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A problem of Schur and its generalizations
by
H. L. Asorr (Edmonfon, Alfa.) and D. HansoN (Regina, Sask.)

§ 1. A problem of Schur, A set § of integers is said to be sum-fres
if @ beS implies a--b¢8 (¢ and b nobt necesearily distinct). .

A well known theorem of I Schur [11] states that if the integers
1;2,...,[n!e] are partitioned in any manner into clasgeg, then at-least
one of the classes is not sum-free. Accordingly, we define f(n) to be the
largest positive integer such that the integers 1,2, ..., f(n) can be parti-
tioned in some manner intc # sum-free classes.

It is easy to verify that f(1) = 1, f{2) = 4 and f(3) = 13. In 1861
L. D. Baumert [3] with the aid of a high speed computer, showed that
f{4) = 44. The value of fin) for n >4 ig not known and it appears very
difficult to determine f(n), even for n =

In {117 Schur proved that

(1.1) fla+1) = 3f(n)+1
and as a result of this '

31

(1.9) HOE

Defining g(m) to be the smallest number of sum-free clagses into which
the integers 1,2, ..., m can be partitioned, H. L. Abbott and L. Moser
[2] showed that for all positive integers p and ¢

(L.3) flpa+glpf@)) = 2f(0)+ 1) —1.

From ﬂns they deduce that for some abgolute congtant ¢ and all » suf-
ficiently large

(1.4) _ fin) > ggnis-closn,

which improves Schur’s lower bound. On the other hand Schur’s theorem
states

(1.5) ' ) < [nte]—1.
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In this paper we obtain a lower bound for f(n) which is better than
that given by {1.4). However, ingtead of studying f (n) din ectly we consider
some generalizations.

'§2. A generalization of Schur’s problem As was observed by R.
" Rado [8] the problem of Schur is a special case of & more general problem.
Consider the following equation in | unknowns o, @, ..., #;:

: 4
(2.1) : . Za,im,- =0,
: i=1 Co

where a, @y, ..., & are non-zero integers. Rado called equation (2.1)
n-fold regular 1f there exists a non-negative mteger fin), which we take
to be minimal, such that if the integers 1, 2;..., f(n}41 are partitioned
in any manner into » classes, then at least one of the classes eontaing

a solution to (2.1). BEquation (2.1) is said to be regular if it is n-fold regular
for every positive integer n.

One of the main results which Rado establishes is the following.

emterlon giving necessary and sufficient conditions for an equation to
be regular: Eguation (2.1) iz vegular if and only if some subset of the
coefficients has zero swm. Thug the equation @~ @,—a; = 0 i3 regular
and it is easy to see that the problem of Schur consists of finding hounds
for f(n) for the equation @,--#,—as. = 0. The problem of estimating
lower bounds for f(m) for a number of regular equations was considered
by H. Salié [10] and Abbobt [1].
Write (2.1) in the form

t.2-2) Z%mﬁ = 2 ;&

g=1 Feff1

WHEre ¢y, @y, ..., & are positive integers. Suppose (2.2) is regular. Hence-
~ forth we assume that

singe otherwise f(n) = 0 for all =. '

THEOREM 2.1. Let m be a positive fmteger. Let M and N be integers

satisfying

(2.3) . (A-Lflm)s M< N

and '

@4 Afmii< NS{A_'I (M+1)},
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where
[%] if @ i not an integer,
{o} = o ,
l#—1 if = i8 an integer.
Let k(M , N) be the least number of sets info which the integers 1,2,..., M
can be partitioned, no set confaining o solutton of any of the eguations

{2.5) ' : Zi:aimi = ZI' a4+ N
where = e
= —B+1, —B+2,...,4A~-1 i N< 11 M
and
= =Bl B4, ., 4-2 if - MgNg{IA—(MH)}.

Let h(m) = minh(M, N) where the mintmum is faken over all pairs M, N
salisfying (9 3) and (2.4). Then for all positive integers n

fln+a(m

where N, and M1 satisfy (2.8) zmd (2.4) and h{Ml,Nl) = h(m)

Proof. Partition the integers 1, 2, ..., M, into A(m) classes Cy, Ca, ...
-» Unemy satisfying the conditions given in defining h(m). Lep

) = Nof(n) -+ My

A =N, +e| b=0,1,...,f(n),e =1,2,..., M,}.

Partition A’ into h(m) classes Cf, Ci, ..., Cppyy by placing bN,}e in
07 if 0 C;. Partition the integers 1, 2, ..., f(n) into # classes Dy, Dy, ..., D,
none of which containg a solufion of (2.2). Let

= {bN,—0| b =1,2,...,f(n), ¢ =0,1,..., N,— My —1}.

Partition B’ into n classes Chpyers Cipmyrrs o0 Chmyen DY placing bN, —e
in class Chmys if beD;. It is easy to see that
A'NB =@

and A'UB = {1,2,..., N.f(n)+ M}

and thus we have partitioned the infegers 1,2,..., N, f{n)4-M; into
h(m)-+n classes O, €%, ..., Oppyyy and it remains only to show that
none of these clasges contains a solution to equation (2.2).

Congider fivst the classes 07, Oy, ..., Oy, If any one of these classes
contains a solutim} to equation (2.2) it is of the form

1

i
Dab o) = D) a;(b: N+ )
=1 .

{=E+1



178 H.L. Abbott and D, Hangon

(}z < M,. Hence we must have

where 0 < b; < fin) and 1<

Sag= Y o, (mod ),

! I ' ‘
But 0< a0 < AM; and 0< 3 ;6 < BY,. Therefore, if M, < ¥,
=1 :

i=Er1
< ) M, we have AM, < AN, and BM,< BYN,. Then by the '
A
detfinition of (m) we have & contradiction. On the other hand, if 11 My

A
<N, < .
again by the defin_iti.on of h{m) we have a eontradiction. Therefore none

of the eclasses Cp, 0y, ..oy Oh(m} containg a solution to equation (2.2).
- Now congider the classes Oh(m)_H, C’h(m) sty o3 Ohmrne I any one
of these classes contains a solubion to equation (2 2) it i3 of .the form

i I
Db Ny —c)
i=1

== 2 a; (b Ny—¢;)
it t]

where 1< b, < f(n) and 0 < ¢, < N, —M,—1. By construction we must

have either

or

-
F

Emle—i—Nl

i=1 i=i+1

In the first case we must have that

A T
AN, - ——1)22@1-01 Z a,c;[—Nl
i=1 fe=ii1
4
which is false if N, g’{A 1(Ml+1)}. In the second case we must
have that
N, < —l—Zc&ct\ Va“,\ < BN, —M,—1) < A(N,—M,~1)

L) i~=t+1 5
. A
which again is false if ng‘{?ffml_(Ml +1)}. Therefore none of the
classes Chpgins Ohampras s Chpmyn CODbAINS a solution to equation (2.2)
and the proof of the theorem is complete,

1(M1+1)} then AM, < (A--1)N, and BM <BN and -
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Consider the regular equation
(2.6) 2, + 2y == 2y,

Salié [10] proved that for equation (2.6) f(n) =
improved this result to

(2.7) f(ﬂr) - 40714’5‘4:10511.

> 2% _1 and Abbott [1]

for some constant ¢ and » sufficiently large. Applying Theorem 2.1 to
equation (2.6) with m =2, M, = 9 and ¥, = 12 we have that h(.‘Z.) = 3
a8 may be seen by the followmg partitioning of the integers 1, 2,...,9:

0, =11,6,7}, 02:{2;578}: 3={3a4:9}-
Therefore Theorem 2.1 implies that for equation (2.6)
(2.8) flrn+3) = 12f(n)+9
and chbnsequently
(2.9) flw) > gi2m?

for some constant ¢ which improves (2.7) considerably.

Salié [10] also proved that f(n) = 2"—1 for the regular equation
@, 4@+, =2, and Abbott [1] improved this to f(n) > 10™*—clos”
for some constant ¢ and n sufficiently large. Theorem 2.1 may be used
to improve this result to

f(n) > ¢10™*
for some constant e.

Clearly estimates for f{n) for many regular equatmns can be found
in fthis manner. However the difficulty in determining h{m) may be as
difficult in general as determining f{n) itself. :

Let fi.(n} be defined as follows: fi(n) is the largest posﬂzwe integer
such that the integers 1,2,...,fy(#) can be partitioned into » classes,

no clags containing a solution to the following system, (8), of (k;l)

equations in (2) unknowns:

+ Jii+1

We will eall such classes (S)-free. It iz easy to see that fy(n) = f(n), where
f(n} is the Schur function for sum free sets. That fi(n) exists for k>3
follows from the results of B. Rado [8]. Now define g,(m) as follows:
If fo(n—1) < m < fr(n), then g(m) = n; Le. g(m) is the smallest number
ot (S)-free classes into which the integers 1,2, ..., m can be partitioned.
E. B. Williams [13] has shown for all positive integers p and ¢ that

(2.10) fulp Q+9L(Pfk D)) 2 (2flg) +17 —

=Ty L1<I<i<h-L.
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This was proven analogously to the work of Abbott and Moser and re-
duces, in the case k& = 3, to their result (1.3).

The following theoremn may be deduced by arguments similar $o
those used to prove Theorem 2.1, We omit the details.

THEOREM 2.2. For all positive integers m and m -

Feln+m) = (2fi(m) +1) f (1) + fr{m)

CororLARY 2.1. For all positive infegers m and n.

Fln+m) = (2f(m) +1) f(n) -I—f( )

Proof. Le‘o I =3 in Theorem 2.2

COROLLARY 2.2. For n >4, and fw some absolute constant ¢,

f(n) = 089",

Proof. By Corollary 2.1 we have f(n+4
- implies the result with ¢ = 44/89.
It is clear that the lower bound for f(n) gwen by Gorollary 2.2 is
better than that given by (1.4).
COROLLARY 2.3. For o >
on k

1 and for some comtamf 0y dependent only

Foln) 3 e (2k—3)".

Prooi. Since f,(1) = k—2, the result follows from Theorem 2.2
with ¢, = (k- 2)/(2k—3). ‘

§ 3. Some applications to Ramsey’s Theorem. In 1930, . P. Ramgey
" [9] published a combmatoual theorem which may be formulated ag
follows:

RavseY's THEOREM. Let n, k and v be positive mzegea-'s with &k =7
Then there exisis o least positive integer R, (k) r) such that of 8 = R, (%, #),
8 is o set of s elements, and the collection of subsets of 8 with v elements is
partitioned in an arbitrary manner into n classes, then there is some subset K
of 8 with k elements such that the subsets of K with » elemems wll belony
to the same class. :

In this section we shall be eoncerned only with the case r = 2.
We may then reformulate Ramsey’s Theorem in this speeml case as
follows:

If Gis a completﬁ graph on R = R, (%, 2) vertices and if each edge
of &1is colored in any ome of n colors, then there results a complete subgraph
of & on & wertices, all of whose edges have the same color, i.e. o complele
monochromatic k-gon, :

) > 89f(n)+44, and this
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Many studies have been done on R,(k,2) but the problem of eval-
nating this function appears- very difficult even for small values of n
and % Erdés [4] and Abboté [1] have shown that

(3.1) C Rylk, 2) > ok

for some constant ¢, The argument used by Erdés to prove (3.1) ean
be used to prove

(3.2). (an:. 2)) S b,

This gives a lower bound of appwxunately %n*?, On the other hand
R. B. Greenwood and A. M. Gleason [6] have shown

{(nk—n)!
((e—1)1)"

and in the particular ease & = 3 that -
< [nle]-Fi.

Bk, 2) <

In this secﬁon we shall be concerned with estimating a lower bound
for R,(k,2) for some small values of k. In this direction the best pre-
vious results are those of Guy R. Girand [3]. Giraund has shown for
n=2

.33 n—2 3
Rn(4? 2) 2’ 9 5 + "2_
and
73 . 3
Rn(5,2);'—?7n 2—1'—‘5‘.

Here we ghall improve these results. .

Let f(n) and the system (S) be defined as in Sectmn 2. Partition
the integers 1,2, ..., fi(#) into = (8)-free classes O}, 0y, ..., C,. Let &
be a graph with vertwes Py Pry ooy Py Color the edge (P.H P ) color ¢,
it ji—jleC,. Suppose that P, 12,...,15‘%, where 4, > 4, > .. >y,
are the vertices of a monoehromatlc k-gon of color ¢,. Then iy —tge 0}
for 1 <t s k. Bub then

(2 — i) + (15 _"':s+1) = (i— is-{—l)’ 1<ti<sch-1
is a solution o the gystem (3) in C,, a contradiction. Therefore we have
(3.4) B, (%, 2) > frln)+2.

I}qua’mon (3.4) together with the result of Greenwood and Gleason (3 3)
imply Schur’s resnlt (1.5).
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THEOREM 3.1. For n2=1, k2= 2 and for some consiant ¢, dependent
only on k ‘

R,(k, 2) > ¢,(2k—3)".

Proof. This is an immediate consequence of equation (3.4) and
~ Corollary 2.3.

Theorem 3.1 a8 opposed to the inequalities (3.1) and (3.2) is effective
when % is small and » is large. The theorem could perhaps bé improved
substantially if some new estimates for fi(n) could be found for » > 1.
Although one might conjecture that f,(n) grows like R, (k, 2) we cannot
obtain any useful estimates of even fk(z) However in certain specnl
cases we can improve the lower bound given by Theorem 3.1.

THEOREM 3.2. For n = 4 and for some constﬂmt ¢

R,(3,2) > e89™4,

Proof, This is an immediate consequence of (3.4) and Corollary 2.2.
TowoREM 3.3. For n = 2 and some constant ¢

R,(4,2) = ¢332,
Proof. Partition the integers 1,2,...,16 info the following sets:
¢, =1{1,2,4,8,9,13, 15, 16},
0,=4{3,5,6,7,10,11,12, 14},

where ¢, consists of the quadratic regidues of 17 and €, the non residues. -

From this partitioning it follows that f,(2) > 16, since it is a routine
matter to verify that ¢, and €, are (3)-free. The result now follows
from (3.4) and Theorem 2.1.

In a2 similar manner it ean be shown that f(2) =37 and conse-
quently R, (5, 2) > 78" for some constant c. However in [l] Abbott
hag shown for integers o and 5> 2 .

(8.5) R, (ab—~a—b+2,2) > (B, (a,2)~1) (Rn(b,ﬁ)—l) +1.

Taking ¢ =b = 3 in (3.5) we have
R,(B,2) = (Ru(3, 2)=

and in view of Theorem 3.2 we have

TororEM 3.4. For n >

y=1p+1

=2 and some conslant ¢
R,(B,2) > c80™2

§ 4. A preblem of Turdn. Schur’s theorem can be generalized in
other directions. One such generalization is the following question raised
by P. Turdn [12]: Tf # and m are positive integers, denote by f(m,n)
the largest possible integer such that the integers m,m-+1, ..., m-+
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+flm, n} can be pa,rmtmned into # sum-free sets. What can be said
about f(m, n)?

It is clear that
fl,n) =fln)—

and since the integers m,2m,..., m{f(n)-1) cannot Dbe partitioned
into n sum-free sets, that

(4.1) Fflm, n) <
Using (1.5) we have

Slm,n) <
Turin considered the function f{m, 2) and proved that f(m, 2) = 4m 1.

H. L. Abbott [1] observed that in fact we have equality in equation
(4.1) for m = 1,2, 3 and that '

flm, n+1)

mf(n)—1.

mnle]—m—1.

= Sf(m, n)+m+2
and consequently

m3"—m — 2
*.2) Fom, w) 2 =
§. Znam has also studied the function f{m, ), [14], but does not obtain
any improvements on the results of Abbott. In [1] Abbott asks whether
there exists a congtant ¢ > 3 sueh that

flm,n} > me®

for all m and all # sufficiently large? We can now answer this question
in the affirmative.

First we prove the following:

THEOREM 4.1. For any posilive infeger n, define ¢(n) to be the largest
positive integer such that the infegers 1,2, ..., g{n) may be partitioned into
n classes, none of which conloin o solution of either of the equations

By By = Xy,

{4.3)
&+t w1 = ;.
We will eall such classes strongly sum-free. Then for any positive inleger m
 gin+m) = 2f(m)g(n) +f(m) +g(n)

where f(m) is the Schur function for the equation m -+ @, = .
Proof. Given a partitioning of 1, 2,..., f(m) into m sum-free classes
Ay, Agy ..oy 4y, partition the integers 1,2, ...,2f(m)-+1 into m--1
classes By, B,y ...; By, as follows: .
B’i == {2a| aEAi},

Bm+1 = {15 3: 5:

i=1,2,...,m,
+ees 2f () 13
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The classes B,, for ¢ =1,2,...,m are strongly sum-free and By, i
sum-free.

Partition the integers 1,2, ..., g(n) into = strongly gum-free classes
(1, Oay ...y Cp. Construct m+n classes Dy j=1,2,...,m+n, ag fol-
lows: For j = 1,2, ..., m

D; = {2a—1)g(n)+a-+b| 2aeB;, b=10,1,..., g(n)}
and for j =1,2,...,n
Dy = {2ag(n)+a-+b] Za,+1eBm+1,b'eC’j}. ‘
Then the classes Dy, Dy, ..oy Dyyyp contain the_integers

1L,2,..., 2f (m) g (n)+ f(m) +g(n)
and it remains to be shown that they are strongly sum-free.

Suppose that for some j, 1<Cj<m, Dy is not strongly sum-free.
Then either : ‘

(4.4)  (2a,-1)g(n)+ay+ bi+ (26, —1)g (n) +ay+be
= (203 —~1)g(n) + tg+ba
or ]
(4.5)  {(2a;—1)g(n)+a+b,+(2a, —~1)g(n)+a,+ by “i*l_
— (20, 1) g () + @3+ bs

where in each 0a8e dy, Gy, dged; and 0 << by, by, by << f(n). Now (4.4)
inplies ' '

(4.6) (20 (n) +1) (81 + o — s) = g0} +b2—b1—bs.

Since 4; is sum-free, a+a,—ay # 0. Therefore the left side of (4.6)
ig at least 2g(n)-+1 in absclufe value, while the right side is at most
2g(n). Hence (4.4) cannot hold. A gimilar - argument shows that (4.5)
cannot hold and thus D; is strongly sum-free for j =1,2,..., m.

Now suppose some clags Dy, 1 << n, 18 not gtrongly sum-free.
Then either '

(4.7 2amg®)+o+ b.1+2m29(%)+a's+bz = 20,9 (n) + g+ by

or ‘ : .

(4.8) 2“13(”)+“‘1+b1+2“29(”)+@2 H byl = 2%9-(%)”1"“3'{'2’37 R
where in each case 2a,-1, 2ay+1, 205 +1eBy, ., and by, by, byeCy Now
(4.7} implies . - - —

(4.9) : (29(n)+1)(a;+ a3 — @5) = by— Dby —Dy.

But, since by, by, byel;, {4.9) implies @y - @y — g =0 and thus by +by = by
which contradicts the definition’of g(n). A similar argument shows that
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(4.8) cannot hold. Hence D, . is strongly sum-free for j§ =1,2,...,n
and the theorem is proved. '

TouworeM 4.2. For any positive integers m and =
Slm, ) z= mg (n) —1..

Proof. Partition the integers 1, 2,..., g(n) into » strongly sum-free
classes Oy, Cy, ..., (,. Now partition the infegers m,m--1, ..., mg(n)+
+m~1 into # classes C;, C, ..., O, by placing am—+5 in O; whenever
aell;, where ¢ =1,2,...,g{n) and b =0,1,..., m—1,

Suppose for some j,1<j<n,0; i3 not sum-free. Then we must
have

(£.10) - aymEbhitamt b, = a;m+b,
where @y, @y, ageC; and 0<Chy, by, by < m—1. Bquation (4.10) implies
(4.11) . (@t Gy — ag) = by—b,—by.
But, since ¢ is strongly sum-free, the left hand side of (4.11) is either

at least m or at most —2m. It now follows since 0 < by, by, by <M —1
that C} is sum-free and the theorem is proved.

‘Wé niay now obtain a much stronger result than that given by
{4.2).

‘CorerrAry 4.1. For any positive integer m and
' flm, n) zmBf(n—1)+1)—1.
Proof. Let # =1 and m = #—1 in Theorem 4.1 and we have
g(n) = 3f(n—1)+1
and the result now follows from Theorem 4.2.
COoROLLARY 4.2. For any positive integers m and »
flm, n) > em89™*
for. some -absolute constant c.

Proof. Thiz is an immediate congeqnence of Corollary 4.1 and
Corollary 2.2.

§ 5. Some related questions. An analogous problerm to that of sum-free
setis is that of produet free sefs, i.e., what is the largest positive integer
I{»n) such that the integers 2, 8, ..., I{n) can be partitioned into » classes,
no class containing a solution to the equation @y, =~ @,% It is easy to see

, that

31

(5.1) 2% il <2y

where f(n) is the Schur function for sum-free sets.-
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If we partition the integers 2, 2%, ..., 2" info # classes 0y, C), ..., O,
where g{n) iy the function defmed in Theorem 4.1, and place 244 in
clags O, whenever 2%¢C, and j = 0,1,...,2%—1, then it is easy to see
that

TErEOREM 5.1. For any positive integer n
' QU ] o U(m) <5 FTIE 1.
COROLLARY B.1. For any positive integer n
I(n) = 2¥a-D+ 7,

These results clearly are substantial improvements of (5.1).

We now consider an analogous problem in et theory: Given a positive
integer n, what is the minimum number, k(»), such that the 2" subsets
of a set § of » elements can be partitioned into k(n) union-free classes?
That iy, no class containg a solution to A v B = 0, 4, B and ( digtinet.

Congider the following partitioning of the integers 1,2,

¢, =11,3,7,...}, ‘ .
¢, ={2(i-1), 4@ —-1)+1,8(-1) Yy i =2,3,..., m/2]+1.

If we now place all the subsets of § of order & in a clags ¢} whenever ke0,
it is easy to see that

(5.2) B(n) < [%] 1.

On the other hand, D. Kleitman [7] hag shown, for some constant ¢,

, an
that no union-free clags can contain more than ¢-—= subsets of 8.

Vn
The_refore it follows thaf

(5.3) E(n) > cVn

for some constant c.

At the present time we hzwe not been able to improve either of
these results even thongh one might expect ki{n) to be cloger to (B. 2)
than to (5.3).

One can algo raise similar questions about sum-free sets in Abelian
groups. Let & be an Abelian group of order # and denote by f(@) the
least number of smm-free sets into which @ —{¢} can be partitioned and

. denote by f(n) the maximum of f{G) where the maximum is taken over
all Abelian groups of order n. Then the original Schur argument can be
modified to give ' :
clogn

Jlm) > loglogn

for some constant ¢ and all sufficiently large «.
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We can prove that
fln) < elogn

for some constant ¢, and all sufficiently large n. We have not been able
to sharpen the bounds given above. Inm fact we cannot even evaluate
f(&) for Abelian groups of “small” order,
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