this is in agreement with Wimp [5].
If f(t) = Jo(t)[t, then the Fourier sine transform equals

gin"'z, O0<2z<1,
g1(z) =
/2, l<z< oo,
Using [2], vol. 2, eq. (32), p. 92, we evaluate (20) for a = —1/2 so0
that

2 - i(n—Fk)x sin(n+ k) /2
32) A== .Q,,k;; exp {—2——} (@ idec s — (g

For 8 = —1/2 eq. (32) becomes

0 for n even,.
(33) =12 2,.(G, o)m__me""”"zs&in"’—Tc for n odd.
nni ’ 2
The coefficients in the symmetric Jacobi expansion (¢ = = —1/2),

and also for the Chebyshev expansion in the case of the Fourier sine trans-
form, follow directly from (33).

Remark. It may be observed that the Hankel transforms occurring

in all expressions for A4, can be easily evaluated if we take a = —1/2,
but this does not imply that § = —1/2 also. It is only for the Chebyshev
case that we can take a = = —1/2, and that case is specially interest-
ing.
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APROKSYMACJA TRANSFORMAT CALKOWYCH PRZY POMOCY WIELOMIANGOW

STRESZCZENIE

W pracy znaleziono aproksymacje transformat Laplace’a i Fouriera g (x) pewnej
funkeji f(t) przy pomocy wielomianéw Jacobiego P(F) (z) w przedziale —1 < z < 1.
Wspélczynnika.mi 83 cafki funkeji hipergeometrycznych, przeksztalcone ostatecznie
W szeregi transformat Hankela. Podobnie zostaly potraktowane odwrotne transfor-

maty Laplace’a. Praktyczna przydatnoéé metod jest pokazana na kilku przykladach
numeryecznych.



