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On a theorem of Ramachandra
by
T. N. Smormv* {Colaba, Bombay)

§1. Let S(H) denote the set of all triplets of rational numbers
oy, tg, fy Sabisfying (i) a; > 0, a3 > 0 are multiplicatively independent,
(ii} the heights of a;, a,, 4 respeetwely do not exceed H, H and (log H)100,
The objeet of this paper is to prove '

TuroreEM 1. Tef H = e¢°. Then the m@mmum of fﬂllogal—logagl as
€y, az,ﬁl U thmugh S{H) exceed

(1) 7 exp(— C(log H)*(loglog H)?)
where O is an_absolute constant.

This is an 1mprovement of a similar theorem proved recently by
K. Ramachandra [5] where one has C/(e) exp| w(logH)‘”) where ¢ > 0 and
C(e) depends only on &

§ 2. Since it iy convement to use the 110131011 of size in the proof, we
give the definition of size of an algebraic number. Thé size of an algebraic

number « is |of +d(a) where [o| denotes the maximum of the absolute
values of the conjugates of « and d{q) is the least natural number for
which ad{a) is an algebraic integer. _

The height H{z) and the size S(a) of an algebraic number « of degree
not exceeding % are related by the inequalities: :

8(a) < Zh(H(a)} Ha) < 2"(8 ()

(see [6], page 76}; it is immaterial whether we state the theorem in terms
of size or height.

Our notation is the same as that of Ramaehandm & paper [5] except
when specified explicitly. In § 5 however we follow a different notation
and in partienlar %k should not be confused with Lhe I whieh oceury in
[5]. 8, will stand for a number >ef.

* I am thankful to Professor K. Ramachandra for suggesting me the problem
and for the supervision of my work. My thanks are due to Professor K. (. Ramanathan
for encouragement and for helping me in preparing the” manuscript.
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Without loss of generality, we agsume that 8, is large enough. Denote
by B a large positive constant.
Wo seb

h = [B"loglog,], & = [$B**(og8,F (loglog81)],

| L = [2B**(log 8,) (loglog 81)].
Further define
by == 1041 %,.

= [k1/2]-
Let (ay, as, 1) De an arbitrary triple of rational numbers satisfying

(i} oy > 0, @y > 0 are multiplicatively independent, (i) the gize of oy, a5, By
respectively denote exceed S, Sy and (log8,)*®. Define

hy =h,
ky =k,

£ = iB.loga,—loga,|.

§ 3. We shall require the following lemmas.

Lumma 1. Let m,s and t be positive infegers and set r = st. Le,
Aoy Gyyeney Oy OBE Boy Bry.eny Bey be m and s distinet complex nuwmberst
respectively, and lef

a = max(|q|, 1),
Hsrsm

b = max (|8, 1),
I<o<s

by = min{|f,—f,, 1)-

Ay = min Ua/.&_ CC,,I, 1)5

Oy I=o<s
O it b=<g<s
uFEY g0

DPut for arbitrary complex numbers A,

Elz) = mz_:l 4,69

y=0
and
B = max |E9(3,).

Ossp<t
Dgo-_{s

4 = max |4,],

L0y

Asswme that
7 3= 2m -+ 13ab.

Agsvm—:evab( L )’”( 72”_)'1;.
. 2a0b bo]/S

Then

Thig ig due to Tijdeman [9].
TEmya 2. IP = 2h(k-+1).
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This is inequality 3 in [4] with n = f=d = 1. :
Proof. The lemma follows directly from the definition of %.and L.

Lemma 3. Lel § << exp(—{hikloghy). Then the following inequality
holds

—1 p—
oihuky > 0113L11,2+4k]0g(SL)(10g O~ iak(log logS o0y L {1 + ﬁ exp( JE By kll og hz))

where €, = 82 and 8 = (log8,)"™.

This is an inequaliby immediately before inequality numbered: (7)
in I8}
Proof. We must satisty

o¥kr 5 988 (ST (log 8, ),

i.e.,
3Rk, log2 > log2 + 26 Lhylog S, + 4klog 8 + £klog L+ 8kloglog 8, .
As $log2 > % and L may be assumed large enough, it i3 enough to have
Jiuky > 104 Lhylog 8, -+16%1og -1 17klog T+ 32kloglog S,
As 8 = (log 8", it is sufficient to get

(2) ik, > 104Lh,log S, +1632kloglog 8, +17klog L.

17klog L <

“‘|-.1

17 (loglog 8,) (log 8,)*- 2B (loglog §,)
= 5 B*(log 8,)* (loglog 8, )%,
1632kloglog 8, < 40882 (log 8,)? (loglog 8, ),

104Lh,log 8; < 2-104-1041 - B (log 8,)* (loglog §;)*

and
hyley > 55 BY (log ;)% (loglog 8, Y.

Agr 8/3 > 5/2, choose B Im'ge enongh go that (2) is sabisfied and Lemma; 3
is proved.

§ 4. Proof of Theorem 1. Assume that
(3) B < exp(— thykyloghs).

Follow Ramachandra’s paper [5] to conclude the following from Lemma 2
and Lemma 3

ZZ‘M,A aitaldty

1<I<hy, 0Sm<hy.
F ey ppat .
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Hence

|9 (1) < f(288,)°5 (201)% (31og 81),
(See [5], inequality (3).)

Observe. the following:

1) If 2], 4, are rational integers, not both zero, and in absolute value
= L, then

Ll 0Sm<gk,.

[l;logal-i—,l;log ) > 3874F
“and .
(1 + 2ep)logay| = {21+ 250 og e, — (A log a, + Alog )+
+(loga; + Alogay)|
= |Aloges +Alogay| — If = § 87— L.
Assume that

' 1 gz
(4) 3 B < ESI .
We have .
(+Ap)loga, 0.
In particular, (4,4 4:f831logay, 0 <Ay, A, <L arve dishinet for distinet
tuples (45, 4s). : ‘

Further notice that

Fl f 1
{5) {4+ A8 logay| > @‘
1
where « i3 an absclute constant.
2y For 6, <L
(6) A+ AsB1)logay| = [(A + a8 1og e, — (4, log a; - Z;log ¢g) +-
“]‘ (Allﬂg aq + Azlog CEE) |

< LB+ log ay + Aslog a,y| < 3L1og S, .
In Lemma 1, seb

L &
B(@) = ) = 3 39, M)exp((la+2afr)logay ).

st g
Arrange
(h+hp)loga, 0<2, <L 88 ay ay, ... Yryrpors M = (L1
Arrange '
. 12,0000 ke a8 Boy fryeey Bors 8 = .
Bet

t=ky+1, r =8t = B (kg 1),

icm
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In the notation of Lemma 1, we have

a<<3Llogh; (see (6)), & = h,.
8> % (see (5)), B, =1.
h
A= max |p(iy, ) >1.
0Adp <L

B < B(288,)" 2 (281)% (31og 8,)**.
Further we show that the inequality

¥ 2= 2m +-13ad
is satisfied.
It is sufficient to show that

Fo(ke+1) > 4121 30Lh,log 8,

ie.,
_ hok = 1204+ 1170hylog 8, .
Now . '
ok > 3L B (log 8)) (loglog 8, )2,
1217 < 48 B* (log §,)* (loglog 8, )
and '

117Lhslog 8, < 2-117-1041- B (log 8, ) (loglog 8, 2.
So it iy sufficient to prove that |
) ;g%ngia (log 8,)* (loglog SI)2

> 488 (log 8,))* (loglog 8-+ 2117 -1041-B¥ {log 8, (loglog 8,)*.

Since 1041/16 > 49 and 8/3 > 5/2, (7) is satisfied if B is large enough.
Hence by Lemma 1, we get

1< A<hy (4 LY (exp (21 1k, log S} T2Ry) ek §1UI% g (03 g YLk, (28L)(31log 8, ).
Notice that

ho{ ALY (exp(21 Tk, log S)(720, 254288, H12( 28 L)% (3 1og 8, ) < exp((log 8, )?)
and :
SRE o exp (4uL’log 8} < exp (16uB** (log 8,) (loglog 81)%).
Asgguime that

B < exp(—18uB** (log §,) (loglog 8, ).

8 — Acta Arithmeatica %32
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Notice that (3) and (4) are satisfied. Further 1 <{ 4 <1, which is not
posgible. Hengce

f > exp{— 0 (log 8,)* (loglog 8, )%

where (f is a large positive congtant. This completes the proof of Theorem 1.
Remarlks. {i) It iz eagy to gee that if either a; or @, has deno-
minator < (log 8%, 4, any positive constant, then

f > exp (—Cy(log 81)° (loglog 8, )

where (J, is an absolute constant. |
(ii) The eonstant 100 in Theorem 1 can be replaced by any positive
constant.

§ 5. Relation to the problem of Erdis. Let % 3> 2 be a natural number
and let ny, s, ... the sequence of all natural numbers in increasing order
which have at least one prime factor exceeding %. Then it is easy to see
that #;,,—#; does not exceed 2k. The problem of Erdds consists in im-

proving this npper bound. Erdés [3] gave the bound {3+ o (1)) oz

and Bamachandra [7] improved it to (1—'[-0(1))@.—. In this direction,
Ra,machandm {5] pfoved some partial results in the direction of the

estimate ——— 21 Togh (1--0(1)). Combining these results of K. Ramachandra

with an ingenious lemma of his own, R. Tijdeman [10] proved the fol-
lowing:
THREOREM 2.
' k
MAX (., — ) < Tiogk (14 o(l)) ;
where the mamimum i3 taken over all n,.

. It may be stated that Ramachandra's argument shows that our
Theorem 1 implies

THROREM 3.

(1-+o(1))

MAX (.1 — 1) & gk

where the mazimum is. taken over all m; > exp(C(logk)*(loglogk)?) where
(., is some positive constant.

We mention a result, due esaentla]ly to Ramachandra, in thiy di-
rection.

@
Im“ On o theorem of Ramachandra 291

THEOREM 4,

k 1 1
3logk ( ol })

where the mavimum is taken over all n; > exp((logh)®*? where & >0 is
an arbitrary fized positive constond.

Ramachandra’s arguments in [5] shows that Theorem 4 follows
ifrom the following

TuROREM 5. Let ay, as, dq, By, By be rational numbers satisfying (i)
>0, ay>0, a; >0 are maultiplicatively independent, (ii) the size of
O3y Uay Oy, Pyy Ba respectively do not exceed 8, 8, 8, (log 8" and (log 8,
Then

(8) |B:log o, + f,log a,—log 5| > D (e)exp(— (log 8,)°*")
where ¢ >0 and Die) depends ondy on e.

The proof of Theorem 5 runs exactly like that of Theorem 5 of [3],
except for obvious changes.

MEX (M, — ) <

Addedin proof. It has reeently been proved by the anthor that, given 2> 0, one
can have on the right hand sides of (1) and (8) the expressions F (¢) exp (— (log 81)2+%)
and E (g) exp (— (log 9;)8+¢) respectively, where B (s) is an effcetively computable po-
sitive constant depending only on e In Theorem 4, the maximum can be taken over
all n; such that n; > exp ((logk)?+s).
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