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ACTA ARITHMETICA
XX (1972)

On the probability that » and f(»n)
are relatively prime III

by
R. R. Hsin (York)

Tt is known that if » and m are randomly chosen integers then the
probability that n is prime to m is 6/=2 In the preceding papers [1], [2]
of this series I considered the fellowing problem. Let g(p) be an integer
valued function defined on the set of primes p, and

f) = Yalp), T@)= D} 1L

BN nsy
(. fin))=1

I it true that T'(w) Nﬁm]ﬂ:” In [1], I studied the case g(p) = p; this
particular problem was suggested to me by Professor Erdds. It was shown
that

6 i
= —— . .
Tiw) =g o 0 ((logloglogm)”"'(loglogloglogw)”“)
In {2] I called g a* pseudo-polynomia,l'if for all » and k,'
g(n+Ek) = g(n) (modk)

and proved that if ¢ satisBed some fairly natural conditions then
T(z) ~ 6o/= Olea‘rly a polynomial with integer coefficients is a pseudo-
polynomial, and to justify the definition I constructed a pseudo- -polynomial
which iz not a polynomial at all.

We are now able to give much more precise information about the
problem raised by Professor Erdds and treated in [1]. We have the fol-
lowing

~ TarorsM. Let T(x) denole the numbe& of inlegers w < @ prime lo the
sum of their distinet prime faclovs. Then

Atk o [(logyw) (10g4w)))
) +o(10g$ex( (log:2)

T(0) = — o0+

752
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where the sum extends over squarefree L and the series

o
2 -Alc
=2

is absolutely comvergent; in foct we will show that for any positive e,
o = O(E3T,

As usual, log,w denotes the iterated logarithm: log,# = loglogw ete.
In view of the error term we may, if we wigh, regard the sum as being
over just those & for which u(%k)> 0.

The maximum valne of p(k)fp(k) is 1/2, attained when &k = 6. At '

the end of the preof we give a formoula for A4, which is not very helpful
in the general case, but does enable us to show that

Ag = 0.
We thervefore have :
COROLLARY 1.
6 Az
T(m) — —5 @~ e
™ Ylegs

COROLLARY 2. There exisis an ©y such that for @ = ®,,
6
T{w) > — @,
T

I do not yet know to.what extent these resulfs generalize to the
case where ¢ is a polynomial, still legs a psendo-polynomial. One difficulty
s to find a sufficiently good estimate for the sum §; below. If 2  general
formula held, the correspondincr gum, over b world be

[=~]

Z Z Ang(iogfrfawnlw)

=2
@ Fc)—

where

TDUG, i

Z gimotmdlt

A=1
(B, k=1
This is not in general invariant over j as in the special cage g(h)=
considered in the present paper, and the double sum over % and § in the
final formula is inevitably less striking. To derive the corresponding
corollaries would involve calculating ‘

(=2, ju

Mgy = sg}aaf?(——’—jl-— W =1, G, %) =1).

tp(k)
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Note that R, (%, ) < (k) in every case, for one of the condifions
imposged on ¢ in Hall [2] was that for every squarefree [, there is at least
one a prime to % for which k{g(a). A result of Hua [4] implies that for
polynomial ¢, '

max s, (5, )| = ofp ()

so that A{g) is attained, and is strictly less than 1. T imagine that for
the polynomialy ¢ satisfying some natural conditions including the one
above, there exist congtants A(g), A(g) such that

B @
T(z) —";,;93 ~ A{g) (Tog )@ '

‘We now give the proof of our main regult.

Notation. €y, 0y, ... will denote positive absolute constants, in-
dependent of all parameters unless written in the form C;{e). when there
is dependence on ¢ They are understood to he large enough, or in some
cages small enough_- to ensure the validity of every formula in which they
OCGUT.

Proof of the Theorem. We have

T@) =3 D wa)= Ddue Y1

A<y gi(nf(n)} . gsT m<afg
] alfma) .
- Suw Y 1+0 3 S i-seos
e Mg ) vy mewig
fa(ml=—7(g)mod g} gif(mg)

say, where —1 <= We introduce the

<1, and f,(m) = fimg)—F(g).

_ funetion f,(m) as it has the advantage over f(mg) of being additive. We

investigate S, firss.

Treatment of §,, We require the following lemmas.
" Lemma 1. For g < Va and ofl a,

' L logg
3 lutm) golw(;@ o).

mee
fim}=a({mod g)

This is Lemma 1 of Hall [1]. I wag stated there for a prime modulﬁs
but as the proof did not depend on this we may replace it by the general
modulus g.

Lenvwa 2, For ¢ < 9z and 0 < a < dg, 6 fized < i, we have that

wlogp

ela)

3 jum)] < 0y(9)

M
F{m) = — p{mod g)
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Proof. Bxeept in the case m =1, the relation f(m) = —a(mod q)

iniph'es flm) = (1 — 8)g, for fm) 18 positive. The number of prime factors
of m does not exceed
) Galogm
lofflogm
and so m i divisible by a prime & > (1— 8)¢i™". Hence if m = 2 and
f(m) = —a(modg), m has a divisor d = m/d satisiying
al
d<H = — d) = v(m)—1.
Therefore ‘
> emi<it X lwtmi Y od<id 3N YL
mET M A, A d i dmld
F(m)=-—afmodg) fim)=-n(modg) w{d)=n(in) —1 G a—i(rl) (mod g}

Note that we have dropped. the conditions &4d, |u{d)} = 1.

We cannot apply the Brun-Titchmarsh estimate directly to the
inner sum, since the necessary condition g < #/d might not hold. But
provided 21 = 1, a8 we may suppose, the inner sum does not exceed

2w
& (1—8)d ) 4

and therefore

Iz

(1 &) do{g)log {2l /(1 — &) dg}

~a-fi) <

ety €14 -
P UG 2, Do @
f(m) = —a(mod g)
lwloglog H mlogm
SEoapw <50

This completes the proof. The condition ¢ < dg seems rather unna-
tural, nevertheless it is satisfied in the application with é = 5/6.

We now deduce from Lemmas L and 2 esfimates for similar sums over
all m rather than squarefree m; this was done in the previous papers by
different methods, and we adopt that of HFall [2]. We have the following
extension of Lemma 3 of that paper:

Lemuma 3, Lel @ (%, m) denote the number of integers n =
free Ternel is m, that is, for which

[Ie =m.

pA

- fwhose sguare-

Then for non-negative r,

D @, my

mEx

< wexpexp{C.rlog(r+1)}.
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The method of proof is the same as before, and is due to Erdés.

We have
Z{Q(mm}mZk” 2 1<yw 31

mEx msx k=1 e
Q(z,m}=k QO miz=k

The inner sum does not exceed

@
FEr Nl
oA Rgmge
Q(z,m)=k
). If the squarefree kernel of
n is m, and m 2= ¢/k"**, then n/m is a product of primes dividing m and
not exceeding %""*. If the number of such primes is & @(x, m) is the
number of solutions of :

alogp, +aslogps +. . Fadogp, <log(mfm), 0< ez,

‘which does not exceed the number of solutions of

(r+2)logh

ay T g ... Tog 2
=

T+ g =

‘We proved in [2] that this does not exceed
1 2)ogk\® -2)1 §
_(H (r+2)log ) g{e 1y (ro2)togk 1®
&! log2 slog2
It Q{z, m) = & this implies that
' Jdogk
” log(r+2)
Now the number of m’s not exceeding # with at least s prime factors not
exceedmg B dm

D)

.’;l_r-‘-ﬁ

@ 14
]g—( > w) ss—gi(lﬂg(v"+2)+loglogk+Us)”

s!
DiPs-- e ¥y

< m(ﬂ{log(” +2)+loglogk - O} )S'
8

This is a decreasing function of s if
s =z log(r+2)+loglogk + O
and this is true of the s above if k= &,(r). Hence for these %,

Y 1<o (6{100‘ 7+ 2) +loglogk +Cs}log (r -2)|Caloekiee 2
o Cogk :

a/krHimsy
Qmm)z=k
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This does not exceed /" if
Ciloghk = (e {log (r + 2} -+ loglogk -+ Og}log (r +2))exp
_ That is, if

(r+2)log{r +2)
, )

> expexp (0, (r - 2Hog (r+2)) = ky(r)

say. (Clearly & (r) 2 By (7).)

In any event the number of m's for which @ (z, m) = & does not exceed,

z and so
Z {5, m)} < w Z 420 2 k? < wexpexp {Chrlog(r 1)},
MET ke<hy (r) kezhy ()

This is the résult stated. We apply it as follows. We have

3 - 3

m<x
f(m)=—aimod )

o 3

M
fen)=—a(modq)

| () 1€ (@, m)
n<m
J(my=—a(modq)

()l 3 Q @, myy)”

THERT

for v > 1, by Holder's inequality. So for ¢ < 9 and 0 < a < d¢,

& 120 (001 oxposp (0o 1)

- s (U r—— BXPex rlog (¥

7%: . 2 v(2) pexp Lo rlog
fn)=—a{mod q) |

and for ¢ < Va and all a,

1 n ( logg
Py \logw

1—1/# ' :
1 <m( ) )exp exp{0,rlog(r+1)}.

nsy
f(n)=—amodg)

These estimates give about the same information When q is apypro-
ximately equal to
_ logx
~ logloga

We are now in a position to estimate the sum

S S

W<YFL MLy
Ql#(mag)

We_spliﬁ this into the three parts .
8= D ',

0<gs@ mnlg
glf(ma)

=2 M

Mg
Qg air ( Pl
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and
8 = V
S= 2 L
Wr<yss mfﬁg
Since f(mg) = f(m)+ 3  p, the function f{mg)—f(m) takes at
vig.pim

most 2@ different values, the sums of subsets of the prime factors of g.
Let these fall into the residue classes a,, @, ..., a, (modg), where
ho=hig)< 7(q). I g is prime, f(mg) ~—F(m) = 0 (mod ) whether qim or
not. If ¢ has two or more distinet prime factors, one of them, say @, does
not exceed VE and so

. - 5
B+ qld<2+ SEQ-

be 1

0< 4 <flg) <

Thus for all square free ¢ and all @y 1 < i< h_(q), we have 0 < a; < 5g/6.

Next,
. 3
2 1< 2 b
melg =1
ulfima} f(m)z—aj(modq)
Therefore .
: r(q){ 1 (logq)‘”"
& _ ex rlog(r+1
B 2 e H atet) | SRR Oostr )

w<g<Q

log2w  (log@yP~¥r
£
<m( wlw-lir 1 (logw)i—ljr

) expexp {0,rlogl{r+1)}

by partial summation. We may apply the estimate (1) above to &, with
d = 5/6, noting that ¢ < W gives g < 9z/g. We Obtain

s<2

Q<a<iV

1-1r '
< w(@ﬁf)@gﬁgﬁl) expexp {C;rlog(r +1)}..

Substituting the value of § we have that

1 1—-1jr .
*{a) ( ogm) expexp {C.rlog(r+11}

0y

(loglogay '
(logz)* ="

log2w

. SE+S4 <m(w1_1/1. +

) expexp{(,rlog(r +1)}.

Note that f{m) < m for all m, for the swm of numbers not less than
2 doeg not exceed their product. We know that if ¢ has two or more prime
factors then f(g) < 5¢/6. .
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. 1 -~
To deal with 8; we observe then that if »(g) == 2 and m < a/¢ < 3 Va
< ¢/9, we have

. : 5 15 17
J‘(WZ)<f(771)+f(£l)~<\m+39<(“ +§)Q<‘1—8*€Z-

9

Therefore g cannot divide f(mq) (which is not zero) in this cage. Therefore

S E/ 1<n
me
We<pse :!:\f(ﬂﬁﬁ)

the term m = 1 confributing 1 o each inner sum. Hence

log*w  (logloga)*~Vry - o
S, < mlb“l”' + (fog;)lm“" expexp{C,rlog(r+1)}.

Treatment of §,. In order to study this sum we need two lemmas
from the theory of funcfions of a complex meble, of which I believe
the second is new.

Linwia 4. Suppose that T'{s) is regular and |F(s)! < K for [s—1] < 28,
and thot " 48 a lacet from 1— B around 1 describad in the positive sense.
Then for eomples o, |Ro| <1 and § <1, we have that

L oo e o P (1)
g | ST 3

r=0

(logmye—r-1

< O Koy~ Fltp—1
Plo—ry |77 ’

where
= [2flogz].

The conditions on f and p are not necessary for a result of this type
but they make the proof and statement of the lemma miore coneise and
are satisfled in the application.

Prooi, By Oauchy’s theorem, we have

nt )‘) . il ,
T(s) = Z m(s 1+ f(i._.;‘:) EACIPS

2ir J \w~1 w8
7=}

where D is the circle o —1| = 26. 8o for [s—1)< B,
m F(r)(l) . K‘S 1]17:.-[-1
|1ﬂ(s>w~2 T | S

=0

Let " I'. be the contour comprising the are 1] =», —m <
arg (s —1) < = and the lines joining 1 - B, 1—=»in the positive and negative
- directions. Since.m+1—Rg> —1 the integral of js—1j" F1-Be pround

icm
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Lo
-3
L1

the arc tends to zero with ». Hance

F®
{éf_ﬁfms-l {F(s){sm—l)‘g—z (l)(s—l)’ e}ds

U

f Ky wymt1—He

eI
HI'(m+2—Rg) m+%—-Rp m-2—Ra e
< e < et o

by Stirling’s formula. Setting m = [28log»] this does not exceed
1 o
EGQKa’f“ﬂﬁ'l.

Next, we replace the contour of integration I' by a loop integral
from — oo around 1 and back. The error involved does not exceed

(7}
[ [ STy <L L[

{—2<) r=
The term for which r = 0 contributes &t most

Kz P2 pRelogy, 2Kz~ "2 I'(1 — Ro){loga)te

v I’{”) (1

uw' ey,

n the cages RQ > 0, Rp < 0 respectively. (In the former we remove the
factor

max gy~ Re = g2 g-Re
U

from the integral and replace the lower limit of integration by zero. In
the other case simply the factor o #2) Neither of thess exceeds

1
“é‘OgK:ﬂ_ﬁFﬁ_l.
The other terms, for which 1 < r < m, contribute at most

2.8)_ —ga o2 e m Fe . - m _F{'r_l_.]__RQ)
“2 (logay ™~ RJ IS T e Y e

This snm. does not exceed m times its largest term, which is either
the first or the last. 8o the expression-above does not exceed

m+1—RQ 'H'H-lng}
efloga )

= [2p10guja#i (2" { 2 e 43 (
= (Bloga)*—Fe

This i3 zero nnless 28logw > 1, when it does not exceed

1
“"é" OgKm*mﬂ“‘l.
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Since

f 5—1 ZF(T) (1) 12 ds = j ) (1)(logw)r—"* ,
%m e rif(p—7)

(—o0) =0
(see, for example, § 12.22 of Whittaker and Watson [7]) the result follows,
In the application of Lemma 4 to the present problem. we need a better
estimate for |F?(1)| thwn that given by Cauchy’s ccefficient formula.
This is
LeMmA B. Let

(14 4y

for all n; yel0, 1], Suppose that in the region
czl-26 {(0<Cf<), <2

(s) is regular and |F(s)| < K. Then for all non-negative integers r, we
have :

2log I )"“’Jrl Lp] Tt gl

PO < 3e%W(

Proof. For any non-negative integers » and m we have

F(T—IJ){G.) 1, 1;G e+l F(r)(w)'.
(f -
o 2('1 oF J"! _ +2m—:_f(w——cr)

o1
by Cauchy’s theorem._ We ghall select a value of ¢ from the range

dw,

_ 0<<o~1<<2(0—p).
Now
: log%
—1)% = "LL A=A
(=1 2(0) 2 i
whence '
| o1 (1+ )™ (log n)*
e < ,(____.__%
[ () Z pe
Now
u(n) . .
d}|
(1 v(‘n) — ( ) L. 57 v{d) »1—‘_&&“—_ d)
2, 0w 22 2 Iy <o Yy
. NEw Ny r=0 nwxx dln dn

r

o » 1
(e E

r={} el

icm
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since each squarefree d with »(d) = » oceurs #! times in the multinemial

expansion of
1 T
b8

e
It follows that
o1 [log*n  log(n+1)
ip(")(amZ( - : )2(1“’)”@
L 7 (n41) /=t
= g loghs
c
<6 mvzfn (logn)¥ f _Eg( pr )dm
n=% K
~ logka  Llogh s
éeomyfm(log )”{6 fu - jﬂ }d$
b A A .
> , ceP1V My + k+1
< O f o=V Gk gy (g_;y);;k{_l ).
5 .

Now let ¢ be a cucle, centre ¢ and radius ¢ -1+ 4. If weC and |z — w| = f

then
Ro> Ro—p>1-28, |I < |Io|+f<olt2p.

It 01428 < 2, F(z) is regular and |F{z)] < K, s0 that

[EECE
— (2— )™

o= w

1
27'

FO( m) < K"
< .

We deduce from these results that

oeliov j Iy +7+4j+1)

. - J— m-+I
B < . ot mpr I
(g -1+l £ ! o—1-+ 3

- ae Wy 4 r+m--2)
= (o —1)trtlm)

4! K" texp (—%‘%—ﬂ%l} .

Now

Plly+1) = [ o~0-vih—deqvibtv gy < (PB4 1)1V (P (k 4 2))
0

by Hoélder's inequality. Therefore

I 9 |
_(?f_‘f_%L'i‘) < (r+mF20(r+m+L) . (m41) < (7 mH-2) T,
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aﬁd
Bl{m 1)

Ly ) _
VEATT ARl I
) +rt Kf exp( o1+ )

r--m-2
() < ggbo¥ | ——
[F(1)] =< oe ( p—
By Cauchy’s coefficient formula,
[P (L)) < wt ID(2B)7T K ) Tt gl

it 2logKp < (r+1). 8o we may assume that r-+1 < [2log K], moreover
that K = ™' > 3. We select

r+m--2 2log K

m = [2logK]—7—1,

g—1 B
which imply that
' [2log K]--1
— — = — . . < .
f<o—~1, o—1428 ( Tlog K 2|18 T/6
Hence o
, 2log K\ Y+ —Br+m-+2)  Blr41)
b 1< Umy( ) VEgr (
|7 (1)) < e +r ﬁ. oxp 5o 1] 2
r4-1--
< 3t (3}0;‘—1{) ! +l ﬁ"f‘“l Pyl
This completes the proof.
YEumA 6. For
Ca (&) (logw)*
~loglogaf M0l =1,
and all a, and with m = [Cy5(e)q " logw], 0 < & < 3/8, we have
2,2 sy N B (L51/g) | (logo)Hiieti-r
3 x-pet Somo SELM et
It 4 4#& o 7! .[’(;,z(k)/rp (ln)-—-a”)
foim=a(modg) :
— O {e) (logw)*”
-0 | mex
; (me P{ (logloga)™" })

where fi(n) = f(ng)—F{g), & = gfiqg,1) for each 1 and
) = L e S g
e 3 s ’
—

_ We show in the course of the proof that thiy function ig regular in
the neighbourhood of 8 = 1, moreover that -

1,85 1/0)] < exp {Can(e)VFlogq)

icm
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near ¢ = 1. We require estimates for |FU(1;1/g)| in the application and
we use Lemma 5 which gives & considerable saving. Without it, we only
know for example that

1F,(15 1) < exp {Ca(e) Vi log g}

and the formula above ig then only useful i ¥ ngdg ¢ <€logloge (ef. Temma 7
of Hall [1]).
Proof. Let

oxXy

F,(s,a) = Z ne,

n=1
fylny=a(modyg)

> 1.

A8 ¢ =1, we have

1
Fylo,a) = O(U‘—l)

uniformly in ¢. By Lemma 3.12 of Titchmarsh [6] we have

1 g ' z° zlogw
Z 1=EG—L’ ?FQ(S,G}dSTO(T(e_l))“‘"O( T )

nEz
Ig(my=a(modg)

where @ is half an odd integer. Suppose that

(s, 1) ﬂ_S%eziﬂg(ﬂl}f _ H(1+ ;:*ipi)[] (1_%)“1.

=1 pte plg
Then ' _
1 - — 2 1 1 ¢ —2img
Buloy ) = DT s, Ug) = L) D, 1g).

I=1 I=1
‘We choose ¢ = 141 /logx and deduce from the shove that

Z l-w 1 (Q’,‘ 1) +1 Semzimqu (ﬂ’;"l/ )"{»O(w]ﬂg.’iﬁ)
— Q 2 g, q ¥ g T ?

N =1
fgln)==a(mod )

whers
1 c+idt 2
W, (z; Uq) : EET—E"JT ?Fq(é‘; ljg)ds.

In the first paper of this series we arrived at an integral similar to
thig, and all we needed there was an upper bound for |W,(@; I/g)], as we
were only interested in the main term 6z/n® in the asymptotic formula
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for T(z). We now require an approximate formula for W (x;1/g). Firgt,
it-is clear that F,(s;1/q) = F,(s; kjk) where h/k is in its lowest terms.
Moreover, -

F (s 0fk) -
@ ) o

=0 | | (“‘e_pf")_n (” (" =1) (7" + A7) )n (1 *pi)

g ptq e
‘:nlk

where

Gs; &, h) =

e2i1‘:j)h/?c
n (1+ g )
Btk 'p

and the remaining factor is regular for Rs > 1/2. It was shown in Tall
[1] that

logGs; &, ) =

wl) Ly e
T log L (8, xq) + T ﬁgx(h)r(x)logﬂ(s,x) FII(SJG,E)

where H i regular, and bounded independently of %, for Rs > 1/2- 4,
3 > 0. We conclude that 7 (s; h/k) may be analytically continued into
a simply connected region containing no zeros of L-functions (modk),
nor the point § =1, and wholly included in the half-plane Rs >1/2. Thus

" 1
Bylos o) = 503 Ygooxpl e Sl talog i, )

where the sum over y rung over all characters, and

K
() = DA ) < VE,
D=1

and for Rs > 3/4, _ :
|Fg (53 1/g)l < Cra(s) g
Now let

M (k, 1) = max{k*, (log([t|+3)loglog (|¢| - 8))**).

Then it is known (Prachar [5], p. 203) that Lis, y) =£ 0 for
Cyq(6)

o2 l—

Mk,

"We have replaced the logk in. Prachar’s definition of M (k, %) by &, to
exclude the possible real Siegel zero of one of the I-functions. Since

M{g,t) = M(k, t) we may move the contour of integration in the formula .

for Wo(w;1/q) to I'y U Iy, where I is & lacet around s = 1 and on I,

012(5)
M{g,t)’

¢ =1~

o< <.

icm
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The contour is completed by horizontal lines at ¢ = L7, joining the
points o4 ¢T, e LT (o0 = L—0n,(e)/M{g, T)). We require bounds for
[logL(s, x)| and these were derived in Lemma 3 of Hall [3].

It was shown that for y = y,, the principal character,

{loglog (jt| + 3)¥"*
{log{is] 4 3))*

+ Cra {loglog (J7] -+ 3)}* +
4 Cysloglogdi 4 O, (s)

- [ogL(s, z)] << Ozlogk

on and to the right of Ii. A better estimate was found for [§| < 2 but
we do not need this. We remark that if we replace C;logh by O (e)logyg,
and 0; by Oy;(e), the same estimate holds for ¥ = y, on I, itself. For
observe that _

[tog{(s)| < Cufloglog(if+3)}
for |t > 1; and since |s —1| = (y(e) ¢~ we have for [t} < 1,

{loglog(|¢/+ 3)}°
{log (|t| +3)}*"

Hog(s)] < O, (e)logy < Osy(e)logyg

Alzo, ' _
1 1
— i< : " A
log g (1 19*) < %’ o7 Ous(e)loglogah
“gince .
o i— 0128(5) >1— 01255) -1 012(3) .
g P clogp

Putting all this together we deduce that for 1< I ¢~1 and s eI,
T, (55 1/q)] << Cpg(e)exp{Ciy(e)Vh(log g+ (loglog T)%)}
and hence that '

1 Frd
PfTFq(S; tg)ds
2

2

< Uy (e) (—;— 4t~ Cr @B @D o0 T) exp{Cyy(e)Vk({logg+ (loglog T¥)}.

We set
. 1 AT
(loglogz)*”
and deduce that for
C1(e) (togm)™”

< oglogar™

— Cu(e) (loga)” }) _

1 @t
_ W¥(m, 1/q) = -ﬂ;rf _—s—lf"q(s, lg)ds - O(:cexp{ (loglog )™
L
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L2
o
i}

we have

1 i — . <, i 1
= Folss g) =15 (53 1/g)exp {Wg K F(og L, 1]

= (s =1y HBRE R (55 Ti)
84y, where
1B, (85 1/g)| < exp{Can(e)V blog ).
We apply Lemma 4 with
K = oxp{Cy(eWhloggt, 26 =

We obtain

_p(r) (L;1g)  (loge)r@iet—r-1
i f*“ W85 g )ds—~mz T— p .,(L,_),];(M%?)

Cyale) /M (g, 0), = u(k))p (k).

r=0
4 s L - Oye(e)loga
< Oy K™ P20 1 < Oy (s) " wexp {023(5)]/[‘710?;9"“ f%f?&?b?}
where
_ [ 012(.9)10gw]
M (g, 0;
Belacting ¢ < 3/8 we deduce fthat
N1 P (13 1g) | (loga)@iedi-r-
W, (w3 1/g) = ’”2 - Pl BIpB—r] +
| —Oua (s) (log )" })
| +oloe| gl
and the result follows from this and the fact that
1{ 1 1 o | .nl{)ta
- = o e Y —2ma7]g s 1
2 1 q(m 2)\g§ W, (; l/q)%o( - )

n<m
fp(m=a(modg)

The condition that & is half an odd integer is unnecessary to the result
by congiderations of continuity.

‘We have proved rather more in Temma 6 than is needed in the present
~application; for the series -

w
Tog m)t el
logmgak(ogm)

We now examine the integral 011‘1“1. In the neighbourhood of ¢ == 1

icm

- Bince G4(s) is regular for Rs >1/2, |t <
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arises from the terms in which r = 0 in the formula we have just proved.

To deal with the other terms we first derive an upper bound for F[") (I; t/g)l.
‘We have

LEMMA 7. Let & = q/lq, 1) and ¥ = [u(%)/o (k). Then for

. 61 < O () K g
we have

VB (L3 1q)] < Cag(Clao (&) AR g2 743

and for all non-negative inegers v,

FD; )] < ! (O (e %D (O (¥ Flogg).

The second esfimate is a divect consequence of Cauchy's coefficient
formula. For small values of » the first estimate is hetter, but as r increases
it practically dovetails inte the second by virtue of Stirling’s formula.

Proof. We have

ﬁq(s;.z/q) = Gy (s) By (s; h/k)

Gyls) = = (5 —1ylot0 H ( )_1

mm) eI ( L B®) ))

where

“and

B i) = [ | (1+ =3 (e”“fq(p”’""""m

AU #®)  PE D o)
~ N
= a,#

say. We observe that for all «,

la, | < (1+y)"(”)

where y = [u(k)/p(k). We apply Lemma 5 with

E = exp{Cu(cVilogqt, 28 = Cule)q
and we deduce that for integers r 0,

!EE,’) (1; 2/E)] < Oy (025(8)1/5!12&)”‘1”_1‘{‘?! (027(5)‘_78)?.“3(%“)!2-
1, we have |

(6 (1)] < Cpp 3721,
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Hence

O gl < () G B (L5 1)

I=0
r 0. .
<! Z 028 gr—1 (_Tali_ (026(6)1/]‘; gzs)vaH - (0127 (8) qs)l-l-l PERVIE .
T=p :

Provided the ratioc between the termg of thig sum is never less than 2,
it does not exceed twice its last term. We require that

r < i—_azﬁ(g)l/i{q“, Vel, () > 2

and then |
FD (15 1/)| < 203 Oas (Cog )V gy 4745 4-201 6+ 92 (0 () g+

< Coo{Cao )V B g™ H7+2 |
applying the estimate r!<C3((r+1)/ef"’ to the second term. But by
Canchy’s coefficient formula,

[Fg’}(l; o) < EBrl < vl Oy (8) g) exp {Cy (s)V log g}
and we use this for higher values of ». Note that
Ozn{) = 2/C1,{e)

where 0y5(z) is esgentially the undetermined constant in Siegel’s theorem.
- Provided it is small enough, we can make it as small as we wish, 50 we

may assume thab
'/3—027 (e)g" = 2

In the next lemma we show that a good approximation to the sum
over v in Lemma 6 inay be obtained by taking its first tetm only. We
have

LuMwmA 8, For : :
| s () (logm)*"

—_— > <2 1/32
= (loglogaji <15,
and all a, we have that

=1

. - = (].Ogﬂ'l)# (R a(fe)—1
1 =__+ 2111«12/:111( o+ Ofw 98 IOU'W -8/2
2 q > ) 1(a/ I'((k/(;"_) (Q( ) ]
fq(n)—a(modq)

‘We are interested in the sum over n < #)g in the apphmmon, and
we have the following
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COROLLARY. For

Cya{e) {log )™
= hogloga? ¢S
and all a, we have that

q—1

@ i . ~ (100‘9;)”(15)/'?(@”‘1
1=— 4= G—Emalng (1 -l l]) = +
2) ¢ D e )

fg(n) a(mod g

+0 (g (Loga) ).
Proof. By Lemma 6, for

Coi(e) (IOgm)B”
= (loglogw)®
and all @, we have

; - - (log m)n(k)w(k) -1
| s mal]r_rl;ﬂ
E .2 2 (l Ha) T{p(k)je k)

nLe
fyfm)=a(mod g}

< Oy (e)vexp { — Oua(e) (loga)™" } 2 |74 (1 1/g) (loga) /-
. =1 r=

(foglog 2} [T () o (o) — 7)o
where

m = [Crale)g"logz], 0< =< 3/8.
We let

1
B = < OulelVhg™

and we deduce from Lemma 7 that the inner sum on the right does not
exceed

. . |
T 2 Ol R D) (Gl B 7 logay ety

l<rs it

+‘7’Uﬂ) 2 (r+1) ( ‘,7{3)q) (log )" @1t —r—1 exp( o(e) l/klogq)

Rearsm

ginge
plk) Iy o wEBY (p(k)
w(m(m "’")'“ F(“’““tp(k))ﬂ Sm(gvua) ._’)”

The first of these sums does not exceed twice its first term, that is

< (r-+1) Yo (k).

400 (Coo (W g+ (log @iz 1 )
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it the ratio between the terms is < 1/2, that is, if

405, (E)I/EQSE < loga,

which we may assume to be the case. The second swm does noti exceed
m times its largest term, which is either the fivst or the last., SBo it iy Tess

than or equal to

m (Joge)" et ! (LR]+2)1{Cy(e) )0+
¢ (%} (Log o)W+

(m+1)1(C,, (ﬁ)qe)m} P
(logapy™+?

x exp (Cu{e)Vklogg)

 Qopap it 3((R1 - (oaacsn/i?q“ ){”” vom(2)]
= elk) logx logz el ).

s exp (Oue)V Flogg).

_ TToe< 1/32 and CUy(e) = 48, as We may Suppose, so that R = 8 for
all k and ¢, the fivst term here is

1
0 {log w)“(i"ﬁ)}m(mﬁg)
( p{k)

and the second term iz of smaller order. Ience
(Iog,v),u(lc)jm(fa.) 1

a— .
¥ @&
Pl . — — e—zmal]q F(
l IS: o(13H/0) (,La(k)/@ k) ]

g

n
fe(n)=aimod 1)

S5y 24
= O(WZ (VEg*) Y (log fn)ﬂ(]c)/qj(]c)_g)-

¢ = g (k) _
Bince & == q{(q, 1) for each % dividing ¢ other than k = 1, there are ¢(k)

values of {. The maximum value of u(k)fp(k)is 1/2, amd (VEW ig O(1).
So this is
O (g™ (Rogw) "),

This is the result stated, and the corollary follows, using the fact thab

#(E)p(k) -1
(log Q) = (log T)#(k),"ﬂ (%)—1 +0 ((10 q) (log m),u(h fp(le)—2

We are now in a position to evaluate §;. Provided

O (e}(logm)“f7 :

icmn
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we have by Lemma 8 that

1:2#@) 2 .. 1

ngxie
fg(n) =—f(g}{moda)

o) P )~ 1 |
_ #(g) (1 + Z‘ £21(a) ”gF 1;7/g) {log) ) 0 ({L.wga(logm)—m) .

q@, ¢ T(u(k) o (7))
Therefore
6 @ . w (k)
8, =—a+0 (—— —{—mm“(logw}“”‘) +z Z e (log )RR 1
SRR P A T e
. (@)
% 2 Z M ’9_’2 eﬁﬂf(‘l'k}ijafk(l;jﬁc)-
i=1 o'<olk g
(7 i)=1 (g'k)=1
Since

FanlL; i) = Of(e+seqeyr+y)

2.“

(e’ k)==1

" the inner sum ig

2iﬂf(q'k]j[k + 0 (wSE—I ;163[2—!-2/]2)

and since k¥ is O(1), the whole sum is

6 .
0 (—@--kmwgs(logw)‘?"z-i—mws"m (logm)“”z) +

[

7T

(lﬂgw)u(k)lw(k)—l ¢

Z KL (u() fp () M(k)!‘r(k )

[1. (g omf(q e
x Z’ 2 Fpl155/8).

s k] 1(a I.) 1
If we now let & range from 2 to infinity, the error introduced is
0 (50 2 k"3l2+32 (logm)ﬂ(k)/‘??(m—l) — O(wwse— 12 (10gm)"”2) .

k=
Hence

_6

A :J(fflqﬂ(k)
toga Z o(loga)®ie ¢

-l— 0 (E)— + o™ (logz) > + ze® 2 (loge)— 1,
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where
plk) 42_4 2 2@11;(;17»);;: (L3
T Z P 1)
UT) 1 {zk)=1
We set & = 1/90, w == Oy (loge)”®, and
log,»
L Gf
! Y log,m
and deduce from our rosults for 8, and &, that
[as]
G . & C(log,w) (log, ) ))
N — —— ] ) alie) (k) O oy
T@) o 2 logz L Alloga) 7+ (10 @ 13( logyw

where ¢ is an absolute constant and
\ 1
A}J Ai'c
T2
is absolutely convergent. This completes the proof.

Remarks concerning the sequence {4,). A, is veal, for the jth and
(k—j)-th terms in the sum over j above are complex con]uga.tu; From

the estimate for [lf"] we know thab
Ay = O(FRte

for all £ > 0. We also have the formula

1 UG) ézmpﬁ.&)
i 21.1:1‘(15)3/.’::

s = By 2 ”( [0 Zam e

4. k)—
where _

(k) . ( M(k)) )

B, = 1 — Lit(g i )E0 e

CE k(8w (k) g (1)) ﬂ o (k) M( e

x]]( k) s)—l;

the characters are to modulus % and
k

w(z) = D e

=1
@E)=1

icn
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The proof of this is straightforward but invelves infinite products which
would be awkward to print and I suppress it. Note that B, =0 for

squarefree k, for
(k) (#Uv‘)) ( ﬂ(ﬁ))
w® " \o®) w7

and the remaining factors are positive. I cannot determine the mgn of
Ay/By in general, however we can show that -

A= 0.
For we have

1 o ix(p)V3
a,=28]] (1—-4_2) R[e“”"s Il (1+i§(——_p 3 )]
P16 P Dih A+l
that is, twice the real part of the term involving § = 1. Denoting the
term in square hrackets by 4 we may show that :
V3 L
argA+g ——logL{1, ")f < 3/25.

But
1 1 1 4
1> L1 =l— 4= - >
(775). 5+7 ll-f_ >5
and so _
7 m Vs 5 3 " L3
TR T3 T B Ty MeAS —g e <o

Hence 4 is in the fourth gquadrant of the Argand ﬂi&gram and 4, is
positive.
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